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A SOCIETAL IMPACTS

As machine learning models are increasingly relied upon in a diverse set of high-impact domains
ranging from health-care to financial lending (Esteva et al.| 2019} Kose et al., 2021}, [Doshi-Velez
& Kim| [2017; |Sheikh et al., 2020; [Singh et al., 2021), it is crucial that users of these models can
accurately interpret why predictions are made. An understanding of why a model is making a certain
prediction is important for users to trust it — for instance a doctor may wish to know if a skin-
cancer classifier’s high test-set accuracy comes from the leveraging of truly diagnostic features,
or a specific imaging device artifact. However, further spurred by the advent of deep learning’s
increasing popularity (Krizhevsky et al., [2017), many of the models deployed in these high-stakes
fields are complex black box’s; producing predictions which are non-trivial to explain the reasoning
behind. The development of many methods for explaining black-box predictions has arisen from
this situation (Ribeiro et al., [2016; |[Lundberg & Leel 2017} |Covert et al., 2020; [Masoomi et al.,
2021), but explanations may have varying quality and consistency. Before utilizing explanations in
practice, it is essential that users know when, and when not, to trust them. Explanation uncertainty
is one proxy for this notion of trust, in which more uncertain explanations may be deemed less
trustworthy. In this work, we explore a new way to model explanation uncertainty, in terms of local
decision-boundary complexity. In tandem with the careful consideration of domain experts, our
methodology may be used to assist in determining when explanations are reliable. Our theoretical
results provide new insights towards what explanation uncertainty entails, and open the door for
future methods expounding upon our formulation.

B BACKGROUND

B.1 RELATED WORKS: RELIABILITY OF EXPLANATIONS

While feature attribution methods have gained wide popularity, a number of issues relating to the
reliability of such methods have been uncovered. |Alvarez-Melis & Jaakkola| (2018) investigate the
notion of robustness and show that many feature attribution methods are sensitive to small changes
in input. This has been further investigated in the adversarial setting for perturbation-based meth-
ods (Slack et al., [2020) and neural network-based methods. (Ghorbani et al., 2019). Kindermans
et al. (2019) show that many feature attribution methods are affected by distribution transformations
such as those common in preprocessing. The generated explanations can also be very sensitive to
hyperparameter choice Bansal et al.|(2020). A number of metrics have been proposed for evaluating
explainer reliability, such as with respect to adversarial attack (Hsieh et al., [2021), local perturba-
tions (Alvarez-Melis & Jaakkola, 2018; |Visani et al., 2022), black-box smoothness (Khan et al.|
2022)), fidelity to the black-box model (Yeh et al., |2019), or combinations of these metrics (Bhatt
et al., 2020).

B.2 GAUSSIAN PROCESS REVIEW

A single-output Gaussian Process represents a distribution over functions f : X — R

f(@) ~ GP(m(x), k(x,z")). (10)
Here m : X — Rand k : (X,X) — R are the mean and kernel (or covariance) functions re-
spectively, which are chosen a priori to encode the users assumptions about the data. The kernel
function k(x, 2’) reflects a notion of similarity between data points for which predictive distribu-

tions over f(x), f(x’) respect. The prior m(x) — frequently considered to be less important — is
commonly chosen to be the constant m(z) = 0.

Specifically, a GP is an infinite collection of R.V’s f(z), each indexed by an element z € X.
Importantly, any finite sub-collection of these R.V’s

F(Xer) = (f(a1) ..., flwn)) €RY, (11)
corresponding to some index set Xy = {x;}7, C X, follows the multivariate normal (MVN)
distribution, i.e.

f(Xtr) NN(m(Xtr)yK(Xthtr))- (12)
Here the mean vector m(Xy,.) = (m(x1),...,m(x,)) € R™ represents the mean function applied
on each z € Xy, and the covariance matrix K € R™*" also known as the gram matrix, contains
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each pairwise kernel-based similarity value K;; = k(x;,z;). Kernel function outputs correspond
to dot products in potentially infinite dimensional expanded feature space, which allows for the
encoding of nuanced notions of similarity; e.g. the exponential geodesic kernel referenced in this
work (Feragen et al., 2015).

Making predictions with a GP is analogous to simply conditioning this normal distribution on our
data. Considering a set of input,noise-free label pairs

D = {(zs, f(z:) }i2q (13)
we may update our posterior over any subset of the R.V’s f(x) by considering the joint normal over
the subset and D and conditioning on D. For instance, when choosing a singleton index set {x¢},
the posterior over f(xo)|D is another normal distribution which may be written a

f(xo) ~ N(f(z0), V[f(20)]) (14)

where
f(z0) = K(zo, Xer) " K (Xer, Xer) ™ f(Xer) (15)
V[f(z0)] = k(xo, x0) — K (w0, Xeo)T K (X4, Xir) K (20, Xor) (16)

and K (z9, X;,) € R? is defined element-wise by K (zo, X¢,.); = k(zo, ;).
Now we may consider the situation where our labels are noisy:
D = {(zi,yi)}r, yi = flwi) + ¢, e~ N(0,0%), 0 € Ry, amn

Here y; is equal to the quantity we wish to model, f(x;), with the addition of noise variable e. The
conditional is still a MVN, but the mean and variance equations are slightly modified

f(zo) = K(z0, Xor) T (K (X, Xip) + 021) 7Y (18)
V[f(l’())} = k('rvaO) - K(:L'O7Xt’r‘)T(K(Xt’I’7Xt7‘) + 021)_1K(m07XtT)a (19)
where Y € R” has elements Y; = y;.

Notice how the variance 027 is added to K (X4, Xyrr) in the quadratic form in Eq. resulting in
smaller eigenvalues after matrix inversion. Since this quadratic form is subtracted, the decision to
model labels as noisy increases the uncertainty (variance) of estimates the GP posterior provides.
This agrees with the intuition that noisy labels should result in more uncertain predictions.

While GPs may also be defined over vector valued functions, in this work the independence of each
output component is assumed, allowing for modeling with ¢ > 1 independent GPs. For more details
see Ch.2 of[Rasmussen & Williams (2005)), from which the notation and content of this section were
inspired.

C PROOF OF THEOREMS AND MULTICLASS EXTENSION

C.1 THEOREM[I} RELATION TO EXPONENTIAL GEODESIC KERNEL

k(x,y) ://eXp[—/\dgeo(m,m’)]q(m|m,p)q(m’|y,p) dm/dm

s.t. q(mlz, p) o< expl[—pllz — ml|3]p(m)

Note that p controls how to weight manifold samples close to x,y. We take lim,_, o

1 z=mandy=m'

. / _
i gCmle. gl ) = {6

Therefore the function within the integral of k(z, y) evaluates to zero at all points except x = m and
y = m/. Since x,y € M we can evaluate the integral:

k(xz,y) = exp[_)\dgeo(xa y)]

%assuming prior m(x) = 0
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C.2 THEOREM[2l KERNEL SIMILARITY AND DECISION BOUNDARY COMPLEXITY

From definition |1} given any perturbation P on P, there must exist a compact subset K; C U; s.t.
Rlpvimres) = 1l pvim(re;) and Rl e,y # 1dfy k- Furthermore there exists a linear homeomor-
phism between an open subset U; C U; with R4~ which contains K;.

We parametrize K; using a smooth function g : T — K; s.t. g(t) € OK; Vt € OT.

We further define g.(¢) = g(t) + en(t), for some perturbation ¢ € R and a smooth functionn : 7 —
R?~1 We also restrict 17 such that (t) = 0 V¢t € OT and 3 tg € T s.t. n(to) # g(to). In other
words, 7 is a smooth function where g.(t) = g(t) Ve > 0,Vt € T, but is not identical to g for all
t € T. Using g.(t), we define the manifold P, = {g.(¢) : t € T }.

To complete the proof, we want to show that the kernel similarity between any two given points
x,y € R is lower when using the manifold P, for ¢ > 0 as opposed to the manifold Py. We
therefore want to compare the two respective kernels k.(x, y) and ko(x,y). Note that in this proof
we consider the local effects of P on the kernel similarity through Py and P, exclusively, ignoring
the manifold P \ U; Using Euler-Lagrange, we can calculate a lower bound for dgeo(ge (%)), g¢(t')))-
In particular, for any ¢,t" € T, dgeo(ge(t)), ge(t'))) > dgeo(go(t), go(t)).

dgeo(Ge (), ge(t')) = dgeo(go(t), go(t')) (20)

exp[f)‘dgeo(ge (t)a e (t/))] § exp[f)\dgeo(g()(t% gO(t/))] (21)

//exp[f)\dgeo(ge(t),gé(t'))] dtdt’g//exp[f)\dgeo(go(thgo(t’))] dtdt’  (22)
TJIT TJIT

Note that in Eq. we are integrating over all possible values of ¢, ¢, therefore the inequality is tight
iff g.(t) = go(t) V¢t € T; i.e. € = 0 (see proof in|[C.2.1). The case of € = 0 is trivial; we instead
assume € > 0, in which case we can establish the following strict inequality:

[ [ explrduntac0) gt ) dtat < [ [ expl-Mosolan(t),o(e))] ceat (23
TJT TJT

Define uniform random variables T', T’ over the domain of g, i.e. T, T’ ~ Us. Then we have:
E7 1 nthio ) [€XP[=Adgeo (96 (), 9e(T)]] < Ex 1 mty 1y [€xP[~Adgeo (90(T), 90 (T7))]]  (24)

IEMJ\/I’NPE(M) [CXP[_)‘dgeO(Ma Ml)]] < EM,M'Npo(]\/[) [CXP[_/\dgeo(Ma M/)]] (25)

We define the random variable M = g.(T") with distribution p.(M ). The distribution p. (M) repre-
sents the uniform distribution /7 mapped to the manifold P, using g.(T"). The step from Egq. Mto
Eq. 25]uses a property of distribution transformations (Eq. 2.2.5 in|Casella & Berger| (2001)).

Next, compare either side of Eq. [25|to our kernel formulation shown below in Eq. The kernel
ke(z,y|p, \) takes an expected value over ¢.(M|z, p) and q.(M’|y, p), which are equivalent to
pe(M) and p.(M") weighted with respect to x, y, and a hyperparameter p > 0.

ke (I’, y‘pa )‘) = ]EMNqE(M|a;,p),M’~qe(M"y,p) [exp[f)‘dgeo(Ma M/)H (26)
st qe(Mlz, p) o< exp[—p||z — M|[3]p.(M)
st qe(M'ly, p) oc exp[—plly — M'|[3]pe(M")
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Note that when p is set to zero, ¢(M|z,0) = p(M) and q(M’|y,0) = p(M’). Therefore Eq. 23]is
equivalent to the inequality k.(z,y|0, ) < ko(z,y|0, A).

We next want to prove that the inequality ke(x,y|p, A) < ko(x,y|p, A) also holds for non-zero
values of p. For convenience, define

f(p) = k()(xay|pv )‘) - ke($7y|p7 >‘) (27)

Under this definition, we want to prove there exists pg > 0 such that f(p) > 0 Vp < pg. From Eq.
we established that f(0) > 0. Assume that

lim f(p) =c (28)

p—0

It therefore follows that ¢ > 0. In addition, note that f(p) is continuous with respect to p (see proof
in section[C.2.3). Therefore for any € > 0 there exists § > 0 s.t. p < § implies | f(p) — ¢| < e.

We choose € = ¢ and the define the corresponding § to be py. Therefore:

p<po=I[f(p)—c <c (29)

p<po=0<fp)<2c (30)
Since this result holds for any i, it follows that the piecewise linear manifold P is a local minimum
under any perturbation along a specific chart or combination of charts with respect to the kernel

similarity k(z,y) Yo,y € RZ

C.2.1 PROOF: EQ.

We want to prove:

[ esvlrdgatan0).0u00) atat = [ [ expi-Mpalanlt). o)) i’ 31
TJT TJT
= g.(t) =go(t) VteT

Consider the LHS of Eq. 31}

|| exol-rdntante). ) dtat = [ [ expl-Mysolon(t). o)) gt G2
TJIT TJIT

/T /T exp[—Mdgeo (g0 (1), 60(1'))] — exp[—Mdgeo (ge(£), ge(£'))] dtdt’ =0 (33)

h(t,t")

Define h(t,t’) as the function inside the integrals in Eq. From Egq. h(t,t') > 0Vt t' € T.
Since h is continuous (see proof in|C.2.2) and [ [ h(t,t')dtdt’ = 0, it follows that A(t,t') = 0
Vt,t' € T (Ch.6[Rudin|(1976)).

It therefore follows that:

exp[—Adgeo(9g0(t), go(t'))] = exp[—Adgeo(ge(t), ge(t'))] Vit 1" € T (34)

From the definition of 7(t) in g.(t) = g(t) + en(¢), there must exist t € T s.t. n(t) # 0. Therefore
e must be zero for Eq. [34]to hold. It follows that g.(t) = go(t) Vit € T.
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C.2.2 PROOF: CONTINUITY OF h(t,t)

We prove that h(t,t’) is continuous with respect to t,t’. First note that by definition, g.(¢) is a
continuous parametrization of the manifold P.. From Burago et al. (2001), it follows that for any
two points ge(t), ge(t') € Pe, dgeo(ge(t), ge(t')) is continuous. Since the exponential functional
preserves continuity and the sum of continuous functions are also continuous, it follows that A(¢,t’)
is continuous.

C.2.3 PROOF: CONTINUITY OF k(x,y) WITH RESPECT TO p

We prove that k(x, y) is continuous with respect to p.

k(z,y) ://exp[%dgeo(mm’)] q(m|z, p) q(m’ly, p) dmdm’ (35)

1 ) /
- gt | [ Al oty vt o
p

sit. Znlp) = [ expl=plla = mlp(m) dm

o (p) = / expl—plly — m'|Zlp(m’) dim
A = expl—Adgeo (m, m)p(m)p(m’)

Define h(p) = pB, where B is a constant. Consider h(p) — h(pg), where pg is a fixed positive
constant:

|h(p) — h(po)| = |pB — poB] 37

= [(p — po)B| < 4|B]| (38)

It follows that V e > 0,3 6 = 55 > 0 such that lp—pol <6 = |h(p) — h(po)| < e. Therefore h
is continuous for all p € RT.

We set B to be ||z —ml||3, [ly—m'||3, and ||z —m||3+]||y —m/||3, which shows that Z,,,(p), Zm (p),
and Z(p) are also continuous, respectively. It then follows that the entirety of Eq. is continuous.

C.3 EXTENDING TO MULTICLASS CLASSIFIERS

In the multiclass case we define a black-box prediction model F' : X — R°. We consider the one-vs-
all DB forevery classy € Y = {1,...,c}, defined as M, = {z € R?: F, () = max;cy F;(z) =
max;xycy Fj(x)}, where Fj, indicates the model output for class k. We then apply the GPEC
framework separately to each class using the respective DB. The uncertainty estimate of the GP
model would be of dimension d X s.

D IMPLEMENTATION DETAILS

D.1 ALGORITHM

The GPEC training algorithm is outlined in Alg. [I} GPEC is parametrized using a multi-output
Gaussian Process Regression model using the explanations as labels. Once the explanations L,
explanation uncertainty U, and WEG kernel matrix K are generated from Alg. [T} we can directly
use these values to update the GP posterior and calculate the prediction variance for new test samples

(Eq. [19).
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D.2 ADVERSARIAL SAMPLE FILTERING MULTI-CLASS MODELS

We elect to sample from multi-class neural network decision boundaries by running binary search on
train-point adversarial example pairs. Specifically, given a test-point 2o € R? and model prediction
y = argmax,, .y, F'(), decision boundary points may be generated by the following procedure:

First, for each class v € ) a set of M,, points is randomly sampled from the set of train points on
which the model predicts class v:

Xy C{z rargmax, ey, F(x) = v, v € &}, |Xy| = M, (39)

Yv € Y. An untargeted adversarial attack using some [, norm and radius € is run on each point in
Xy, the set of points with the same class prediction as x¢. Each attack output Attackyn(z,€) € R4
is paired with its corresponding input, resulting in the set

Xy = {(z, Attacky, (z,¢€)) : v € Xy}, (40)

where for an element (a, b) € X}, we have argmax; ., F'(a) = y, argmax,,, F'(b) = v # y, where
v is an unspecified class.

Likewise a targeted adversarial attack, with target class y, is run on each point in each of the sets of
points that are not predicted as class y. Each attack output Attack,(z,€) € R? may be paired with
its input x resulting in sets

Xy = {(x, Attacky(z,€)) : v € Xy} 41)

Vv # y € V. Here, for an element (a, b) € X,y we have argmax, .y, F'(a) = v, argmax; o, F'(b) =
Y.

Thus, we have generated a diverse set of )y, M, pairs of points that lie on opposite sides of
the decision boundary for class y. The segment between any pair from a given set X,y v # y will
necessarily contain a point on the class v v.s. class y decision boundary. Likewise, in the interest of
further diversity, segments between any pair from the set &, will contain a point on the class v v.s.
class y decision boundary, where v # y € ) is unspecified. A binary search may be run on each
pair to find the boundary point in the middle.

In practice the entire procedure may be amortized for each class, and ran for all classes as a single
post-processing step immediately after training. This results in a dictionary of boundary points
which may be efficiently queried on demand via the model predicted class of any given test point.

Each adversarial attack is attempted multiple times, once using each radius value € in the list:
[0.0,2¢7%, 574, 8e74,1e73, 173, 1.5e73,2¢73,3e 73, 1e72, 1e71,3e71,5¢71,1.0]. For a given
input, the output of the successful attack with smallest € is used. If no attack is successful at any
radius, the input is discarded from further consideration.

In this work the Foolbox [Rauber et al. (2017; 2020) implementation of the Projected Gradient De-
scent (PGD) |Madry et al.|(2018) attack with the [, norm was used for both targeted and untargeted
attacks. The M, values used for the relevant datasets are indicated below in Appendix

E EXPERIMENT SETUP

E.1 DATASETS AND MODELS

Census. The UCI Census dataset consists of 32,561 samples from the 1994 census dataset. Each
sample is a single person’s response to the census questionaire. An XGBoost model is trained using
the 12 features to predict whether the individual has income > $50k.

Online Shopper. The UCI Online Shoppers dataset consists of clickstream data from 12,330 web
sessions. Each session is generated from a different individual and specifies whether a revenue-
generating transaction takes place. There are 17 other features including device information, types
of pages accessed during the session, and date information. An XGBoost model is trained to predict
whether a purchase occurs.

German Credit. The German Credit dataset consists of 1,000 samples; each sample represents an
individual who takes credit from a bank. The classification task is to predict whether an individual is
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Census | Online Shoppers | German Credit | MNIST | f-MNIST
GPEC-WEG | 0.11 0.37 0.07 12.90 18.15
GPEC-RBF | 0.00 0.00 0.02 8.95 7.41
CXPlain 0.05 0.06 0.04 9.76 18.18
BayesSHAP | 140.40 54.56 4.86 42,467 | 42,361
BayesLIME | 91.29 54.60 4.83 41,832 | 41,992

Table 2: Execution time comparison for estimating the uncertainty for all features for 100 samples
(in seconds). For MNIST and f-MNIST datasets, results represent execution time for calculating
uncertainty estimates with respect to all ten classes. For GPEC-WEG, GPEC-RBF, and CXPlain
methods, the results show inference times.

considered a good or bad risk. Features include demographic information, credit history, and infor-
mation about existing loans. Categorical features are converted using a one-hot encoding, resulting
in 24 total features.

MNIST. The MNIST dataset (LeCun & Cortes,[2010) consists of 70k grayscale images of dimension
28x28. Each image has a single handwritten numeral, from 0-9. A fully connected network with
layer sizes 784-700-400-200-100-10 and ReLU activation functions was trained and validated on
on 50,000 and 10, 000 image label pairs, respectively. Training lasted for 30 epochs with initial
learning rate of 2 and a learning rate decay of v = 0.5 when training loss is plateaued. During
adversarial example generation we used M, = 500 and M, = 50 Vc # y.

Fashion MNIST The Fashion MNIST dataset (Xiao et al.,|2017) contains 70k grayscale images of
dimension 28x28. There are 10 classes, each indicating a different article of clothing. We train a
MLP model with the same architecture used for the MNIST dataset, however we increase training
to 100 epochs and increase the initial learning rate to 3. During adversarial example generation we

used M, = 500 and M, = 50 Vc # y.

E.2 COMPETITOR IMPLEMENTATION DETAILS

BayesLIME and BayesSHAP. Slack et al. (2021)) extend the methods LIME and KernelSHAP to
use a Bayesian Framework. BayesLIME and BayesSHAP are fit using Bayesian linear regression
models on perturbed outputs of the black-box model. The posterior distribution of the model weights
are taken as the feature attributions instead of the frequentist estimate that characterizes LIME and
KernelSHAP. We take the expected value of the posterior distribution as the point estimate for feature
attributions, and the 95% credible interval as the estimate of uncertainty. To implement BayesLIME
and BayesSHAP we use the public implementatio We set the number of samples to 200, disable
discretization for continuous variables, and calculate the explanations over all features. Otherwise,
we use the default parameters for the implementation.

CXPlain. [Schwab & Karlen| (2019) introduces the explanation method CXPlain, which trains a
surrogate explanation model based on a causal loss function. After training the surrogate model, the
authors propose using a bootstrap resampling technique to estimate the variance of the predictions.
In our experiments we implement the publicly available cod We use the default parameters, which
include using a 2-layer UNet model Ronneberger et al.|(2015) for the image datasets and a 2-layer
MLP model for the tabular datasets. We take a 95% confidence interval from the bootstrapped results
as the estimate of uncertainty.

F ADDITIONAL RESULTS

F.1 EXECUTION TIME COMPARISON

In Table[2]we include an execution time comparison between the methods implemented in this paper.
Results are averaged over 100 test samples. For MNIST and f-MNIST datasets, results evaluate the
time to calculate uncertainty estimates with respect to all classes. All experiments were run on
an internal cluster using AMD EPYC 7302 16-Core processors. We observe from the results that

3https://github.com/dylan-slack/Modeling-Uncertainty-Local-Explainability
*https://github.com/d909b/cxplain
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the methods that amortization methods (GPEC-WEG, GPEC-RBF, CXPlain) are significantly faster
than perturbation methods BayesLIME and BayesSHAP.

F.2 Toy EXAMPLE: EVALUATING GPEC ON A LINEAR CLASSIFIER

In order to understand how the GPEC-WEG uncertainty estimate behaves for linear models, we use
a toy example shown in Fig. [F2} In the top row, we visualize the GPEC-WEG uncertainty; we see
that the uncertainty estimate is a small, constant value for the linear model (left) whereas uncertainty
increases for the nonlinear model (right). Intuitively, GPEC derives its uncertainty estimate by eval-
uating the distribution of explanations with respect to the black-box model. Since it is generally
infeasible to evaluate the space of all possible explanations, GPEC will typically estimate a base-
line” amount of uncertainty for every explanation, which depends on the sampling of the training
distribution and is minimized for a linear model.

In the bottom two figures we visualize the magnitude of the gradient for the two respective models,
which is a noiseless estimate of feature importance. We see that even using this deterministic feature
importance method, the estimates can fail to be robust due to the nonlinearity, i.e. nearby samples
within the same class can have very different explanations.

F.3 VISUALIZING EFFECTS OF EXPLAINER UNCERTAINTY IN GPEC ESTIMATE

In section [5.4] we evaluate GPEC’s ability to combine uncertainty from the black-box decision
boundary and the uncertainty estimate from BayesSHAP and SSV explainers. In Figure[7]we extend
this experiment to evaluate how well GPEC can capture the explainer uncertainty. We calculate the
combined GPEC+explainer estimate using different numbers of approximation samples.

Both BayesSHAP and SSV depend on sampling to generate their explanations; having fewer sam-
ples increases the variance of their estimates. As we decrease the number of samples from 200
(Row A) to 5 (Row B) we would expect that the explainer uncertainty, and consequently the com-
bined GPEC uncertainty, would increase. We see in Row A that the results follow our intuition;
uncertainty increases for most of the plotted test points and uncertainty does not decrease for any
points.

F.4 ADDITIONAL RESULTS FOR UNCERTAINTY VISUALIZATION EXPERIMENT

Results for Y-Axis Feature In Figure |8| we visualize the estimated explanation uncertainty as a
heatmap for a grid of explanations. The generated plots only visualize the uncertainty for the feature
on the x-axis. Due to space constraints, we list the results for the y-axis feature in the appendix, in
Figure[8] We can see that the results are in line with those from the x-axis figure.

Black-box model output For reference, in Figure [9| we plot the probability output of the XGBoost
models used in the visualization experiment (Figure H4)).

F.5 SENSITIVITY ANALYSIS OF WEG KERNEL PARAMETERS

The WEG kernel formulation uses two parameters, p and A. The parameter p controls the weighting
between each datapoint and the manifold samples. As p increases, the WEG kernel places more
weight on manifold samples close in /5 distance to the given datapoint. The parameter A acts as a
bandwidth parameter for the exponential geodesic kernel. Increasing A increases the effect of the
geodesic distance along the manifold. Therefore decision boundaries with higher complexity will
have an increased effect on the WEG kernel similarity. In Figures [T0} [TT} and [T2]we plot heatmaps
for various combinations of p and A parameters to evaluate the change in the uncertainty estimate.
The black line is the decision boundary and the red points are the samples used for training GPEC.
Please note that the heatmap scales are not necessarily the same for each plot.

22



Under review as a conference paper at ICLR 2023

Algorithm 1 GPEC Model Training

Input : GPEC Training Samples X € RM>*¢  Explainer E. Hyperparameters P (# DB Samples), J (
optional: # Samples for Functional Approximation Uncertainty estimate)
Output : Explanations L, € R™*5, Explanation Uncertainty U € R™*5, WEG Kernel K € [0, 1] *M

\\ Calculate Function Approximation Uncertainty
Initialize L € RM*5, U € RM*S
if Explainer returns uncertainty estimate then
fori=12,..Mdo
L; ., U;. + E(X;),) \\ Get explanations (L;,:) and explanation uncertainty (U;,.) from Explainer

end
end
else if Explainer is stochastic and J > 1 then
fori=12..Mdo
Initialize Q € R7*®
forj=12,..Jdo

| Qj: « E(X:,) \\ Draw stochastic explanations for same data sample
end
Li’; <

Qj,:

<=
.Mk

<
1
=

U;. +

5

<
Il

<l
-

(Qj. — Li.)? \\\ Empirical uncertainty estimate (Eq.

end
end
else if Explainer is deterministic then
fori=12,..Mdo
| Li. + E(X;))
end
U+0 \\ Set functional approximation uncertainty to zero

end

\\ Calculate EG Kernel Matrix
B < Decision_Boundary_Sampler(F, P) \\ Draw P DB samples of dimension d. B € RF*¢
Initialize G € [0, 1]7*F
fori=1.2,..Pdo
forj=12..Pdo
Gij < exp(—Adgeo(Bi:, Bj:))  \\Eq.[4]

end
end

\\ Calculate WEG Kernel Matrix
Initialize W € [0, 1]M>*” \\ Initialize weighting matrix
fori=12,..Mdo
forj=12,..Pdo
Wi j < exp(—pl|Xi: — B;.:|[3)

end
Wi =~ \\ Normalize weighting distribution (Eq. |9
2o Wi
end
K+~ WGWT \\ Apply weighting to EG Kernel Matrix
Return L, U, K
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Figure 6: Comparison of a GPEC uncertainty estimates on linear and nonlinear toy models:
9. TOP: Uncertainty estimate from GPEC.
Applying GPEC on a linear model results in a small, relatively constant variance for the test expla-
nations. As the DB becomes more complex, as in f.os, the uncertainty estimate increases around
the nonlinearities in the DB. BOTTOM: Gradient norm, which is an estimate of feature importance.
The feature importance estimate becomes unstable (i.e. nearby samples of the same class have can
have very different explanations) due to the nonlinearity of fos.

fiinear (1, T2) = x2 and feos (21, 22) = 2 cos(
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Figure 7: Comparison of the change in quantified uncertainty of explanations as we change the
number of samples for BayesSHAP and SSV. Row (A) visualizes the combined uncertainty estimate
using GPEC and either BayesSHAP or SSV, using 200 samples for approximating the BayesSHAP /
SSV explanation. In Row (B) we decrease the number of samples to 5 and recalculate the estimated
uncertainty. Row (A) represents the change in uncertainty estimate between (A) and (B). We see
that the average uncertainty changes as we decrease the number of samples, which indicates that
GPEC is able to capture the uncertainty arising from BayesSHAP / SSV approximation.
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Figure 8: Complement to Figure [d Visualization of estimated explanation uncertainty where the
heatmap represents level of uncertainty for the feature on the y-axis.
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Figure 9: Output of binary classifiers used in the experiments. The color indicates the predicted
probability of each point. Points with probability > 0.5 are classified as class 1, and points with
probability < 0.5 are classified as class 0. The decision boundary, which is the set of points {m :
m € R?, f(m) = 0.5} where f is the classifier, is represented by the black line.
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Figure 10: Hyperparameter sensitivity analysis for the German Credit Dataset. Heatmap of esti-
mated uncertainty for the x-axis variable under different p and \ parameter choices.
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Figure 11: Hyperparameter sensitivity analysis for the Census Dataset. Heatmap of estimated un-
certainty for the x-axis variable under different p and A parameter choices.
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Figure 12: Hyperparameter sensitivity analysis for the Census Dataset. Heatmap of estimated un-
certainty for the x-axis variable under different p and )\ parameter choices.
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