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Abstract

We introduce the forward-backward (FB) representation of the dynamics of a
reward-free Markov decision process. It provides explicit near-optimal policies for
any reward specified a posteriori. During an unsupervised phase, we use reward-
free interactions with the environment to learn two representations via off-the-shelf
deep learning methods and temporal difference (TD) learning. In the test phase, a
reward representation is estimated either from reward observations or an explicit
reward description (e.g., a target state). The optimal policy for that reward is
directly obtained from these representations, with no planning. We assume access
to an exploration scheme or replay buffer for the first phase.
The corresponding unsupervised loss is well-principled: if training is perfect, the
policies obtained are provably optimal for any reward function. With imperfect
training, the sub-optimality is proportional to the unsupervised approximation
error. The FB representation learns long-range relationships between states and
actions, via a predictive occupancy map, without having to synthesize states as in
model-based approaches.
This is a step towards learning controllable agents in arbitrary black-box stochastic
environments. This approach compares well to goal-oriented RL algorithms on
discrete and continuous mazes, pixel-based MsPacman, and the FetchReach virtual
robot arm. We also illustrate how the agent can immediately adapt to new tasks
beyond goal-oriented RL. 2

1 Introduction

We consider one kind of unsupervised reinforcement learning problem: Given a Markov decision
process (MDP) but no reward information, is it possible to learn and store a compact object that,
for any reward function specified later, provides the optimal policy for that reward, with a minimal
amount of additional computation? In a sense, such an object would encode in a compact form the
solutions of all possible planning problems in the environment. This is a step towards building agents
that are fully controllable after first exploring their environment in an unsupervised way.

Goal-oriented RL methods [ACR+17, PAR+18] compute policies for a series of rewards specified in
advance (such as reaching a set of target states), but cannot adapt in real time to new rewards, such as
weighted combinations of target states or dense rewards.

Learning a model of the world is another possibility, but it still requires explicit planning for each
new reward; moreover, synthesizing accurate trajectories of states over long time ranges has proven
difficult [Tal17, KST+18].
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Instead, we exhibit an object that is both simpler to learn than a model of the world, and contains the
information to recover near-optimal policies for any reward provided a posteriori, without a planning
phase.

[BBQ+18] learn optimal policies for all rewards that are linear combinations of a finite number of
feature functions provided in advance by the user. This limits applications: e.g., goal-oriented tasks
would require one feature per goal state, thus using infinitely many features in continuous spaces.
We reuse a policy parameterization from [BBQ+18], but introduce a novel representation with better
properties, based on state occupancy prediction instead of expected featurizations. We use theoretical
advances on successor state learning from [BTO21]. We obtain the following.

∙ We prove the existence of a learnable “summary” of a reward-free discrete or continuous MDP,
that provides an explicit formula for optimal policies for any reward specified later. This takes the
form of a pair of representations 𝐹 : 𝑆 ×𝐴× 𝑍 → 𝑍 and 𝐵 : 𝑆 ×𝐴→ 𝑍 from state-actions into
a representation space 𝑍 ≃ R𝑑, with policies 𝜋𝑧(𝑠) := arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. Once a reward is
specified, a value of 𝑧 is computed from reward values and 𝐵; then 𝜋𝑧 is used. Rewards may be
specified either explicitly as a function, or as target states, or by samples as in usual RL setups.

∙ We provide a well-principled unsupervised loss for 𝐹 and 𝐵. If FB training is perfect, then the
policies are provably optimal for all rewards (Theorem 2). With imperfect training, sub-optimality
is proportional to the FB training error (Theorems 8–9). In finite spaces, perfect training is possible
with large enough dimension 𝑑 (Proposition 6).
Explicitly, 𝐹 and 𝐵 are trained so that 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) approximates the long-term probability
to reach 𝑠′ from 𝑠 if following 𝜋𝑧 . This is akin to a model of the environment, without synthesizing
state trajectories.

∙ We provide a TD-like algorithm to train 𝐹 and 𝐵 for this unsupervised loss, with function
approximation, adapted from recent methods for successor states [BTO21]. No sparse rewards are
used: every transition reaches some state 𝑠′, so every step is exploited. As usual with TD, learning
seeks a fixed point but the loss itself is not observable.

∙ We prove viability of the method on several environments from mazes to pixel-based MsPacman
and a virtual robotic arm. For single-state rewards (learning to reach arbitrary states), we provide
quantitative comparisons with goal-oriented methods such as HER. (Our method is not a substitute
for HER: in principle they could be combined, with HER improving replay buffer management
for our method.) For more general rewards, which cannot be tackled a posteriori by trained
goal-oriented models, we provide qualitative examples.

∙ We also illustrate qualitatively the sub-optimalities (long-range behavior is preserved but local
blurring of rewards occurs) and the representations learned.

2 Problem and Notation

Let ℳ = (𝑆,𝐴, 𝑃, 𝛾) be a reward-free Markov decision process with state space 𝑆 (discrete or
continuous), action space 𝐴 (discrete for simplicity, but this is not essential), transition probabilities
𝑃 (𝑠′|𝑠, 𝑎) from state 𝑠 to 𝑠′ given action 𝑎, and discount factor 0 < 𝛾 < 1 [SB18]. If 𝑆 is finite,
𝑃 (𝑠′|𝑠, 𝑎) can be viewed as a matrix; in general, for each (𝑠, 𝑎) ∈ 𝑆×𝐴, 𝑃 (d𝑠′|𝑠, 𝑎) is a probability
measure on 𝑠′ ∈ 𝑆. The notation 𝑃 (d𝑠′|𝑠, 𝑎) covers all cases.

Given (𝑠0, 𝑎0) ∈ 𝑆 ×𝐴 and a policy 𝜋 : 𝑆 → Prob(𝐴), we denote Pr(·|𝑠0, 𝑎0, 𝜋) and E[·|𝑠0, 𝑎0, 𝜋]
the probabilities and expectations under state-action sequences (𝑠𝑡, 𝑎𝑡)𝑡≥0 starting with (𝑠0, 𝑎0) and
following policy 𝜋 in the environment, defined by sampling 𝑠𝑡 ∼ 𝑃 (d𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) and 𝑎𝑡 ∼ 𝜋(𝑠𝑡).

For any policy 𝜋 and state-action (𝑠0, 𝑎0), define the successor measure 𝑀𝜋(𝑠0, 𝑎0, ·) as the measure
over 𝑆 ×𝐴 representing the expected discounted time spent in each set 𝑋 ⊂ 𝑆 ×𝐴:

𝑀𝜋(𝑠0, 𝑎0, 𝑋) :=
∑︁
𝑡≥0

𝛾𝑡 Pr ((𝑠𝑡, 𝑎𝑡) ∈ 𝑋 | 𝑠0, 𝑎0, 𝜋) (1)

for each 𝑋 ⊂ 𝑆 ×𝐴. Viewing 𝑀 as a measure deals with both discrete and continuous spaces.

Given a reward function 𝑟 : 𝑆 × 𝐴 → R, the 𝑄-function of 𝜋 for 𝑟 is 𝑄𝜋
𝑟 (𝑠0, 𝑎0) :=∑︀

𝑡≥0 𝛾
𝑡 E[𝑟(𝑠𝑡, 𝑎𝑡)|𝑠0, 𝑎0, 𝜋]. We assume that rewards are bounded, so that all 𝑄-functions are

well-defined. We state the results for deterministic reward functions, but this is not essential. We abuse
notation and write greedy policies as 𝜋(𝑠) = arg max𝑎𝑄(𝑠, 𝑎) instead of 𝜋(𝑠) ∈ arg max𝑎𝑄(𝑠, 𝑎).
Ties may be broken any way.
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We consider the following informal problem: Given a reward-free MDP (𝑆,𝐴, 𝑃, 𝛾), can we compute
a convenient learnable object 𝐸 such that, once a reward function 𝑟 : 𝑆 ×𝐴→ R is specified, we can
easily (with no planning) compute, from 𝐸 and 𝑟, a policy 𝜋 whose performance is close to maximal?

3 Encoding All Optimal Policies via the Forward-Backward Representation

We first present forward-backward (FB) representations of a reward-free MDP as a way to summarize
all optimal policies via explicit formulas. The resulting learning procedure is described in Section 4.

Core idea. The main algebraic idea is as follows. Assume, at first, that 𝑆 is finite. For a fixed policy,
the 𝑄-function depends lineary on the reward: namely, 𝑄𝜋

𝑟 (𝑠, 𝑎) =
∑︀

𝑠′,𝑎′ 𝑀𝜋(𝑠, 𝑎, 𝑠′, 𝑎′)𝑟(𝑠′, 𝑎′)

where 𝑀𝜋(𝑠, 𝑎, 𝑠′, 𝑎′) =
∑︀

𝑡≥0 𝛾
𝑡 Pr ((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′)|𝑠, 𝑎, 𝜋). This rewrites as 𝑄𝜋

𝑟 = 𝑀𝜋𝑟
viewing everything as vectors and matrices indexed by state-actions.

Now let (𝜋𝑧)𝑧∈R𝑑 be any family of policies parameterized by 𝑧. Assume that for each 𝑧, we can
find 𝑑× (𝑆 × 𝐴)-matrices 𝐹𝑧 and 𝐵 such that 𝑀𝜋𝑧 = 𝐹⊤

𝑧𝐵. Then 𝑄𝜋𝑧
𝑟 = 𝐹⊤

𝑧𝐵𝑟. Specializing to
𝑧𝑅 := 𝐵𝑟, the 𝑄-function of policy 𝜋𝑧𝑅 on reward 𝑟 is 𝑄

𝜋𝑧𝑅
𝑟 = 𝐹⊤

𝑧𝑅𝑧𝑅. So far 𝜋𝑧 was unspecified;
but if we define 𝜋𝑧(𝑠) := arg max𝑎(𝐹⊤

𝑧 𝑧)𝑠𝑎 at each state 𝑠, then by definition, 𝜋𝑧𝑅 is the greedy
policy with respect to 𝐹⊤

𝑧𝑅𝑧𝑅. At the same time, 𝐹⊤
𝑧𝑅𝑧𝑅 is the 𝑄-function of 𝜋𝑧𝑅 for reward 𝑟: thus,

𝜋𝑧𝑅 is the greedy policy of its own 𝑄-function, and is therefore optimal for reward 𝑟.

Thus, if we manage to find 𝐹 , 𝐵, and 𝜋𝑧 such that 𝜋𝑧 = arg max𝐹⊤
𝑧 𝑧 and 𝐹⊤

𝑧𝐵 = 𝑀𝜋𝑧 for all
𝑧 ∈ R𝑑, then we obtain the optimal policy for any reward 𝑟, just by computing 𝐵𝑟 and applying
policy 𝜋𝐵𝑟.

This criterion on (𝐹,𝐵, 𝜋𝑧) is entirely unsupervised. Since 𝐹 and 𝐵 depend on 𝜋𝑧 but 𝜋𝑧 is defined
via 𝐹 , this is a fixed point equation. An exact solution exists for 𝑑 large enough (Appendix, Prop. 6),
while a smaller 𝑑 provides lower-rank approximations 𝑀𝜋𝑧 ≈ 𝐹⊤

𝑧𝐵. In Section 4 we present a
well-grounded algorithm to learn such 𝐹 , 𝐵, and 𝜋𝑧 .

In short, we learn two representations 𝐹 and 𝐵 such that 𝐹 (𝑠0, 𝑎0, 𝑧)
⊤𝐵(𝑠′, 𝑎′) is approximately the

long-term probability 𝑀𝜋𝑧 (𝑠0, 𝑎0, 𝑠
′, 𝑎′) to reach (𝑠′, 𝑎′) if starting at (𝑠0, 𝑎0) and following policy

𝜋𝑧 . Then all optimal policies can be computed from 𝐹 and 𝐵. We think of 𝐹 as a representation
of the future of a state, and 𝐵 as the ways to reach a state (Appendix B.4): if 𝐹⊤𝐵 is large, then
the second state is reachable from the first. This is akin to a model of the environment, without
synthesizing state trajectories.

General statement. In continuous spaces with function approximation, 𝐹𝑧 and𝐵 become functions
𝑆 ×𝐴→ R𝑑 instead of matrices; since 𝐹𝑧 depends on 𝑧, 𝐹 itself is a function 𝑆 ×𝐴× R𝑑 → R𝑑.
The sums over states will be replaced with expectations under the data distribution 𝜌.
Definition 1 (Forward-backward representation). Let 𝑍 = R𝑑 be a representation space, and let 𝜌
be a measure on 𝑆 ×𝐴. A pair of functions 𝐹 : 𝑆 ×𝐴×𝑍 → 𝑍 and 𝐵 : 𝑆 ×𝐴→ 𝑍, together with
a parametric family of policies (𝜋𝑧)𝑧∈𝑍 , is called a forward-backward representation of the MDP
with respect to 𝜌, if the following conditions hold for any 𝑧 ∈ 𝑍 and (𝑠, 𝑎), (𝑠0, 𝑎0) ∈ 𝑆 ×𝐴:

𝜋𝑧(𝑠) = arg max
𝑎

𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧, 𝑀𝜋𝑧 (𝑠0, 𝑎0,d𝑠,d𝑎) = 𝐹 (𝑠0, 𝑎0, 𝑧)
⊤𝐵(𝑠, 𝑎)𝜌(d𝑠,d𝑎) (2)

where 𝑀𝜋 is the successor measure defined in (1), and the last equality is between measures.
Theorem 2 (FB representations encode all optimal policies). Let (𝐹,𝐵, (𝜋𝑧)) be a forward-backward
representation of a reward-free MDP with respect to some measure 𝜌.

Then, for any bounded reward function 𝑟 : 𝑆 ×𝐴→ R, the following holds. Set

𝑧𝑅 :=

∫︁
𝑠,𝑎

𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎) 𝜌(d𝑠,d𝑎). (3)

assuming the integral exists. Then 𝜋𝑧𝑅 is an optimal policy for reward 𝑟 in the MDP. Moreover, the
optimal 𝑄-function 𝑄⋆ for reward 𝑟 is 𝑄⋆(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅.

For instance, for a single reward located at state-action (𝑠, 𝑎), the optimal policy is 𝜋𝑧𝑅 with
𝑧𝑅 = 𝐵(𝑠, 𝑎). (In that case the factor 𝜌(d𝑠,d𝑎) does not matter because scaling the reward does not
change the optimal policy.)
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We present in Section 4 an algorithm to learn FB representations. The measure 𝜌 will be the
distribution of state-actions visited in a training set or under an exploration policy: then 𝑧𝑅 =
E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] can be obtained by sampling from visited states.

In finite spaces, exact FB representations exist, provided the dimension 𝑑 is larger than #𝑆 ×#𝐴
(Appendix, Prop. 6). In infinite spaces, arbitrarily good approximations can be obtained by increasing
𝑑, corresponding to a rank-𝑑 approximation of the cumulated transition probabilities𝑀𝜋 . Importantly,
the optimality guarantee extends to approximate 𝐹 and 𝐵, with optimality gap proportional to
𝐹⊤𝐵 −𝑀𝜋𝑧/𝜌 (Appendix, Theorems 8–9 with various norms on 𝐹⊤𝐵 −𝑀𝜋/𝜌). For instance, if,
for some reward 𝑟, the error

⃒⃒
𝐹 (𝑠0, 𝑎0, 𝑧𝑅)⊤𝐵(𝑠, 𝑎)−𝑀𝜋𝑧𝑅 (𝑠0, 𝑎0,d𝑠,d𝑎)/𝜌(d𝑠,d𝑎)

⃒⃒
is at most 𝜀

on average over (𝑠, 𝑎) ∼ 𝜌 for every (𝑠0, 𝑎0), then 𝜋𝑧𝑅 is 3𝜀 ‖𝑟‖∞ /(1− 𝛾)-optimal for 𝑟.

These results justify using some norm over
⃒⃒
𝐹⊤𝐵 −𝑀𝜋𝑧/𝜌

⃒⃒
, averaged over 𝑧 ∈ R𝑑, as a training

loss for unsupervised reinforcement learning. (Below, we average over 𝑧 ∈ R𝑑 from a fixed rescaled
Gaussian. If prior information is available on the rewards 𝑟, the corresponding distribution of 𝑧𝑅 may
be used instead.)

If 𝐵 is fixed in advance and only 𝐹 is learned, the method has similar properties to successor features
based on 𝐵 (Appendix B.4). But one may set a large 𝑑 and let 𝐵 be learned: arguably, by Theorem 2,
the resulting features “linearize” optimal policies as much as possible. The features learned in 𝐹 and
𝐵 may have broader interest.

4 Learning and Using Forward-Backward Representations

Our algorithm starts with an unsupervised learning phase, where we learn the representations 𝐹
and 𝐵 in a reward-free way, by observing state transitions in the environment, generated from
any exploration scheme. Then, in a reward estimation phase, we estimate a policy parameter
𝑧𝑅 = E[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] from some reward observations, or directly set 𝑧𝑅 if the reward is known
(e.g., set 𝑧𝑅 = 𝐵(𝑠, 𝑎) to reach a known target (𝑠, 𝑎)). In the exploitation phase, we directly use the
policy 𝜋𝑧𝑅(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅.

The unsupervised learning phase. No rewards are used in this phase, and no family of tasks
has to be specified manually. 𝐹 and 𝐵 are trained off-policy from observed transitions in the
environment. The first condition of FB representations, 𝜋𝑧(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧, is just
taken as the definition of 𝜋𝑧 given 𝐹 . In turn, 𝐹 and 𝐵 are trained so that the second condition (2),
𝐹 (·, 𝑧)⊤𝐵 = 𝑀𝜋𝑧/𝜌, holds for every 𝑧. Here 𝜌 is the (unknown) distribution of state-actions in the
training data. Training is based on the Bellman equation for the successor measure 𝑀𝜋 ,

𝑀𝜋(𝑠0, 𝑎0, {(𝑠′, 𝑎′)}) = 1𝑠0=𝑠′, 𝑎0=𝑎′ + 𝛾 E𝑠1∼𝑃 (d𝑠1|𝑠0,𝑎0)𝑀
𝜋(𝑠1, 𝜋(𝑠1), {(𝑠′, 𝑎′)}). (4)

We leverage a well-principled algorithm from [BTO21] in the single-policy setting: it learns the
successor measure of a policy 𝜋 without using the sparse reward 1𝑠0=𝑠′, 𝑎0=𝑎′ (which would vanish in
continuous spaces). Other successor measure algorithms could be used, such as C-learning [ESL21].

The algorithm from [BTO21] uses a parametric model 𝑚𝜋
𝜃 (𝑠0, 𝑎0, 𝑠

′, 𝑎′) to represent
𝑀𝜋(𝑠0, 𝑎0,d𝑠

′,d𝑎′) ≈ 𝑚𝜋
𝜃 (𝑠0, 𝑎0, 𝑠

′, 𝑎′)𝜌(d𝑠′,d𝑎′). It is not necessary to know 𝜌, only to sample
states from it. Given an observed transition (𝑠0, 𝑎0, 𝑠1) from the training set, generate an action
𝑎1 ∼ 𝜋(𝑎1|𝑠1), and sample another state-action (𝑠′, 𝑎′) from the training set, independently from
(𝑠0, 𝑎0, 𝑠1). Then update the parameter 𝜃 by 𝜃 ← 𝜃 + 𝜂 𝛿𝜃 with learning rate 𝜂 and

𝛿𝜃 := 𝜕𝜃𝑚
𝜋
𝜃 (𝑠0, 𝑎0, 𝑠0, 𝑎0)+𝜕𝜃𝑚

𝜋
𝜃 (𝑠0, 𝑎0, 𝑠

′, 𝑎′) ×(𝛾 𝑚𝜋
𝜃 (𝑠1, 𝑎1, 𝑠

′, 𝑎′)−𝑚𝜋
𝜃 (𝑠0, 𝑎0, 𝑠

′, 𝑎′)) (5)

This computes the density 𝑚𝜋 of 𝑀𝜋 with respect to the distribution 𝜌 of state-actions in the training
set. Namely, the true successor state density 𝑚𝜋 = 𝑀𝜋/𝜌 is a fixed point of (5) in expectation
[BTO21, Theorem 6] (and is the only fixed point in the tabular or overparameterized case). Variants
exist, such as using a target network for 𝑚𝜋

𝜃 (𝑠1, 𝑎1, 𝑠
′, 𝑎′) on the right-hand side, as in DQN.

Thus, we first choose a parametric model 𝐹𝜃, 𝐵𝜃 for the representations 𝐹 and 𝐵, and set
𝑚𝜋𝑧

𝜃 (𝑠0, 𝑎0, 𝑠
′, 𝑎′) := 𝐹𝜃(𝑠0, 𝑎0, 𝑧)

⊤𝐵𝜃(𝑠′, 𝑎′). Then we iterate the update (5) over many state-
actions and values of 𝑧. This results in Algorithm 1. At each step, a value of 𝑧 is picked at random,
together with a batch of transitions (𝑠0, 𝑎0, 𝑠1) and a batch of state-actions (𝑠′, 𝑎′) from the training
set, with (𝑠′, 𝑎′) independent from 𝑧 and (𝑠0, 𝑎0, 𝑠1).
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For sampling 𝑧, we use a fixed distribution (rescaled Gaussians, see Appendix D). Any number
of values of 𝑧 may be sampled: this does not use up training samples. We use a target network
with soft updates (Polyak averaging) as in DDPG. For training we also replace the greedy policy
𝜋𝑧 = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 with a regularized version 𝜋𝑧 = softmax(𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧/𝜏) with fixed
temperature 𝜏 (Appendix D). Since there is unidentifiability between 𝐹 and 𝐵 (Appendix, Remark 7),
we normalize 𝐵 via an auxiliary loss in Algorithm 1.

For exploration in this phase, we use the policies being learned: the exploration policy chooses a
random value of 𝑧 from some distribution (e.g., Gaussian), and follows 𝜋𝑧 for some time (Appendix,
Algorithm 1). However, the algorithm can also work from an existing dataset of off-policy transitions.

The reward estimation phase. Once rewards are available, we estimate a reward representation
(policy parameter) 𝑧𝑅 by weighing the representation 𝐵 by the reward:

𝑧𝑅 := E[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] (6)

where the expectation must be computed over the same distribution 𝜌 of state-actions (𝑠, 𝑎) used to
learn 𝐹 and 𝐵 (see Appendix B.5 for using a different distribution). Thus, if the reward is black-box
as in standard RL algorithms, then the exploration policy has to be run again for some time, and 𝑧𝑅
is obtained by averaging 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎) over the states visited. An approximate value for 𝑧𝑅 still
provides an approximately optimal policy (Appendix, Prop. 10 and Thm. 12).

If the reward is known explicitly, this phase is unnecessary. For instance, if the reward is to reach
a target state-action (𝑠0, 𝑎0) while avoiding some forbidden state-actions (𝑠1, 𝑎1), ..., (𝑠𝑘, 𝑎𝑘), one
may directly set

𝑧𝑅 = 𝐵(𝑠0, 𝑎0)− 𝜆
∑︁

𝐵(𝑠𝑖, 𝑎𝑖) (7)

where the constant 𝜆 sets the negative reward for forbidden states and adjusts for the unknown
𝜌(d𝑠𝑖,d𝑎𝑖) factors in (3). This can be used for goal-oriented RL.

If the reward is known algebraically as a function 𝑟(𝑠, 𝑎), then 𝑧𝑅 may be computed by averaging the
function 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎) over a replay buffer from the unsupervised training phase. We may also use a
reward model 𝑟(𝑠, 𝑎) of 𝑟(𝑠, 𝑎) trained on some reward observations from any source.

The exploitation phase. Once the reward representation 𝑧𝑅 has been estimated, the 𝑄-function is
estimated as

𝑄(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. (8)

The corresponding policy 𝜋𝑧𝑅(𝑠) = arg max𝑎𝑄(𝑠, 𝑎) is used for exploitation.

Fine-tuning was not needed in our experiments, but it is possible to fine-tune the 𝑄-function using
actual rewards, by setting 𝑄(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 + 𝑞𝜃(𝑠, 𝑎) where the fine-tuning model 𝑞𝜃 is
initialized to 0 and learned via any standard 𝑄-learning method.

Incorporating prior information on rewards in 𝐵. Trying to plan in advance for all possible
rewards in an arbitrary environment may be too generic and problem-agnostic, and become difficult in
large environments, requiring long exploration and a large 𝑑 to accommodate all rewards. In practice,
we are often interested in rewards depending, not on the full state, but only on a part or some features
of the state (e.g., a few components of the state, such as the position of an agent, or its neighbordhood,
rather than the full environment).

If this is known in advance, the representation 𝐵 can be trained on that part of the state only, with the
same theoretical guarantees (Appendix, Theorem 4). 𝐹 still needs to use the full state as input. This
way, the FB model of the transition probabilities (1) only has to learn the future probabilities of the
part of interest in the future states, based on the full initial state (𝑠0, 𝑎0). Explicitly, if 𝜙 : 𝑆×𝐴→ 𝐺
is a feature map to some features 𝑔 = 𝜙(𝑠, 𝑎), and if we know that the reward will be a function
𝑅(𝑔), then Theorem 2 still holds with 𝐵(𝑔) everywhere instead of 𝐵(𝑠, 𝑎), and with the successor
measure 𝑀𝜋(𝑠0, 𝑎0,d𝑔) instead of 𝑀𝜋(𝑠0, 𝑎0,d𝑠

′,d𝑎′) (Appendix, Theorem 4). Learning is done
by replacing 𝜕𝜃𝑚𝜋

𝜃 (𝑠0, 𝑎0, 𝑠0, 𝑎0) with 𝜕𝜃𝑚𝜋
𝜃 (𝑠0, 𝑎0, 𝜙(𝑠0, 𝑎0)) in the first term in (5) [BTO21].

Rewards can be arbitrary functions of 𝑔, so this is more general than [BBQ+18] which only considers
rewards linear in 𝑔. For instance, in MsPacman below, we let 𝑔 be the 2D position (𝑥, 𝑦) of the agent,
so we can optimize any reward function that depends on this position.
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Limitations. First, this method does not solve exploration: it assumes access to a good exploration
strategy. (Here we used the policies 𝜋𝑧 with random values of 𝑧, corresponding to random rewards.)

Next, this task-agnostic approach is relevant if the reward is not known in advance, but may not bring
the best performance on a particular reward. Mitigation strategies include: increasing 𝑑; using prior
information on rewards by including relevant variables into 𝐵, as discussed above; and fine-tuning
the 𝑄-function at test time based on the initial 𝐹⊤𝐵 estimate.

As reward functions are represented by a 𝑑-dimensional vector 𝑧𝑅 = E[𝑟.𝐵], some information about
the reward is necessarily lost. Any reward uncorrelated to 𝐵 is treated as 0. The dimension 𝑑 controls
how many types of rewards can be optimized well. A priori, a large 𝑑 may be required. Still, in
the experiments, 𝑑 ≈ 100 manages navigation in a pixel-based environment with a huge state space.
Appendix B.2 argues theoretically that 𝑑 = 2𝑛 is enough for navigation on an 𝑛-dimensional grid.
The algorithm is linear in 𝑑, so 𝑑 can be taken as large as the neural network models can handle.

We expect this method to have an implicit bias for long-range behavior (spatially smooth rewards),
while local details of the reward function may be blurred. Indeed, 𝐹⊤𝐵 is optimized to approximate
the successor measure 𝑀𝜋 =

∑︀
𝑡 𝛾

𝑡𝑃 𝑡
𝜋 with 𝑃 𝑡

𝜋 the 𝑡-step transition kernel for each policy 𝜋. The
rank-𝑑 approximation will favor large eigenvectors of 𝑃𝜋 , i.e., small eigenvectors of the Markov chain
Laplacian Id−𝛾𝑃𝜋. These loosely correspond to long-range (low-frequency) behavior [MM07]:
presumably, 𝐹 and 𝐵 will learn spatially smooth rewards first. Indeed, experimentally, a small 𝑑
leads to spatial blurring of rewards and 𝑄-functions (Fig. 3). Arguably, without any prior information
this is a reasonable prior. [SBG17] have argued for the cognitive relevance of low-dimensional
approximations of successor representations.

Variance is a potential issue in larger environments, although this did not arise in our experiments.
Learning 𝑀𝜋 requires sampling a state-action (𝑠0, 𝑎0) and an independent state-action (𝑠′, 𝑎′). In
large spaces, most state-action pairs will be unrelated. A possible mitigation is to combine FB with
strategies such as Hindsight Experience Replay [ACR+17] to select goals related to the current
state-action. The following may help a lot: the update of 𝐹 and 𝐵 decouples as an expectation
over (𝑠0, 𝑎0), times an expectation over (𝑠′, 𝑎′). Thus, by estimating these expectations by a moving
average over a dataset, it is easy to have many pairs (𝑠0, 𝑎0) interact with many (𝑠′, 𝑎′). The cost is
handling full 𝑑× 𝑑 matrices. This will be explored in future work.

5 Experiments

We first consider the task of reaching arbitrary goal states. For this, we can make quantitative
comparisons to existing goal-oriented baselines. Next, we illustrate qualitatively some tasks that
cannot be tackled a posteriori by goal-oriented methods, such as introducing forbidden states. Finally,
we illustrate some of the representations learned.

5.1 Environments and Experimental Setup

We run our experiments on a selection of environments that are diverse in term of state space
dimensionality, stochasticity and dynamics.

∙ Discrete Maze is the classical gridworld with four rooms. States are represented by one-hot unit
vectors.
∙ Continuous Maze is a two dimensional environment with impassable walls. States are represented

by their Cartesian coordinates (𝑥, 𝑦) ∈ [0, 1]2. The execution of one of the actions moves the agent
in the desired direction, but with normal random noise added to the position of the agent.

∙ FetchReach is a variant of the simulated robotic arm environment from [PAR+18] using discrete
actions instead of continuous actions. States are 10-dimensional vectors consisting of positions
and velocities of robot joints.

∙ Ms. Pacman is a variant of the Atari 2600 game Ms. Pacman, where an episode ends when the
agent is captured by a monster [RUMS18]. States are obtained by processing the raw visual
input directly from the screen. Frames are preprocessed by cropping, conversion to grayscale and
downsampling to 84× 84 pixels. A state 𝑠𝑡 is the concatenation of (𝑥𝑡−12, 𝑥𝑡−8, 𝑥𝑡−4, 𝑥𝑡) frames,
i.e. an 84 × 84 × 4 tensor. An action repeat of 12 is used. As Ms. Pacman is not originally a
multi-goal domain, we define the goals as the 148 reachable coordinates (𝑥, 𝑦) on the screen; these
can be reached only by learning to avoid monsters.
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For all environments, we run algorithms for 800 epochs, with three different random seeds. Each
epoch consists of 25 cycles where we interleave between gathering some amount of transitions, to add
to the replay buffer, and performing 40 steps of stochastic gradient descent on the model parameters.
To collect transitions, we generate episodes using some behavior policy. For both mazes, we use a
uniform policy while for FetchReach and Ms. Pacman, we use an 𝜀-greedy policy with respect to the
current approximation 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 for a sampled 𝑧. At evaluation time, 𝜀-greedy policies are also
used, with a smaller 𝜀. More details are given in Appendix D.

5.2 Goal-Oriented Setting: Quantitative Comparisons

We investigate the FB representation over goal-reaching tasks and compare it to goal-oriented
baselines: DQN3, and DQN with HER when needed. We define sparse reward functions. For Discrete
Maze, the reward function is equal to one when the agent’s state is equal exactly to the goal state.
For Discrete Maze, we measured the quality of the obtained policy to be the ratio between the true
expected discounted reward of the policy for its goal and the true optimal value function, on average
over all states. For the other environments, the reward function is equal to one when the distance of
the agent’s position and the goal position is below some threshold, and zero otherwise. We assess
policies by computing the average success rate, i.e the average number of times the agent successfully
reaches its goal.
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Figure 1: Comparative performance of FB for dif-
ferent dimensions and DQN in FetchReach. Left:
success rate averaged over 20 randomly selected
goals as function of the first 100 training epochs.
Right: success rate averaged over 20 random goals
after 800 training epochs.
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Figure 2: Comparative performance of FB for dif-
ferent dimensions and DQN in Ms. Pacman. Left:
success rate averaged over 20 randomly selected
goals as function of the first 200 training epochs.
Right: success rate averaged over the goal space
after 800 training epochs.

Figs. 1 and 2 show the comparative performance of FB for different dimensions 𝑑, and DQN
respectively in FetchReach and Ms. Pacman (similar results in Discrete and Continuous Mazes are
provided in Appendix D). In Ms. Pacman, DQN totally fails to learn and we had to add HER to make
it work. The performance of FB consistently increases with the dimension 𝑑 and the best dimension
matches the performance of the goal-oriented baseline.

In Discrete Maze, we observe a drop of performance for 𝑑 = 25 (Appendix D, Fig. 8): this is due to
the spatial smoothing induced by the small rank approximation and the reward being nonzero only
if the agent is exactly at the goal. This spatial blurring is clear on heatmaps for 𝑑 = 25 vs 𝑑 = 75
(Fig. 3). With 𝑑 = 25 the agent often stops right next to its goal.

To evaluate the sample efficiency of FB, after each epoch, we evaluate the agent on 20 randomly
selected goals. Learning curves are reported in Figs. 1 and 2 (left). In all environments, we observe
no loss in sample efficiency compared to the goal-oriented baseline. In Ms. Pacman, FB even learns
faster than DQN+HER.

5.3 More Complex Rewards: Qualitative Results

We now investigate FB’s ability to generalize to new tasks that cannot be solved by an already trained
goal-oriented model: reaching a goal with forbidden states imposed a posteriori, reaching the nearest
of two goals, and choosing between a small, close reward and a large, distant one.

First, for the task of reaching a target position 𝑔0 while avoiding some forbidden positions
𝑔1, . . . 𝑔𝑘 , we set 𝑧𝑅 = 𝐵(𝑔1)− 𝜆

∑︀𝑘
𝑖=1𝐵(𝑔𝑖) and run the corresponding 𝜀-greedy policy defined

3Here DQN is short for goal-oriented DQN, 𝑄(𝑠, 𝑎, 𝑔).
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Figure 7: Visualization of FB embedding vectors on Continuous Maze after projecting them in
two-dimensional space with t-SNE. Left: the states to be mapped. Middle: the 𝐹 embedding. Right:
the 𝐵 embedding. The walls appear as large dents; the smaller dents correspond to the number of
steps needed to get past a wall.

by 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. Fig. 5 shows the resulting trajectories, which succeed at solving the task for the
different domains. In Ms. Pacman, the path is suboptimal (though successful) due to the sudden
appearance of a monster along the optimal path. (We only plot the initial frame; see the full
series of frames along the trajectory in Appendix D, Fig. 16.) Fig. 4 (left) provides a contour plot
of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 for the continuous maze and shows the landscape shape around the
forbidden regions.

Next, we consider the task of reaching the closest target among two equally rewarding positions 𝑔0
and 𝑔1, by setting 𝑧𝑅 = 𝐵(𝑔0) +𝐵(𝑔1). The optimal 𝑄-function is not a linear combination of the
𝑄-functions for 𝑔0 and 𝑔1. Fig. 6 shows successful trajectories generated by the policy 𝜋𝑧𝑅 . On
the contour plot of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 in Fig. 4 (right), the two rewarding positions appear
as basins of attraction. Similar results for a third task are shown in Appendix D: introducing a
“distracting” small reward next to the initial position of the agent, with a larger reward further away.
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Figure 3: Heatmap of max𝑎 𝐹 (𝑠, 𝑎, 𝑧𝑅)
⊤𝑧𝑅 for

𝑧𝑅 = 𝐵( ) Left: 𝑑 = 25. Right: 𝑑 = 75.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

25

125

225

325

425

525

625

725

825

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

210

270

330

390

450

510

570

630

690

750

Figure 4: Contour plot of
max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)

⊤𝑧𝑅 in Continuous Maze.
Left: for the task of reaching a target while
avoiding a forbidden region, Right: for two
equally rewarding targets.

Figure 5: Trajectories generated by the 𝐹⊤𝐵
policies for the task of reaching a target position
(star shape while avoiding forbidden positions
(red shape )

Figure 6: Trajectories generated by the 𝐹⊤𝐵
policies for the task of reaching the closest among
two equally rewarding positions (star shapes ).
(Optimal 𝑄-values are not linear over such mix-
tures.)

5.4 Embedding Visualizations

We visualize the learned FB state embeddings for Continuous Maze by projecting them into 2-
dimensional space using t-SNE [VdMH08] in Fig. 7. For the forward embeddings, we set 𝑧 = 0
corresponding to the uniform policy. We can see that FB partitions states according to the topology
induced by the dynamics: states on opposite sides of walls are separated in the representation space
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and states on the same side lie together. Appendix D includes embedding visualizations for different
𝑧 and for Discrete Maze and Ms. Pacman.

6 Related work

[BBQ+18] learn optimal policies for rewards that are linear combinations of a finite number of
feature functions provided in advance by the user. This approach cannot tackle generic rewards
or goal-oriented RL: this would require introducing one feature per possible goal state, requiring
infinitely many features in continuous spaces.

Our approach does not require user-provided features describing the future tasks, thanks to using
successor states [BTO21] where [BBQ+18] use successor features. Schematically, and omitting
actions, successor features start with user-provided features 𝜙, then learn 𝜓 such that 𝜓(𝑠0) =∑︀

𝑡≥0 𝛾
𝑡 E[𝜙(𝑠𝑡) | 𝑠0]. This limits applicability to rewards that are linear combinations of 𝜙. Here

we use successor state probabilities, namely, we learn two representations 𝐹 and 𝐵 such that
𝐹 (𝑠0)⊤𝐵(𝑠′) =

∑︀
𝑡≥0 𝛾

𝑡 Pr(𝑠𝑡 = 𝑠′ | 𝑠0). This does not require any user-provided input.

Thus we learn two representations instead of one. The learned backward representation 𝐵 is absent
from [BBQ+18]. 𝐵 plays a different role than the user-provided features 𝜙 of [BBQ+18]: if the
reward is known a priori to depend only on some features 𝜙, we learn 𝐵 on top of 𝜙, which represents
all rewards that depend linearly or nonlineary on 𝜙. Up to a change of variables, [BBQ+18] is
recovered by setting 𝐵 = Id on top of 𝜙, or 𝐵 = 𝜙 and 𝜙 = Id, and then only training 𝐹 .

We use a similar parameterization of policies by 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 as in [BBQ+18], for similar reasons,
although 𝑧 encodes a different object.

Successor representations where first defined in [Day93] for finite spaces, corresponding to an older
object from Markov chains, the fundamental matrix [KS60, Bré99, GS97]. [SBG17] argue for their
relevance for cognitive science. For successor representations in continuous spaces, a finite number
of features 𝜙 are specified first; this can be used for generalization within a family of tasks, e.g.,
[BDM+17, ZSBB17, GHB+19, HDB+19]. [BTO21] moves from successor features to successor
states by providing pointwise occupancy map estimates even in continuous spaces, without using the
sparse reward 1𝑠𝑡=𝑠′ . We borrow a successor state learning algorithm from [BTO21]. [BTO21] also
introduced simpler versions of 𝐹 and 𝐵 for a single, fixed policy; [BTO21] does not consider the
every-optimal-policy setting.

There is a long literature on goal-oriented RL. For instance, [SHGS15] learn goal-dependent value
functions, regularized via an explicit matrix factorization. Goal-dependent value functions have
been investigated in earlier works such as [FD02] and [SMD+11]. Hindsight experience replay
(HER) [ACR+17] improves the sample efficiency of multiple goal learning with sparse rewards. A
family of rewards has to be specified beforehand, such as reaching arbitrary target states. Specifying
rewards a posteriori is not possible: for instance, learning to reach target states does not extend
to reaching the nearest among several goals, reaching a goal while avoiding forbidden states, or
maximizing any dense reward.

Hierarchical methods such as options [SPS99] can be used for multi-task RL problems. However,
policy learning on top of the options is still needed after the task is known.

For finite state spaces, [JKSY20] use reward-free interactions to build a training set that summarizes
a finite environment, in the sense that any optimal policies later computed on this training set instead
of the true environment are provably 𝜀-optimal, for any reward. They prove tight bounds on the
necessary set size. Policy learning still has to be done afterwards for each reward.

Acknowledgments. The authors would like to thank Léonard Blier, Diana Borsa, Alessandro
Lazaric, Rémi Munos, Tom Schaul, Corentin Tallec, Nicolas Usunier, and the anonymous reviewers
for numerous comments, technical questions, references, and invaluable suggestions for presentation
that led to an improved text.
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7 Conclusion

The forward-backward representation is a learnable mathematical object that “summarizes” a reward-
free MDP. It provides near-optimal policies for any reward specified a posteriori, without planning. It
is learned from black-box reward-free interactions with the environment. In practice, this unsupervised
method performs comparably to goal-oriented methods for reaching arbitrary goals, but is also able
to tackle more complex rewards in real time. The representations learned encode the MDP dynamics
and may have broader interest.
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Outline of the Supplementary Material

The Appendix is organized as follows.

∙ Appendix A presents the pseudo-code of the unsupervised phase of FB algorithm.
∙ Appendix B provides extended theoretical results on approximate solutions and general

goals:
– Section B.1 formalizes the forward-backward representation with a goal or feature

space.
– Section B.2 establishes the existence of exact FB representations in finite spaces, and

discusses the influence of the dimension 𝑑.
– Section B.3 shows how approximate solutions provide approximately optimal policies.
– Section B.4 shows how 𝐹 and 𝐵 are successor and predecessor features of each other,

and how the policies are optimal for rewards linearly spanned by 𝐵.
– Section B.5 explains how to estimate 𝑧𝑅 at test time from a state distribution different

from the training distribution.
– Section B.6 presents a note of the measure 𝑀𝜋 and its density 𝑚𝜋 .

∙ Appendix C provides proofs of all theoretical results above.
∙ Appendix D provides additional information about our experiments:

– Section D.1 describes the environments.
– Section D.2 describes the different architectures used for FB as well as the goal-oriented

DQN.
– Section D.3 provides implementation details and hyperparameters.
– Section D.4 provides additional experimental results.
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A Algorithm

The unsupervised phase of the FB algorithm is described in Algorithm 1.

The loss function for the Bellman equation on 𝐹 and 𝐵 appears on line 19, while the auxiliary loss
function for orthonormalization of 𝐵 appears on line 21.

Algorithm 1 FB algorithm: Unsupervised Phase
1: Inputs: replay buffer 𝒟 , Polyak coefficient 𝛼 , 𝜈 a probability distribution over R𝑑, randomly

initialized networks 𝐹𝜃 and𝐵𝜔 , learning rate 𝜂, mini-batch size 𝑏, number of episodes 𝐸, number
of gradient updates 𝑁 , temperature 𝜏 and regularization coefficient 𝜆.

2: for 𝑚 = 1, . . . do
3: /* Collect 𝐸 episodes
4: for episode 𝑒 = 1, . . . 𝐸 do
5: Sample 𝑧 ∼ 𝜈
6: Observe an initial state 𝑠0
7: for 𝑡 = 1, . . . do
8: Select an action 𝑎𝑡 according to some behaviour policy (e.g the 𝜀-greedy with respect to

𝐹𝜃(𝑠𝑡, 𝑎, 𝑧)
⊤𝑧 )

9: Observe next state 𝑠𝑡+1

10: Store transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) in the replay buffer 𝒟
11: end for
12: end for
13: /* Perform 𝑁 stochastic gradient descent updates
14: for 𝑛 = 1 . . . 𝑁 do
15: Sample a mini-batch of transitions {(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1)}𝑖∈𝐼 ⊂ 𝒟 of size |𝐼| = 𝑏.
16: Sample a mini-batch of target state-action pairs {(𝑠′𝑖, 𝑎′𝑖)}𝑖∈𝐼 ⊂ 𝒟 of size |𝐼| = 𝑏.
17: Sample a mini-batch of {𝑧𝑖}𝑖∈𝐼 ∼ 𝜈 of size |𝐼| = 𝑏.
18: Set 𝜋𝑧𝑖(· | 𝑠𝑖+1) = softmax(𝐹𝜃−(𝑠𝑖+1, ·, 𝑧𝑖)⊤𝑧𝑖/𝜏)
19: L (𝜃, 𝜔) =

1
2𝑏2

∑︀
𝑖,𝑗∈𝐼2

(︀
𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)

⊤𝐵𝜔(𝑠′𝑗 , 𝑎
′
𝑗)− 𝛾

∑︀
𝑎∈𝐴 𝜋𝑧𝑖(𝑎 | 𝑠𝑖+1) · 𝐹𝜃−(𝑠𝑖+1, 𝑎, 𝑧𝑖)

⊤𝐵𝜔−(𝑠′𝑗 , 𝑎
′
𝑗)
)︀2−

1
𝑏

∑︀
𝑖∈𝐼 𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)

⊤𝐵𝜔(𝑠𝑖, 𝑎𝑖)
20: /* Compute orthonormality regularization loss
21: Lreg(𝜔) = 1

𝑏2

∑︀
𝑖,𝑗∈𝐼2 𝐵𝜔(𝑠𝑖, 𝑎𝑖)

⊤stop-gradient(𝐵𝜔(𝑠′𝑗 , 𝑎
′
𝑗)) ·

stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖)
⊤𝐵𝜔(𝑠′𝑗 , 𝑎

′
𝑗))− 1

𝑏

∑︀
𝑖∈𝐼 𝐵𝜔(𝑠𝑖, 𝑎𝑖)

⊤stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖))

22: Update 𝜃 ← 𝜃 − 𝜂∇𝜃L (𝜃, 𝜔) and 𝜔 ← 𝜔 − 𝜂∇𝜔(L (𝜃, 𝜔) + 𝜆 ·Lreg(𝜔))
23: end for
24: /* Update target network parameters
25: 𝜃− ← 𝛼𝜃− + (1− 𝛼)𝜃
26: 𝜔− ← 𝛼𝜔− + (1− 𝛼)𝜔
27: end for
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B Extended Results: Approximate Solutions and General Goals

Notation. In general, we denote by 𝑀𝜋 the successor measure of policy 𝜋 as defined in (1), and by
𝑚𝜋 its density, if it exists, with respect to a reference measure 𝜌. Namely,

𝑀𝜋(𝑠0, 𝑎0,d𝑠,d𝑎) = 𝑚𝜋(𝑠0, 𝑎0, 𝑠, 𝑎)𝜌(d𝑠,d𝑎). (9)

Thus, the defining property of forward-backward representations (Definition 1) is
𝐹 (𝑠0, 𝑎0, 𝑧)

⊤𝐵(𝑠, 𝑎) = 𝑚𝜋𝑧 (𝑠0, 𝑎0, 𝑠, 𝑎).

We use the same convention for parametric models, with 𝑀𝜋
𝜃 a measure and 𝑚𝜋

𝜃 its density. The
reference measure 𝜌 is fixed and may be unknown (typically 𝜌 is the distribution of state-actions in a
training set or under an exploration policy).

B.1 The Forward-Backward Representation With a Goal or Feature Space

Here we state a generalization of Theorem 2 covering some extensions mentioned in the text.

First, this covers rewards known to only depend on certain features 𝑔 = 𝜙(𝑠, 𝑎) of the state-action
(𝑠, 𝑎), where 𝜙 is a known function with values in some goal state 𝐺 (for instance, rewards depending
only on some components of the state). Then it is enough to compute 𝐵 as a function of the goal
𝑔. Theorem 2 corresponds to 𝜙 = Id. This is useful to introduce prior information when available,
resulting in a smaller model (𝐹,𝐵).

This also recovers successor features as in [BBQ+18], defined by user-provided features 𝜙. Indeed,
fixing 𝐵 to Id and setting our 𝜙 to the 𝜙 of [BBQ+18] (or fixing 𝐵 to their 𝜙 and our 𝜙 to Id) will
represent the same set of rewards and policies as in [BBQ+18], namely, optimal policies for rewards
linear in 𝜙 (although with a slightly different learning algorithm and up to a linear change of variables
for 𝐹 and 𝑧 given by the covariance of 𝜙, see Appendix B.4). More generally, keeping the same 𝜙
but letting 𝐵 free (with larger 𝑑) can provide optimal policies for rewards that are arbitrary functions
of 𝜙, linear or not.

For this, we extend successor state measures to values in goal spaces, representing the discounted
time spent at each goal by the policy. Namely, given a policy 𝜋, let 𝑀𝜋 be the the successor state
measure of 𝜋 over goals 𝑔:

𝑀𝜋(𝑠, 𝑎,d𝑔) :=
∑︁
𝑡≥0

𝛾𝑡 Pr (𝜙(𝑠𝑡, 𝑎𝑡) ∈ d𝑔 | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋) (10)

for each state-action (𝑠, 𝑎) and each measurable set d𝑔 ⊂ 𝐺. This will be the object approximated by
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔).

Second, we use a more general model of successor states: instead of𝑚 ≈ 𝐹⊤𝐵 we use𝑚 ≈ 𝐹⊤𝐵+𝑚̄
where 𝑚̄ does not depend on the action, so that the 𝐹⊤𝐵 part only computes advantages. This lifts
the constraint that the model of 𝑚 has rank at most 𝑑, because there is no restriction on the rank on
𝑚̄: the rank restriction only applies to the advantage function.

Third, we state a form of policy improvement for the FB representation. Namely, the 𝑄-function
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 for a given reward can be computed as a supremum over all values of 𝑧.

For simplicity we state the result with deterministic rewards, but this extends to stochastic rewards,
because the expectation 𝑧𝑅 will be the same.
Definition 3 (Extended forward-backward representation of an MDP). Consider an MDP with state
space 𝑆 and action space 𝐴. Let 𝜙 : 𝑆 ×𝐴→ 𝐺 be a function from state-actions to some goal space
𝐺 = R𝑘.

Let 𝑍 = R𝑑 be some representation space. Let

𝐹 : 𝑆 ×𝐴× 𝑍 → 𝑍, 𝐵 : 𝐺→ 𝑍, 𝑚̄ : 𝑆 × 𝑍 ×𝐺→ R (11)

be three functions. For each 𝑧 ∈ 𝑍, define the policy

𝜋𝑧(𝑎|𝑠) := arg max
𝑎

𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. (12)

Let 𝜌 be any measure over the goal space 𝐺.
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We say that 𝐹 , 𝐵, and 𝑚̄ are an extended forward-backward representation of the MDP with respect
to 𝜌, if the following holds: for any 𝑧 ∈ 𝑍, any state-actions (𝑠, 𝑎), and any goal 𝑔 ∈ 𝐺, one has

𝑀𝜋𝑧 (𝑠, 𝑎,d𝑔) =
(︀
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔) + 𝑚̄(𝑠, 𝑧, 𝑔)

)︀
𝜌(d𝑔) (13)

where 𝑀𝜋𝑧 is the successor state measure (10) of policy 𝜋𝑧 .

Theorem 4 (Forward-backward representation of an MDP, with features as goals). Consider an
MDP with state space 𝑆 and action space 𝐴. Let 𝜙 : 𝑆 ×𝐴→ 𝐺 be a function from state-actions to
some goal space 𝐺 = R𝑘.

Let 𝐹 , 𝐵, and 𝑚̄ be an extended forward-backward representation of the MDP with respect to some
measure 𝜌 over 𝐺.

Then the following holds. Let 𝑅 : 𝑆 ×𝐴→ R be any bounded reward function, and assume that this
reward function depends only on 𝑔 = 𝜙(𝑠, 𝑎), namely, that there exists a function 𝑟 : 𝐺→ R such
that 𝑅(𝑠, 𝑎) = 𝑟(𝜙(𝑠, 𝑎)). Set

𝑧𝑅 :=

∫︁
𝑔∈𝐺

𝑟(𝑔)𝐵(𝑔) 𝜌(d𝑔) (14)

assuming the integral exists.

Then:

1. 𝜋𝑧𝑅 is an optimal policy for reward 𝑅 in the MDP.

2. For any 𝑧 ∈ 𝑍, the 𝑄-function of policy 𝜋𝑧 for the reward 𝑅 is equal to

𝑄𝜋𝑧 (𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 + 𝑉 𝑧(𝑠) (15)

and the optimal 𝑄-function 𝑄⋆
𝑅 is obtained when 𝑧 = 𝑧𝑅:

𝑄⋆
𝑅(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 + 𝑉 𝑧𝑅(𝑠). (16)

Here

𝑉 𝑧(𝑠) :=

∫︁
𝑔∈𝐺

𝑚̄(𝑠, 𝑧, 𝑔)𝑟(𝑔) 𝜌(d𝑔) (17)

and in particular 𝑉 = 0 if 𝑚̄ = 0.

The advantages𝑄𝜋𝑧 (𝑠, 𝑎)−𝑄𝜋𝑧 (𝑠, 𝑎′) do not depend on 𝑉 , so computing 𝑉 is not necessary
to obtain the policies.

3. If 𝑚̄ = 0, then for any state-action (𝑠, 𝑎) one has

𝑄⋆
𝑅(𝑠, 𝑎) = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 = sup

𝑧∈𝑍
𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅. (18)

(We do not claim that 𝑉 is the value function and 𝐹⊤𝑧𝑅 the advantage function, only that the sum is
the 𝑄-function. When 𝑚̄ = 0, the term 𝐹⊤𝑧𝑅 is the whole 𝑄-function.)

The last point of the theorem is a form of policy improvement. Indeed, by the second point,
𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 is the estimated 𝑄-function of policy 𝜋𝑧 for rewards 𝑟. This may be useful if 𝑧𝑅
falls outside of the training distribution for 𝐹 : then the values of 𝐹 (𝑠, 𝑎, 𝑧𝑅) may not be safe to
use. In that case, it may be useful to use a finite set 𝑍 ′ ⊂ 𝑍 of values of 𝑧 closer to the training
distribution, and use the estimate sup𝑧∈𝑍′ 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 instead of 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 for the optimal
𝑄-function. A similar option has been used, e.g., in [BBQ+18], but in the end it was not necessary in
our experiments.

Remark 5. Formally, the statement holds for arbitrary 𝜌, but it only makes sense if 𝜌 has full support
(or at least covers all reachable parts of the state space): (13) requires the support of 𝑀𝜋𝑧 to be
included in that of 𝜌. Otherwise, FB representations may not exist and the statement is empty.
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B.2 Existence of Exact 𝐹𝐵 Solutions, Influence of Dimension 𝑑, Uniqueness

Existence of exact 𝐹𝐵 representations in finite spaces. We now prove existence of an exact
solution for finite spaces if the representation dimension 𝑑 is at least #𝑆 × #𝐴. Solutions are
never unique: one may always multiply 𝐹 by an invertible matrix 𝐶 and multiply 𝐵 by (𝐶⊤)−1, see
Remark 7 below (this allows us to impose orthonormality of 𝐵 in the experiments).

The constraint 𝑑 ≥ #𝑆×#𝐴 can be largely overestimated depending on the tasks of interest, though.
For instance, we prove below that in an 𝑛-dimensional toric grid 𝑆 = {1, . . . , 𝑘}𝑛, 𝑑 = 2𝑛 is enough
to obtain optimal policies for reaching every target state (a set of tasks smaller than optimizing all
possible rewards).

Proposition 6 (Existence of an exact 𝐹𝐵 representation for finite state spaces). Assume that the
state and action spaces 𝑆 and 𝐴 of an MDP are finite. Let 𝑍 = R𝑑 with 𝑑 ≥ #𝑆 ×#𝐴. Let 𝜌 be
any measure on 𝑆 ×𝐴, with 𝜌(𝑠, 𝑎) > 0 for any (𝑠, 𝑎).

Then there exists 𝐹 : 𝑆 ×𝐴× 𝑍 → 𝑍 and 𝐵 : 𝑆 ×𝐴→ 𝑍, such that 𝐹⊤𝐵 is equal to the successor
state density of 𝜋𝑧 with respect to 𝜌:

𝐹⊤(𝑠, 𝑎, 𝑧)𝐵(𝑠′, 𝑎′) =
∑︁
𝑡≥0

𝛾𝑡
Pr((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧)

𝜌(𝑠′, 𝑎′)
(19)

for any 𝑧 ∈ 𝑍 and any state-actions (𝑠, 𝑎) and (𝑠′, 𝑎′), where 𝜋𝑧 is defined as in Definition 1 by
𝜋𝑧(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧.

A small dimension 𝑑 can be enough for navigation: examples. In practice, even a small 𝑑 can
be enough to get optimal policies for reaching arbitrary many states (as opposed to optimizing all
possible rewards). Let us give an example with 𝑆 a toric 𝑛-dimensional grid of size 𝑘.

Let us start with 𝑛 = 1. Take 𝑆 = {0, . . . , 𝑘 − 1} to be a length-𝑘 cycle with three actions
𝑎 ∈ {−1, 0, 1} (go left, stay in place, go right). Take 𝑑 = 2, so that 𝑍 = R2 ≃ C.

We consider the tasks of reaching an arbitrary target state 𝑠′, for every 𝑠′ ∈ 𝑆. Thus the goal state
is 𝐺 = 𝑆 in the notation of Theorem 4, and 𝐵 only depends on 𝑠′. The policy for such a reward is
𝜋𝑧𝑅 = 𝜋𝐵(𝑠′).

For a state 𝑠 ∈ {0, . . . , 𝑘 − 1} and action 𝑎 ∈ {−1, 0, 1}, define

𝐹 (𝑠, 𝑎, 𝑧) := 𝑒2𝑖𝜋(𝑠+𝑎)/𝑘, 𝐵(𝑠) := 𝑒2𝑖𝜋𝑠/𝑘. (20)

Then one checks that 𝜋𝐵(𝑠′) is the optimal policy for reaching 𝑠′, for every 𝑠′ ∈ 𝑆. Indeed,
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 = cos(2𝜋(𝑠+ 𝑎− 𝑠′)/𝑘). This is maximized for the action 𝑎 that brings 𝑠 closer to
𝑠′.

So the policies will be optimal for reaching every target 𝑠′ ∈ 𝑆, despite the dimension being only 2.

By taking the product of 𝑛 copies of this example, this also works on the 𝑛-dimensional toric
grid 𝑆 = {0, . . . , 𝑘 − 1}𝑛 with 2𝑛 + 1 actions (add ±1 in each direction or stay in place), with a
representation of dimension 𝑑 = 2𝑛 in C𝑛, namely, by taking 𝐵(𝑠)𝑗 := 𝑒2𝑖𝜋𝑠𝑗/𝑘 for ecah direction 𝑗
and likewise for 𝐹 . Then 𝜋𝐵(𝑠′) is the optimal policy for reaching 𝑠′ for every 𝑠′ ∈ 𝑆.

More generally, if one is only interested in the optimal policies for reaching states, then it is easy
to show that there exist functions 𝐹 : 𝑆 × 𝐴 → 𝑍 and 𝐵 : 𝑆 → 𝑍 such that the policies 𝜋𝑧
describe the optimal policies to reach each state: it is enough that 𝐵 be injective (typically requiring
𝑑 = dim(𝑆)). Indeed, for any state 𝑠 ∈ 𝑆, let 𝜋⋆

𝑠 be the optimal policy to reach 𝑠. We want
𝜋𝑧 to be equal to 𝜋⋆

𝑠 for 𝑧 = 𝐵(𝑠) (the value of 𝑧𝑅 for a reward located at 𝑠). This translates as
arg max𝑎 𝐹 (𝑠′, 𝑎, 𝐵(𝑠))⊤𝐵(𝑠) = 𝜋⋆

𝑠 (𝑠′) for every other state 𝑠′. This is realized just by letting 𝐹 be
any function such that 𝐹 (𝑠′, 𝜋⋆

𝑠 (𝑠′), 𝐵(𝑠)) := 𝐵(𝑠) and 𝐹 (𝑠′, 𝑎, 𝐵(𝑠)) := −𝐵(𝑠) for every other
action 𝑎. As soon as 𝐵 is injective, there exists such a function 𝐹 . (Unfortunately, we are not able to
show that the learning algorithm reaches such a solution.)

Let us turn to uniqueness of 𝐹 and 𝐵.
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Remark 7. Let 𝐶 be an invertible 𝑑× 𝑑 matrix. Given 𝐹 and 𝐵 as in Theorem 2, define

𝐵′(𝑠, 𝑎) := 𝐶𝐵(𝑠, 𝑎), 𝐹 ′(𝑠, 𝑎, 𝑧) := (𝐶⊤)−1𝐹 (𝑠, 𝑎, 𝐶−1𝑧) (21)

together with the policies 𝜋′
𝑧(𝑠) := arg max𝑎 𝐹

′(𝑠, 𝑎, 𝑧)⊤𝑧. For each reward 𝑟, define 𝑧′𝑅 :=
E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵′(𝑠, 𝑎)].

Then this operation does not change the policies or estimated 𝑄-values: for any reward, we have
𝜋′
𝑧′
𝑅

= 𝜋𝑧𝑅 , and 𝐹 ′(𝑠, 𝑎, 𝑧′𝑅)⊤𝑧′𝑅 = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅.

In particular, assume that the components of 𝐵 are linearly independent. Then, taking
𝐶 =

(︀
E(𝑠,𝑎)∼𝜌𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤

)︀−1/2
, 𝐵′ is 𝐿2(𝜌)-orthonormal. So up to reducing the di-

mension 𝑑 to rank(𝐵), we can always assume that 𝐵 is 𝐿2(𝜌)-orthonormal, namely, that
E(𝑠,𝑎)∼𝜌𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤ = Id.

Reduction to orthonormal 𝐵 will be useful in some proofs below. Even after imposing that 𝐵 be
orthonormal, solutions are not unique, as one can still apply a rotation matrix on the variable 𝑧.

For a single policy 𝜋𝑧 , the 𝐹⊤𝐵 decomposition may be further standardized in several ways: after
a linear change of variables in R𝑑, and up to decreasing 𝑑 by removing unused directions in R𝑑,
one may assume either that Cov𝜌𝐵 = Id and Cov𝜌 𝐹 is diagonal, or that Cov𝜌 𝐹 = Cov𝜌𝐵 is
diagonal, or write the decomposition as 𝐹⊤𝐷𝐵̃ with 𝐷 diagonal and Cov𝜌 𝐹 = Cov𝜌 𝐵̃ = Id, thus
corresponding to an approximation of the singular value decomposition of the successor measure
𝑀𝜋𝑧 in 𝐿2(𝜌). However, since 𝐵 is shared between all values of 𝑧 and all policies 𝜋𝑧 , it is a priori
not possible to realize this for all 𝑧 simultaneously.

B.3 Approximate Solutions Provide Approximately Optimal Policies

Here we prove that the optimality in Theorems 2 and 4 is robust to approximation errors during
training: approximate solutions still provide approximately optimal policies. We deal first with
the approximation errors on (𝐹,𝐵) during unsupervised training, then on 𝑧𝑅 during the reward
estimation phase (in case the reward is not known explicity).

B.3.1 Influence of Approximate 𝐹 and 𝐵: Optimality Gaps are Proportional to 𝑚𝜋 − 𝐹⊤𝐵

In continuous spaces, Theorems 2 and 4 are somewhat spurious: the equality 𝐹⊤𝐵 = 𝑚 that defines
FB representations will never hold exactly with finite representation dimension 𝑑. Instead, 𝐹⊤𝐵 will
only be a rank-𝑑 approximation of 𝑚. Even in finite spaces, since 𝐹 and 𝐵 are learned by a neural
network, we can only expect that 𝐹⊤𝐵 ≈ 𝑚 in general. Therefore, we provide results that extend
Theorems 2 and 4 to approximate training and approximate FB representations.

Optimality gaps are directly controlled by the error 𝑚𝜋 − 𝐹⊤𝐵 on the solution 𝐹⊤𝐵. We provide this
result for different notions of approximations between 𝑚𝜋 and 𝐹⊤𝐵. First, in sup norm over (𝑠, 𝑎)
but in expectation over (𝑠′, 𝑎′) (so that a perfect model of the successor states (𝑠′, 𝑎′) of each (𝑠, 𝑎)
is not necessary, only an average model). Second, for the weak topology on measures (this is the
most relevant in continuous spaces: for instance, a Dirac measure can be approached by a continuous
model in the weak topology). Finally, we provide pointwise estimates instead of only norms: for any
reward, we show that the optimality gaps at each state can be bounded by an explicit matrix product
directly involving the FB error matrix 𝑚𝜋 − 𝐹⊤𝐵 (Theorem 9).

𝐹 and 𝐵 are trained such that 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) approximates the successor state density
𝑚𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′). In the simplest case, we prove that if for some reward 𝑅,

E(𝑠′,𝑎′)∼𝜌

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝐵(𝑠′, 𝑎′)−𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)

⃒⃒
≤ 𝜀 (22)

for every (𝑠, 𝑎), then the optimality gap of policy 𝜋𝑧𝑅 is at most (3𝜀/(1− 𝛾)) sup |𝑅| for that reward
(Theorem 8, first case).

In continuous spaces, 𝑚𝜋 is usually a distribution (Appendix B.6), so such an approximation will
not hold, and it is better to work on the measures themselves rather than their densities, namely, to
compare 𝐹⊤𝐵𝜌 to 𝑀𝜋 instead of 𝐹⊤𝐵 to 𝑚𝜋. We prove that if 𝐹⊤𝐵𝜌 is close to 𝑀𝜋 in the weak
topology, then the resulting policies are optimal for any Lipschitz reward.4

4This also holds for continuous rewards, but the Lipschitz assumption yields an explicit bound in Theorem 8.
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Remember that a sequence of nonnegative measures 𝜇𝑛 converges weakly to 𝜇 if for any bounded,
continuous function 𝑓 ,

∫︀
𝑓(𝑥)𝜇𝑛(𝑑𝑥) converges to

∫︀
𝑓(𝑥)𝜇(d𝑥) ([Bog07], §8.1). The associated

topology can be defined via the following Kantorovich–Rubinstein norm on nonnegative measures
([Bog07], §8.3)

‖𝜇− 𝜇′‖KR := sup

{︂⃒⃒⃒⃒∫︁
𝑓(𝑥)𝜇(d𝑥)−

∫︁
𝑓(𝑥)𝜇′(d𝑥)

⃒⃒⃒⃒
: 𝑓 1-Lipschitz function with sup |𝑓 | ≤ 1

}︂
(23)

where we have equipped the state-action space with any metric compatible with its topology.5

The following theorem states that if 𝐹⊤𝐵 approximates the successor state density of the policy 𝜋𝑧
(for various sorts of approximations), then 𝜋𝑧 is approximately optimal. Given a reward function 𝑟
on state-actions, we denote

‖𝑟‖∞ := sup
(𝑠,𝑎)∈𝑆×𝐴

|𝑟(𝑠, 𝑎)| (24)

and

‖𝑟‖Lip := sup
(𝑠,𝑎)̸=(𝑠′,𝑎′)∈𝑆×𝐴

𝑟(𝑠, 𝑎)− 𝑟(𝑠′, 𝑎′)
𝑑((𝑠, 𝑎), (𝑠′, 𝑎′))

(25)

where we have chosen any metric on state-actions.

The first statement is for any bounded reward. The second statement only assumes an 𝐹⊤𝐵 approx-
imation in the weak topology but only applies to Lipschitz rewards. The third statement is more
general and is how we prove the first two: weaker assumptions on 𝐹⊤𝐵 work on a stricter class of
rewards.
Theorem 8 (If 𝐹 and 𝐵 approximate successor states, then the policies 𝜋𝑧 yield approximately
optimal returns). Let 𝐹 : 𝑆 × 𝐴 × 𝑍 → 𝑍 and 𝐵 : 𝑆 × 𝐴 → 𝑍 be any functions, and define the
policy 𝜋𝑧(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 for each 𝑧 ∈ 𝑍.

Let 𝜌 be any positive probability distribution on 𝑆 ×𝐴, and for each policy 𝜋, let 𝑚𝜋 be the density
of the successor state measure 𝑀𝜋 of 𝜋 with respect to 𝜌. Let

𝑚̂𝑧(𝑠, 𝑎, 𝑠′, 𝑎′) := 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′), 𝑀̂𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) := 𝑚̂𝑧(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′)
(26)

be the estimates of 𝑚 and 𝑀 obtained via the model 𝐹 and 𝐵.

Let 𝑟 : 𝑆 ×𝐴→ R be any bounded reward function. Let 𝑉 ⋆ be the optimal value function for this re-
ward 𝑟. Let 𝑉 𝜋𝑧 be the value function of policy 𝜋𝑧 for this reward. Let 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)].

Then:

1. If E(𝑠′,𝑎′)∼𝜌 |𝑚̂𝑧𝑅(𝑠, 𝑎, 𝑠′, 𝑎′)−𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)| ≤ 𝜀 for any (𝑠, 𝑎) in 𝑆 × 𝐴, then⃦⃦⃦
𝑉 𝜋𝑧𝑅 − 𝑉 ⋆

⃦⃦⃦
∞
≤ 3𝜀 ‖𝑟‖∞ /(1− 𝛾).

2. If 𝑟 is Lipschitz and
⃦⃦⃦
𝑀̂𝑧𝑅(𝑠, 𝑎, ·)−𝑀𝜋𝑧𝑅 (𝑠, 𝑎, ·)

⃦⃦⃦
KR
≤ 𝜀 for any (𝑠, 𝑎) ∈ 𝑆 × 𝐴, then⃦⃦⃦

𝑉 𝜋𝑧𝑅 − 𝑉 ⋆
⃦⃦⃦
∞
≤ 3𝜀max(‖𝑟‖∞ , ‖𝑟‖Lip)/(1− 𝛾).

3. More generally, let ‖·‖𝐴 be a norm on functions and ‖·‖𝐵 a norm on measures, such that∫︀
𝑓 d𝜇 ≤ ‖𝑓‖𝐴 ‖𝜇‖𝐵 for any function 𝑓 and measure 𝜇. Then for any reward function 𝑟

such that ‖𝑟‖𝐴 <∞,⃦⃦⃦
𝑉 𝜋𝑧𝑅 − 𝑉 ⋆

⃦⃦⃦
∞
≤

3 ‖𝑟‖𝐴
1− 𝛾

sup
𝑠,𝑎

⃦⃦⃦
𝑀̂𝑧𝑅(𝑠, 𝑎, ·)−𝑀𝜋𝑧𝑅 (𝑠, 𝑎, ·)

⃦⃦⃦
𝐵
. (27)

Moreover, the optimal 𝑄-function is close to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅:

sup
𝑠,𝑎

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 −𝑄⋆(𝑠, 𝑎)

⃒⃒
≤

2 ‖𝑟‖𝐴
1− 𝛾

sup
𝑠,𝑎

⃦⃦⃦
𝑀̂𝑧𝑅(𝑠, 𝑎, ·)−𝑀𝜋𝑧𝑅 (𝑠, 𝑎, ·)

⃦⃦⃦
𝐵
. (28)

5The Kantorovich–Rubinstein norm is closely related to the 𝐿1 Wasserstein distance on probability distribu-
tions, but slightly more general as it does not require the distance functions to be integrable: the Wasserstein
distance metrizes weak convergence among those probability measures such that E[𝑑(𝑥, 𝑥0)] < ∞.
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Pointwise optimality gaps. We now turn to a more precise estimation of the optimality gap at each
state, expressed directly as a matrix product involving the FB error 𝑚𝜋 − 𝐹⊤𝐵.

Here we assume that the state space is finite: this is not essential but simplifies notation since
everything can be represented as matrices and vectors. For each stochastic policy 𝜋 : 𝑆 → Prob(𝐴),
we denote 𝑃𝜋 the associated stochastic matrix on state-actions:

(𝑃𝜋)(𝑠𝑎)(𝑠′𝑎′) := 𝑃 (𝑠′|𝑠, 𝑎)𝜋(𝑠′)[𝑎′]. (29)

We also view rewards and 𝑄-functions as vectors indexed by state-actions.
Theorem 9. Assume that the state space is finite. Let 𝐹 : 𝑆 ×𝐴× R𝑑 → R𝑑 and 𝐵 : 𝑆 ×𝐴→ R𝑑

be any functions. Define 𝜋𝑧 as in Definition 1. Let 𝜌 > 0 be any probability distribution over
state-actions, and let 𝑚𝜋 be the successor density (9) of policy 𝜋 with respect to 𝜌.

For each 𝑧 ∈ R𝑑, define the FB error 𝐸(𝑧) as a matrix over state-actions:

𝐸(𝑧)(𝑠𝑎)(𝑠′𝑎′) := 𝑚𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)− 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′). (30)

Let 𝑟 be any reward function and let 𝑄⋆ and 𝜋⋆ be its optimal 𝑄-function and policy. Let 𝑧𝑅 =
E𝜌[𝑟.𝐵] as in Theorem 2, and let 𝑄𝜋𝑧𝑅 be the 𝑄-function of policy 𝜋𝑧𝑅 .

Then we have the componentwise inequality between state-action vectors

0 ≤ 𝑄⋆ −𝑄𝜋𝑧𝑅 ≤

⎛⎝∑︁
𝑡≥0

𝛾𝑡+1𝑃 𝑡
𝜋⋆

⎞⎠(︁𝑃𝜋⋆ − 𝑃𝜋𝑧𝑅

)︁
𝐸(𝑧𝑅) diag(𝜌) 𝑟. (31)

In particular, if 𝐸(𝑧𝑅) = 0 then 𝜋𝑧𝑅 is optimal for reward 𝑟.

The matrix
∑︀

𝑡≥0 𝛾
𝑡+1𝑃 𝑡

𝜋⋆ represents states visited along the optimal trajectory starting at the initial
state. Multiplying by (𝑃𝜋⋆ − 𝑃𝜋𝑧𝑅

) visits states one step away from this trajectory. Therefore, what
matters are the values of the FB error matrix 𝐸(𝑧𝑅)(𝑠𝑎)(𝑠′𝑎′) at state-actions (𝑠, 𝑎) one step away
from the optimal trajectories.

In unsupervised RL, we have no control over the first part
∑︀

𝑡≥0 𝛾
𝑡+1𝑃 𝑡

𝜋⋆ , which depends only on
the optimal trajectories of the unknown future tasks 𝑟. Therefore, in general it makes sense to just
minimize 𝐸(𝑧) in some matrix norm, for as many values of 𝑧 as possible. (The choice of matrix
norm influences which rewards will be best optimized, as illustrated by Theorem 8.)

B.3.2 An approximate 𝑧𝑅 yields an approximately optimal policy

We now turn to the second source of approximation: computing 𝑧𝑅 in the reward estimation phase.
This is a problem only if the reward is not specified explicitly.

We deal in turn with the effect of using a model of the reward function, and the effect of estimating
𝑧𝑅 = E(𝑠,𝑎)∼𝜌 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎) via sampling.

Which of these options is better depends a lot on the situation. If training of 𝐹 and 𝐵 is perfect,
by construction the policies are optimal for each 𝑧𝑅: thus, estimating 𝑧𝑅 from rewards sampled
at 𝑁 states (𝑠𝑖, 𝑎𝑖) ∼ 𝜌 will produce the optimal policy for exactly that empirical reward, namely,
a nonzero reward at each (𝑠𝑖, 𝑎𝑖) but zero everywhere else, thus overfitting the reward function.
Reducing the dimension 𝑑 reduces this effect, since rewards are projected on the span of the features
in 𝐵: 𝐵 plays both the roles of a transition model and a reward regularizer. This appears as a

√︀
𝑑/𝑁

factor in Theorem 12 below.

Thus, if both the number of samples to train 𝐹 and 𝐵 and the number of reward samples are small,
using a smaller 𝑑 will regularize both the model of the environment and the model of the reward.
However, if the number of samples to train 𝐹 and 𝐵 is large, yielding an excellent model of the
environment, but the number of reward samples is small, then learning a model of the reward function
will be a better option than direct empirical estimation of 𝑧𝑅.

The first result below states that reward misidentification comes on top of the approximation error of
the 𝐹⊤𝐵 model. This is relevant, for instance, if a reward model 𝑟 is estimated by an external model
using some reward values.
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Proposition 10 (Influence of estimating 𝑧𝑅 by an approximate reward). Assume 𝜌 is a probability
distribution. Let 𝑟 : 𝑆 ×𝐴→ R be any reward function. Let 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)].

Let 𝜀𝐹𝐵 be the error attained by the 𝐹⊤𝐵 model in Theorem 8 for reward 𝑟; namely, assume that⃦⃦⃦
𝑉 𝜋𝑧𝑅 − 𝑉 ⋆

⃦⃦⃦
∞
≤ 𝜀𝐹𝐵 with 𝑉 ⋆ the optimal value function for 𝑟.

Then the policy 𝜋𝑧𝑅(𝑠) = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 defined by the model 𝑟 is
(︂

2 ‖𝑟 − 𝑟‖∞
(1− 𝛾)

+ 𝜀𝐹𝐵

)︂
-

optimal for reward 𝑟.

This still assumes that the expectation 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] is computed exactly for the
model 𝑟. If 𝑟 is given by an explicit model, this expectation can in principle be computed on the
whole replay buffer used to train 𝐹 and 𝐵, so variance would be low. Nevertheless, we provide an
additional statement which covers the influence of the variance of the estimator of 𝑧𝑅, whether this
estimator uses an external model 𝑟 or a direct empirical average reward observations 𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎).
Definition 11. The skewness 𝜁(𝐵) of 𝐵 is defined as follows. Assume 𝐵 is bounded. Let
𝐵1, . . . , 𝐵𝑑 : 𝑆 × 𝐴 → R be the functions of (𝑠, 𝑎) defined by each component of 𝐵. Let ⟨𝐵⟩
be the linear span of the (𝐵𝑖)1≤𝑖≤𝑑 as functions on 𝑆 ×𝐴. Set

𝜁(𝐵) := sup
𝑓∈⟨𝐵⟩, 𝑓 ̸=0

‖𝑓‖∞
‖𝑓‖𝐿2(𝜌)

. (32)

Theorem 12 (Influence of estimating 𝑧𝑅 by empirical averages). Assume that 𝜌 is a probability
distribution. Assume that 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] is estimated via

𝑧𝑅 :=
1

𝑁

𝑁∑︁
𝑖=1

𝑟𝑖𝐵(𝑠𝑖, 𝑎𝑖) (33)

using 𝑁 independent samples (𝑠𝑖, 𝑎𝑖) ∼ 𝜌, where the 𝑟𝑖 are random variables such that
E[𝑟𝑖|𝑠𝑖, 𝑎𝑖] = 𝑟(𝑠𝑖, 𝑎𝑖), Var[𝑟𝑖|𝑠𝑖, 𝑎𝑖] ≤ 𝑣 for some 𝑣 ∈ R, and the 𝑟𝑖 are mutually independent
given (𝑠𝑖, 𝑎𝑖)𝑖=1,...,𝑁 .

Let 𝑉 ⋆ be the optimal value function for reward 𝑟, and let 𝑉 be the value function of the estimated
policy 𝜋𝑧𝑅 for reward 𝑟.

Then, for any 𝛿 > 0, with probability at least 1− 𝛿,⃦⃦⃦
𝑉 − 𝑉 ⋆

⃦⃦⃦
∞
≤ 𝜀𝐹𝐵 +

2

1− 𝛾

√︂
𝜁(𝐵) 𝑑

𝑁𝛿

(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2𝐿2(𝜌)

)︁
(34)

which is therefore the bound on the optimality gap of 𝜋𝑧𝑅 for 𝑟. Here 𝜀𝐹𝐵 is the error due to the
𝐹⊤𝐵 model approximation, defined as in Proposition 10.

The proofs are not direct, because 𝐹 is not continuous with respect to 𝑧. Contrary to 𝑄-values,
successor states are not continuous in the reward: if an action has reward 1 and the reward for another
action changes from 1− 𝜀 to 1 + 𝜀, the return values change by at most 2𝜀, but the actions and states
visited by the optimal policy change a lot. So it is not possible to reason by continuity on each of the
terms involved.

B.4 𝐹 and 𝐵 as Successor and Predecessor Features of Each Other, Optimality for Rewards
in the Span of 𝐵

We now give two statements. The first encodes the idea that 𝐹 encodes the future of a state while 𝐵
encodes the past of a state.

The second proves that the 𝐹𝐵 policies are optimal for any reward that lies in the linear span of the
features learned in 𝐵; for rewards out of this span, it is best if the features in 𝐵 are spatially smooth.

The intuition that 𝐹 and 𝐵 encode the future and past of states is formalized as follows: if 𝐹 and 𝐵
minimize their unsupervised loss, then 𝐹 is equal to the successor features from the dual features of
𝐵, and 𝐵 is equal to the predecessor features from the dual features of 𝐹 (Theorem 13).
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This statement holds for a fixed 𝑧 and the corresponding policy 𝜋𝑧 . So, for the rest of this section, 𝑧
is fixed. In this section, we also assume that 𝜌 is a probability distribution.

By “dual” features we mean the following. Define the 𝑑× 𝑑 covariance matrices

Cov𝐹 := E(𝑠,𝑎)∼𝜌[𝐹 (𝑠, 𝑎, 𝑧)𝐹 (𝑠, 𝑎, 𝑧)⊤], Cov𝐵 := E(𝑠,𝑎)∼𝜌[𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤]. (35)

Then (Cov𝐹 )−1/2𝐹 (𝑠, 𝑎, 𝑧) is 𝐿2(𝜌)-orthonormal and likewise for 𝐵. The “dual” features are
(Cov𝐹 )−1𝐹 (𝑠, 𝑎, 𝑧) and (Cov𝐵)−1𝐵(𝑠, 𝑎), without the square root: these are the least square
solvers for 𝐹 and 𝐵 respectively, and these are the ones that appear below.

The unsupervised forward-backward loss for a fixed 𝑧 is

ℓ(𝐹,𝐵) :=

∫︁ ⃒⃒⃒⃒⃒⃒𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−
∑︁
𝑡≥0

𝛾𝑡
𝑃𝑡(d𝑠

′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)

𝜌(d𝑠′,d𝑎′)

⃒⃒⃒⃒
⃒⃒
2

𝜌(d𝑠,d𝑎)𝜌(d𝑠′,d𝑎′) (36)

=
⃦⃦
𝐹 (·, 𝑧)⊤𝐵(·)−𝑚𝜋𝑧 (·, ·)

⃦⃦2
𝐿2(𝜌)⊗𝐿2(𝜌)

. (37)

Thus, minimizers in dimension 𝑑 correspond to an SVD of the successor state density in 𝐿2(𝜌),
truncated to the largest 𝑑 singular values.
Theorem 13. Consider a smooth parametric model for 𝐹 and 𝐵, and assume this model is overpa-
rameterized. 6 Also assume that the data distribution 𝜌 has positive density everywhere.

Let 𝑧 ∈ 𝑍. Assume that for this 𝑧, 𝐹 and 𝐵 lie in 𝐿2(𝜌) and achieve a local extremum of ℓ(𝐹,𝐵)
within this parametric model. Namely, the derivative 𝜕𝜃ℓ(𝐹,𝐵) of the loss with respect to the
parameters 𝜃 of 𝐹 is 0, and likewise for 𝐵.

Then 𝐹 is equal to (Cov𝐵)−1 times the successor features of 𝐵: for any (𝑠, 𝑎) ∈ 𝑆 ×𝐴,

(Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧) =
∑︁
𝑡≥0

𝛾𝑡
∫︁
(𝑠′,𝑎′)

𝑃𝑡(d𝑠
′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)𝐵(𝑠′, 𝑎′) (38)

and 𝐵 is equal to (Cov𝐹 )−1 times the predecessor features of 𝐹 :

(Cov𝐹 )𝐵(𝑠′, 𝑎′) =
∑︁
𝑡≥0

𝛾𝑡
∫︁
(𝑠,𝑎)

𝑃𝑡(d𝑠
′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)

𝜌(d𝑠′,d𝑎′)
𝐹 (𝑠, 𝑎, 𝑧) 𝜌(d𝑠,d𝑎) (39)

𝜌-almost everywhere. Here the covariances have been defined in (35), and 𝑃𝑡(·|𝑠, 𝑎, 𝜋) denotes the
law of (𝑠𝑡, 𝑎𝑡) under trajectories starting at (𝑠, 𝑎) and following policy 𝜋.

The same result holds when working with features 𝜙(𝑠′, 𝑎′), just by applying it to 𝐵 ∘ 𝜙.

Note that in the FB framework, we may normalize either 𝐹 or 𝐵 (Remark 7), but not both.

As a consequence of Theorem 13, we characterize below which kind of rewards we can capture if we
fix 𝐵 and train only 𝐹 to minimize the unsupervised loss given 𝐵. Namely, we show that for any
reward 𝑟, the resulting policy is optimal for the 𝐿2(𝜌)-orthogonal projection of 𝑟 onto the span of 𝐵.
Theorem 14 (Optimizing 𝐹 for a given 𝐵; influence of the span of 𝐵). Let 𝐵 a fixed function in
𝐿2(𝜌,R𝑑). Define the span of 𝐵 as the set of functions 𝑤⊤𝐵 ∈ 𝐿2(𝜌,R) when 𝑤 ranges in R𝑑.

Consider a smooth parametric model for 𝐹 , and assume this model is overparameterized. Assume
that 𝐹 lies in 𝐿2(𝜌) and achieves a local extremum of ℓ(𝐹,𝐵) within this parametric model for each
𝑧 ∈ 𝑍.

Assume that the data distribution 𝜌 has positive density everywhere.

Then for any bounded reward function 𝑟 : 𝑆 ×𝐴→ R that lies in the span of 𝐵, 𝜋𝑧𝑅 is an optimal
policy for the reward 𝑟.

6 Intuitively, a parametric function 𝑓 is overparameterized if every possible small change of 𝑓 can be realized
by a small change of the parameter. Formally, we say that a parametric family of functions 𝜃 ∈ Θ ↦→ 𝑓𝜃 ∈
𝐿2(𝑋,R𝑑) smoothly parameterized by 𝜃, on some space 𝑋 , is overparameterized if, for any 𝜃, the differential
𝜕𝜃𝑓𝜃 is surjective from Θ to 𝐿2(𝑋,R𝑑). For finite 𝑋 , this implies that the dimension of 𝜃 is larger than #𝑋 .
For infinite 𝑋 , this implies that dim(𝜃) is infinite, such as parameterizing functions on [0; 1] by their Fourier
expansion.
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More generally, for any bounded reward function 𝑟 : 𝑆 ×𝐴→ R, the policy 𝜋𝑧𝑅 is an optimal policy
for the reward 𝑟𝐵 defined as the 𝐿2(𝜌)-orthogonal projection of 𝑟 onto the span of 𝐵.

Moreover,

‖𝑉 𝜋𝑧𝑅 − 𝑉 ⋆‖∞ ≤
2

1− 𝛾
‖𝑟 − 𝑟𝐵‖∞ (40)

with 𝑉 ⋆ the optimal value function for 𝑟. More precisely,

‖𝑉 𝜋𝑧𝑅 − 𝑉 ⋆‖∞ ≤
⃦⃦

(Id−𝛾𝑃𝜋⋆)−1(𝑟 − 𝑟𝐵)
⃦⃦
∞ +

⃦⃦⃦
(Id−𝛾𝑃𝜋𝑧𝑅

)−1(𝑟 − 𝑟𝐵)
⃦⃦⃦
∞

(41)

with 𝜋⋆ the optimal policy for reward 𝑟, and notation 𝑃𝜋 as in Theorem 9.

The last bounds (41) implies the previous one (40), as (Id−𝛾𝑃𝜋)−1 is bounded by 1
1−𝛾 in 𝐿∞ norm

for any policy 𝜋.

Discussion: optimal 𝐵 and priors on rewards. This bound is interesting if 𝑟 − 𝑟𝐵 is small,
namely, if 𝐵 captures most of the components of the reward functions we are interested in. But
even for rewards not spanned by 𝐵, the bound is smaller if 𝑟 − 𝑟𝐵 avoids the largest eigendirections
of (Id−𝑃𝜋)−1 for various policies 𝜋, namely, if 𝐵 captures these largest eigendirections. These
eigendirections are those of 𝑃𝜋: so the bound will be small if 𝐵 contains the largest eigendirections
of 𝑃𝜋 for various policies 𝜋, corresponding to spatially continuity of functions under transitions in
the environment (𝑃𝜋𝑓 close to 𝑓 ).

If we are interested in spatially smooth rewards 𝑟, then 𝑟 − 𝑟𝐵 is small if 𝐵 if captures smooth
functions first. But even for rewards not spanned by 𝐵, and for non-spatially smooth rewards (e.g.,
goal-oriented problems with reward 1𝑠=goal), the bound (41) shows that 𝐵 should first capture
spatially smooth eigenvectors of many policies 𝜋.

Is this a natural consequence of FB training? Up to some approximations, yes. For a single 𝑧 and
policy 𝜋𝑧 , the loss (36) used to train 𝐵 is optimal when 𝐵 captures the largest singular directions
of (Id−𝑃𝜋𝑧

)−1, which is slightly different. The optimal policy (Id−𝑃𝜋⋆)−1 is not represented in
the criterion, and it is not clear to what extent spatial continuity with respect to 𝑃𝜋𝑧 or 𝑃𝜋⋆ differ.
Moreover, in the full algorithm, 𝐵 is shared between several 𝑧 and several policies. So we have no
rigorous result here. Still, the intuition shows that FB training goes in the correct direction.

B.5 Estimating 𝑧𝑅 from a Different State Distribution at Test Time

The algorithm of Section 4 computes 𝐹 and 𝐵 with respect a reference measure 𝜌 equal to the
distribution 𝜌 of state-actions in the training set. Theorem 2 requires 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]
to be estimated using rewards observed from the same state-action distribution 𝜌 as the one used to
train 𝐹 and 𝐵.

So in general, estimating 𝑧𝑅 requires either being able to run the exploration policy again once reward
samples are available, or being able to explicitly estimate 𝑟(𝑠, 𝑎) on states stored in the training set.

However, at test time, we would generally like to use the policy learned, rather than the exploration
policy. This will result in a distribution of states-actions 𝜌test(𝑠, 𝑎) different from the training
distribution 𝜌(𝑠, 𝑎).

If the training set remains accessible, a generic solution is to train a model 𝑟(𝑠, 𝑎) of the reward
function, from rewards 𝑟(𝑠, 𝑎) observed at test time under any distribution (𝑠, 𝑎) ∼ 𝜌test. Then one
can estimate 𝑧𝑅 by averaging this model 𝑟 over state-actions sampled from the training set:

𝑧𝑅 := E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. (42)

However, the training set may not be available anymore at test time. But as it turns out, if we use for
𝑟 a linear model based on the features learned in 𝐵, then we do not need to store the training set:
it is enough to estimate the matrix Cov𝜌(𝐵), which can be pre-computed during training. This is
summarized in the following.
Proposition 15. Let 𝑟 be the linear model of rewards computed at test time by linear regression of
the reward 𝑟 over the components 𝐵1, . . . , 𝐵𝑑 of 𝐵, with state-actions taken from a test distribution
𝜌test. Explicitly,

𝑟(𝑠, 𝑎) := 𝐵(𝑠, 𝑎)⊤𝑤, 𝑤 := (Cov𝜌test
𝐵)

−1 E(𝑠,𝑎)∼𝜌test
[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. (43)
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Here we assume that Cov𝜌test 𝐵 = E(𝑠,𝑎)∼𝜌test
[𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤] is invertible.

Then the estimate 𝑧𝑅 computed by using this model 𝑟 in (42) is

𝑧𝑅 = (Cov𝜌𝐵) (Cov𝜌test 𝐵)
−1 E(𝑠,𝑎)∼𝜌test

[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. (44)

Moreover, if 𝜌 = 𝜌test, or if 𝑟 is linear over 𝐵, then 𝑧𝑅 = 𝑧𝑅 .

For this estimate, Cov𝜌test
𝐵 and E(𝑠,𝑎)∼𝜌test

[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] can be computed at test time, while the
matrix Cov𝜌𝐵 must be computed at training time. This way, the training set can be discarded.

If the estimate (43) is used, the learned policies correspond to using universal successor
features approximators [BBQ+18] on top of the features learned by 𝐵. Indeed, univer-
sal successor features with features 𝜙 use the policies arg max𝑎 𝜓(𝑠, 𝑎, 𝑤)⊤𝑤 with 𝑤 =

(Cov𝜌test
𝜙)

−1 E(𝑠,𝑎)∼𝜌test
[𝑟(𝑠, 𝑎)𝜙(𝑠, 𝑎)] the regression vector of 𝑟 over the features 𝜙, and with

𝜓 = Succ(𝜙) the successor features of 𝜙. Here we use the policies 𝜋𝑧𝑅 = arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅.
Let us set 𝜙 := 𝐵 as the base features in successor features. Then the above shows that
𝑧𝑅 = (Cov𝜌𝐵)𝑤 when using the linear model of rewards. Moreover, we proved in Theorem 13 that
the optimum for 𝐹 is 𝐹 = (Cov𝜌𝐵)−1 Succ(𝐵). Therefore, the policies coincide in this situation.

Thus, universal successor features based on 𝐵 appear as a particular case if a linear model of rewards
is used at test time, although in general any reward model may be used in (42).

B.6 A Note on the Measure 𝑀𝜋 and its Density 𝑚𝜋

In finite spaces, the definition of the successor state density 𝑚𝜋 via

𝑀𝜋(𝑠, 𝑎,d𝑠′,d𝑎′) = 𝑚𝜋(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) (45)

with respect to the data distribution 𝜌 poses no problem, as long as the data distribution is positive
everywhere.

In continuous spaces, this can be understood as the (Radon–Nikodym) density of 𝑀𝜋 with respect
to 𝜌, assuming 𝑀𝜋 has no singular part with respect to 𝜌. However, this is never the case: in the
definition (1) of the successor state measure 𝑀𝜋 , the term 𝑡 = 0 produces a Dirac measure 𝛿𝑠,𝑎. So
𝑀𝜋 has a singular component due to 𝑡 = 0, and 𝑚𝜋 is better thought of as a distribution.

When 𝑚𝜋 is a distribution, a continuous parametric model 𝑚𝜋
𝜃 learned by (5) can approximate

𝑚𝜋 in the weak topology only: 𝑚𝜋
𝜃 𝜌 approximates 𝑀𝜋 for the weak convergence of measures.

Thus, for the forward-backward representation, 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) weakly approximates
𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′).

We have not found this to be a problem either in theory or practice. In particular, Theorem 8 covers
weak approximations.

Alternatively, one may just define successor states starting at 𝑡 = 1 in (1). This only works well if
rewards 𝑟(𝑠, 𝑎) depend on the state 𝑠 but not the action 𝑎 (e.g., in goal-oriented settings). If starting
the definition at 𝑡 = 1, 𝑚𝜋 is an ordinary function provided the transition kernels 𝑃 (d𝑠′|𝑠, 𝑎) of the
environment are non-singular, 𝜌 has positive density, and 𝜋(d𝑎|𝑠) is non-singular as well. Starting at
𝑡 = 1 induces the following changes in the theorems:

∙ In the learning algorithm (5) for successor states, the term 𝜕𝜃𝑚
𝜋
𝜃 (𝑠, 𝑎, 𝑠, 𝑎) becomes

𝛾 𝜕𝜃𝑚
𝜋
𝜃 (𝑠, 𝑎, 𝑠′, 𝑎′).

∙ The expression for the 𝑄-function in Theorem 2 becomes 𝑄⋆(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅, and likewise in Theorem 4. The 𝑟(𝑠, 𝑎) term covers the immediate re-
ward at a state, since we have excluded 𝑡 = 0 from the definition of successor states.
∙ In general the expression for optimal policies becomes

𝜋𝑧(𝑠) := arg max
𝑎
{𝑟(𝑠, 𝑎) + 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧} (46)

which cannot be computed from 𝑧 and 𝐹 alone in the unsupervised training phase. The
algorithm only makes sense for rewards that depend on 𝑠 but not on 𝑎 (e.g., in goal-oriented
settings): then the policy 𝜋𝑧 is equal to 𝜋𝑧(𝑠) := arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 again.
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C Proofs

The first proposition is a direct consequence of the definition (10) of successor states with a goal
space 𝐺.

Proposition 16. Let 𝜙 : 𝑆 ×𝐴→ 𝐺 be a map to some goal space 𝐺.

Let 𝜋 be some policy, and let 𝑀𝜋 be the successor state measure (10) of 𝜋 in goal space 𝐺. Let 𝑚𝜋

be the density of 𝑀𝜋 with respect to some positive measure 𝜌 on 𝐺.

Let 𝑟 : 𝐺 → R be some function on 𝐺, and define the reward function 𝑅(𝑠, 𝑎) := 𝑟(𝜙(𝑠, 𝑎)) on
𝑆 ×𝐴.

Then the 𝑄-function 𝑄𝜋 of policy 𝜋 for reward 𝑅 is

𝑄𝜋(𝑠, 𝑎) =

∫︁
𝑟(𝑔)𝑀𝜋(𝑠, 𝑎,d𝑔) (47)

=

∫︁
𝑔∈𝐺

𝑟(𝑔)𝑚𝜋(𝑠, 𝑎, 𝑔) 𝜌(d𝑔). (48)

Proof of Proposition 16. For each time 𝑡 ≥ 0, let 𝑃𝜋
𝑡 (𝑠0, 𝑎0,d𝑔) be the probability distribution of

𝑔 = 𝜙(𝑠𝑡, 𝑎𝑡) over trajectories of the policy 𝜋 starting at (𝑠0, 𝑎0) in the MDP. Thus, by the definition
(10),

𝑀𝜋(𝑠, 𝑎,d𝑔) =
∑︁
𝑡≥0

𝛾𝑡𝑃𝜋
𝑡 (𝑠, 𝑎,d𝑔). (49)

The 𝑄-function of 𝜋 for the reward 𝑅 is by definition (the sums and integrals are finite since 𝑅 is
bounded)

𝑄𝜋(𝑠, 𝑎) =
∑︁
𝑡≥0

𝛾𝑡 E[𝑅(𝑠𝑡, 𝑎𝑡) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] (50)

=
∑︁
𝑡≥0

𝛾𝑡 E[𝑟(𝜙(𝑠𝑡, 𝑎𝑡)) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋] (51)

=
∑︁
𝑡≥0

𝛾𝑡
∫︁
𝑔

𝑟(𝑔)𝑃𝜋
𝑡 (𝑠, 𝑎,d𝑔) (52)

=

∫︁
𝑔

𝑟(𝑔)𝑀𝜋(𝑠, 𝑎,d𝑔) (53)

=

∫︁
𝑔

𝑟(𝑔)𝑚𝜋(𝑠, 𝑎, 𝑔)𝜌(d𝑔) (54)

by definition of the density 𝑚𝜋 .

Proof of Theorems 2 and 4. Theorem 2 is a particular case of Theorem 4 (𝜙 = Id and 𝑚̄ = 0), so
we only prove the latter.

Let 𝑅(𝑠, 𝑎) = 𝑟(𝜙(𝑠, 𝑎)) be a reward function as in the theorem.

For any policy 𝜋, let 𝑀𝜋 be its successor measure defined by (10), and let 𝑚𝜋 denote its density with
respect to 𝜌.

The 𝑄-function of 𝜋 for the reward 𝑅 is, by Proposition 16,

𝑄𝜋(𝑠, 𝑎) =

∫︁
𝑔

𝑟(𝑔)𝑚𝜋(𝑠, 𝑎, 𝑔)𝜌(d𝑔) (55)

The definition of an extended FB representation states that for any 𝑧 ∈ 𝑍, 𝑚𝜋𝑧 (𝑠, 𝑎, 𝑔) is equal to
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔) + 𝑚̄(𝑠, 𝑧, 𝑔).
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Therefore, for any 𝑧 ∈ 𝑍 we have

𝑄𝜋𝑧 (𝑠, 𝑎) =

∫︁
𝑔

𝑟(𝑔)
(︀
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑔) + 𝑚̄(𝑠, 𝑧, 𝑔)

)︀
𝜌(d𝑔) (56)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤
∫︁
𝑔

𝑟(𝑔)𝐵(𝑔)𝜌(d𝑔) +

∫︁
𝑔

𝑟(𝑔)𝑚̄(𝑠, 𝑧, 𝑔)𝜌(d𝑔) (57)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 + 𝑉 𝑧(𝑠) (58)

by definition of 𝑧𝑅 and 𝑉 . This proves the claim (15) about 𝑄-functions.

By definition, the policy 𝜋𝑧 selects the action 𝑎 that maximizes 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. Take 𝑧 = 𝑧𝑅. Then

𝜋𝑧𝑅 = arg max
𝑎

𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 (59)

= arg max
𝑎

{︀
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 + 𝑉 𝑧(𝑠)

}︀
(60)

since the last term does not depend on 𝑎.

This quantity is equal to 𝑄𝜋𝑧𝑅 (𝑠, 𝑎). Therefore,

𝜋𝑧𝑅 = arg max
𝑎

𝑄𝜋𝑧𝑅 (𝑠, 𝑎) (61)

and by the above, 𝑄𝜋𝑧𝑅 (𝑠, 𝑎) is indeed equal to the 𝑄-function of policy 𝜋𝑧𝑅 for the reward 𝑅.
Therefore, 𝜋𝑧𝑅 and 𝑄𝜋𝑧𝑅 constitute an optimal Bellman pair for reward 𝑅. Since 𝑄𝜋𝑧𝑅 (𝑠, 𝑎) is the
𝑄-function of 𝜋𝑧𝑅 , it satisfies the Bellman equation

𝑄𝜋𝑧𝑅 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎)𝑄
𝜋𝑧𝑅 (𝑠′, 𝜋𝑧𝑅(𝑠′)) (62)

= 𝑅(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) max
𝑎′

𝑄𝜋𝑧𝑅 (𝑠′, 𝑎′) (63)

by (61). This is the optimal Bellman equation for 𝑅, and 𝜋𝑧𝑅 is the optimal policy for 𝑅.

We still have to prove the last statement of Theorem 4. Since 𝜋𝑧𝑅 is an optimal policy for 𝑅, for any
other policy 𝜋𝑧 and state-action (𝑠, 𝑎) we have

𝑄𝜋𝑧𝑅 (𝑠, 𝑎) ≥ 𝑄𝜋𝑧 (𝑠, 𝑎). (64)

Using the formulas above for 𝑄𝜋 , with 𝑚̄ = 0, this rewrites as

𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 ≥ 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 (65)

as needed. Thus 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 ≥ sup𝑧∈𝑍 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅, and equality occurs by taking 𝑧 = 𝑧𝑅.
This ends the proof of Theorem 4.

Proof of Proposition 6. Assume 𝑑 = #𝑆 ×#𝐴; extra dimensions can just be ignored by setting the
extra components of 𝐹 and 𝐵 to 0.

With 𝑑 = #𝑆 ×#𝐴, we can index the components of 𝑍 by pairs (𝑠, 𝑎).

First, let us set 𝐵(𝑠, 𝑎) := 1𝑠,𝑎.

Let 𝑟 : 𝑆 ×𝐴→ R be any reward function. Let 𝑧𝑅 ∈ R#𝑆×#𝐴 be defined as in Theorem 2, namely,

𝑧𝑅 =
∑︁
(𝑠,𝑎)

𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)𝜌(𝑠, 𝑎). (66)

With our choice of 𝐵, the components of 𝑧𝑅 are (𝑧𝑅)𝑠,𝑎 = 𝑟(𝑠, 𝑎)𝜌(𝑠, 𝑎). Since 𝜌 > 0, the
correspondence 𝑟 ↔ 𝑧𝑅 is bijective.

Let us now define 𝐹 . Take 𝑧 ∈ 𝑍. Since 𝑟 ↔ 𝑧𝑅 is bijective, this 𝑧 is equal to 𝑧𝑅 for some reward
function 𝑟. Let 𝜋𝑧 be an optimal policy for this reward 𝑟 in the MDP. Let 𝑀𝜋𝑟 be the successor state
measure of policy 𝜋𝑧 , namely:

𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′) =
∑︁
𝑡≥0

𝛾𝑡 Pr ((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | (𝑠0, 𝑎0) = (𝑠, 𝑎), 𝜋𝑧) . (67)
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Now define 𝐹 (𝑠, 𝑎, 𝑧) by setting its (𝑠′, 𝑎′) component to 𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)/𝜌(𝑠′, 𝑎′) for each (𝑠′, 𝑎′):

𝐹 (𝑠, 𝑎, 𝑧)𝑠′,𝑎′ := 𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)/𝜌(𝑠′, 𝑎′). (68)

Then we have

𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) =
∑︁
𝑠′′,𝑎′′

𝐹 (𝑠, 𝑎, 𝑧)𝑠′′,𝑎′′ 𝐵(𝑠′, 𝑎′)𝑠′′,𝑎′′

= 𝐹 (𝑠, 𝑎, 𝑧)𝑠′,𝑎′ = 𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)/𝜌(𝑠′, 𝑎′) (69)

because by our choice of 𝐵, 𝐵(𝑠′, 𝑎′)𝑠′′𝑎′′ = 1𝑠′=𝑠′′, 𝑎′=𝑎′′ .

Thus, 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) is the density of the successor state measure𝑀𝜋𝑧 of policy 𝜋𝑧 with respect
to 𝜌, as needed.

We still have to check that 𝜋𝑧 satisfies 𝜋𝑧(𝑠) = arg max𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 (since this is not how it was
defined). Since 𝜋𝑧 was defined as an optimal policy for the reward 𝑟 associated with 𝑧, it satisfies

𝜋𝑧(𝑠) = arg max
𝑎

𝑄𝜋𝑧 (𝑠, 𝑎) (70)

with𝑄𝜋𝑧 (𝑠, 𝑎) the𝑄-function of policy 𝜋𝑧 for the reward 𝑟. This𝑄-function is equal to the cumulated
expected reward

𝑄𝜋𝑧 (𝑠, 𝑎) =
∑︁
𝑡≥0

𝛾𝑡 E [𝑟(𝑠𝑡, 𝑎𝑡) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧] (71)

=
∑︁
𝑡≥0

𝛾𝑡
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′) Pr ((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧) (72)

=
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′)
∑︁
𝑡≥0

𝛾𝑡 Pr ((𝑠𝑡, 𝑎𝑡) = (𝑠′, 𝑎′) | 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋𝑧) (73)

=
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′)𝑀𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′) (74)

=
∑︁
𝑠′,𝑎′

𝑟(𝑠′, 𝑎′)𝐹 (𝑠, 𝑎, 𝑧)𝑠′,𝑎′ 𝜌(𝑠′, 𝑎′) (75)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤

(︃∑︁
𝑠′𝑎′

𝑟(𝑠′, 𝑎′)𝜌(𝑠′, 𝑎′)1𝑠′𝑎′

)︃
(76)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 (77)

since 𝑧 is equal to
∑︀

(𝑠′,𝑎′) 𝑟(𝑠
′, 𝑎′)𝐵(𝑠′, 𝑎′)𝜌(𝑠′, 𝑎′). This proves that 𝜋𝑧(𝑠) = arg max𝑎𝑄

𝜋𝑧(𝑠,𝑎) =

arg max𝑎 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧. So this choice of 𝐹 and 𝐵 satisfies all the properties claimed.

We will rely on the following two basic results in 𝑄-learning.

Proposition 17 (𝑟 ↦→ 𝑄⋆ is Lipschitz in sup-norm). Let 𝑟1, 𝑟2 : 𝑆 ×𝐴→ R be two bounded reward
functions. Let𝑄⋆

1 and𝑄⋆
2 be the corresponding optimal𝑄-functions, and likewise for the 𝑉 -functions.

Then

sup
𝑆×𝐴
|𝑄⋆

1 −𝑄⋆
2| ≤

1

1− 𝛾
sup
𝑆×𝐴
|𝑟1 − 𝑟2| and sup

𝑆
|𝑉 ⋆

1 − 𝑉 ⋆
2 | ≤

1

1− 𝛾
sup
𝑆×𝐴
|𝑟1 − 𝑟2| . (78)

Moreover for any policy 𝜋, we have

sup
𝑆×𝐴
|𝑄𝜋

1 −𝑄𝜋
2 | ≤

1

1− 𝛾
sup
𝑆×𝐴
|𝑟1 − 𝑟2| and sup

𝑆
|𝑉 𝜋

1 − 𝑉 𝜋
2 | ≤

1

1− 𝛾
sup
𝑆×𝐴
|𝑟1 − 𝑟2| . (79)

Proof. Assume sup𝑆×𝐴 |𝑟1 − 𝑟2| ≤ 𝜀 for some 𝜀 ≥ 0.
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For any policy 𝜋, let 𝑄𝜋
1 be its 𝑄-function for reward 𝑟1, and likewise for 𝑟2. Let 𝜋1 and 𝜋2 be

optimal policies for 𝑟1 and 𝑟2, respectively. Then for any (𝑠, 𝑎) ∈ 𝑆 ×𝐴,

𝑄⋆
1(𝑠, 𝑎) = 𝑄𝜋1

1 (𝑠, 𝑎) (80)
≥ 𝑄𝜋2

1 (𝑠, 𝑎) (81)

=
∑︁
𝑡≥0

𝛾𝑡 E [𝑟1(𝑠𝑡, 𝑎𝑡) | 𝜋2, (𝑠0, 𝑎0) = (𝑠, 𝑎)] (82)

≥
∑︁
𝑡≥0

𝛾𝑡 E [𝑟2(𝑠𝑡, 𝑎𝑡)− 𝜀 | 𝜋2, (𝑠0, 𝑎0) = (𝑠, 𝑎)] (83)

=
∑︁
𝑡≥0

𝛾𝑡 E [𝑟2(𝑠𝑡, 𝑎𝑡) | 𝜋2, (𝑠0, 𝑎0) = (𝑠, 𝑎)]− 𝜀

1− 𝛾
(84)

= 𝑄⋆
2(𝑠, 𝑎)− 𝜀

1− 𝛾
(85)

and likewise in the other direction, which ends the proof for 𝑄-functions. The case of 𝑉 -functions
follows by restricting to the optimal actions at each state 𝑠.

Now, let 𝜋 a policy. We have

|𝑄𝜋
1 (𝑠, 𝑎)−𝑄𝜋

2 (𝑠, 𝑎)| =

⃒⃒⃒⃒
⃒⃒∑︁
𝑡≥0

𝛾𝑡 E [𝑟1(𝑠𝑡, 𝑎𝑡) | 𝜋, (𝑠0, 𝑎0) = (𝑠, 𝑎)]−
∑︁
𝑡≥0

𝛾𝑡 E [𝑟2(𝑠𝑡, 𝑎𝑡) | 𝜋, (𝑠0, 𝑎0) = (𝑠, 𝑎)]

⃒⃒⃒⃒
⃒⃒

(86)

≤
∑︁
𝑡≥0

𝛾𝑡 E [|𝑟2(𝑠𝑡, 𝑎𝑡)− 𝑟1(𝑠𝑡, 𝑎𝑡)| | 𝜋, (𝑠0, 𝑎0) = (𝑠, 𝑎)] (87)

≤ 1

1− 𝛾
sup
𝑆×𝐴
|𝑟1 − 𝑟2| . (88)

The case of 𝑉 -functions follows by taking the expectation over actions according to 𝜋.

Proposition 18. Let 𝑓 : 𝑆 × 𝐴 → R be any function, and define a policy 𝜋𝑓 by 𝜋𝑓 (𝑠) :=
arg max𝑎 𝑓(𝑠, 𝑎). Let 𝑟 : 𝑆 × 𝐴 → R be some bounded reward function. Let 𝑄⋆ be its optimal
𝑄-function, and let 𝑄𝜋𝑓 be the 𝑄-function of 𝜋𝑓 for reward 𝑟.

Then
sup
𝑆×𝐴
|𝑓 −𝑄⋆| ≤ 2

1− 𝛾
sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑓 | (89)

and
sup
𝑆×𝐴
|𝑄𝜋𝑓 −𝑄⋆| ≤ 3

1− 𝛾
sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑓 | (90)

Proof. Define 𝜀(𝑠, 𝑎) := 𝑄𝜋𝑓 (𝑠, 𝑎)− 𝑓(𝑠, 𝑎).

The 𝑄-function 𝑄𝜋𝑓 satisfies the Bellman equation

𝑄𝜋𝑓 (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎)𝑄
𝜋𝑓 (𝑠′, 𝜋𝑓 (𝑠′)) (91)

for any (𝑠, 𝑎) ∈ 𝑆 ×𝐴. Substituting 𝑄𝜋𝑓 = 𝑓 + 𝜀, this rewrites as

𝑓(𝑠, 𝑎) = 𝑟(𝑠, 𝑎)− 𝜀(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) [𝑓(𝑠′, 𝜋𝑓 (𝑠′)) + 𝜀(𝑠′, 𝜋𝑓 (𝑠′))] (92)

= 𝑟(𝑠, 𝑎)− 𝜀′(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) 𝑓(𝑠′, 𝜋𝑓 (𝑠′)) (93)

= 𝑟(𝑠, 𝑎)− 𝜀′(𝑠, 𝑎) + 𝛾 E𝑠′|(𝑠,𝑎) max
𝑎′

𝑓(𝑠′, 𝑎′) (94)

by definition of 𝜋𝑓 , where we have set

𝜀′(𝑠, 𝑎) := 𝜀(𝑠, 𝑎)− 𝛾 E𝑠′|(𝑠,𝑎) 𝜀(𝑠
′, 𝜋𝑓 (𝑠′)). (95)

(94) is the optimal Bellman equation for the reward 𝑟 − 𝜀′. Therefore, 𝑓 is the optimal 𝑄-function
for the reward 𝑟 − 𝜀′. Since 𝑄⋆ is the optimal 𝑄-function for reward 𝑟, by Proposition 17, we have

sup
𝑆×𝐴
|𝑓 −𝑄⋆| ≤ 1

1− 𝛾
sup
𝑆×𝐴
|𝜀′| (96)
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By construction of 𝜀′, sup𝑆×𝐴 |𝜀′| ≤ 2 sup𝑆×𝐴 |𝜀| = 2 sup𝑆×𝐴 |𝑓 −𝑄𝜋𝑓 |. This proves the first
claim.

The second claim follows by the triangle inequality |𝑄𝜋𝑓 −𝑄⋆| ≤ |𝑄𝜋𝑓 − 𝑓 | + |𝑓 −𝑄⋆| and
2

1−𝛾 + 1 ≤ 3
1−𝛾 .

Proof of Theorem 8. By construction of the Kantorovich–Rubinstein norm, the second claim of
Theorem 8 is a particular case of the third claim, with ‖𝑓‖𝐴 := max(‖𝑓‖∞ , ‖𝑓‖Lip) and ‖𝜇‖𝐵 :=

‖𝜇‖KR.

Likewise, since 𝑚 is the density of 𝑀 with respect to 𝜌, the first claim is an instance of the third, by
taking ‖𝑓‖𝐴 := ‖𝑓‖∞ and ‖𝜇‖𝐵 :=

⃦⃦⃦
d𝜇
d𝜌

⃦⃦⃦
𝐿1(𝜌)

. Therefore, we only prove the third claim.

Let 𝑧 ∈ 𝑍 and let 𝑟 : 𝑆 ×𝐴→ R be any reward function. By Proposition 16 with 𝐺 = 𝑆 ×𝐴 and
𝜙 = Id, the 𝑄-function of policy 𝑄𝜋𝑧 for this reward is

𝑄𝜋𝑧 (𝑠, 𝑎) =

∫︁
𝑟(𝑠′, 𝑎′)𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′). (97)

Let 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) be the difference of measures between the model 𝐹⊤𝐵𝜌 and 𝑀𝜋𝑧 :

𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) := 𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′)− 𝑀̂𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) (98)

= 𝑀𝜋𝑧 (𝑠, 𝑎,d𝑠′,d𝑎′)− 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′). (99)

We want to control the optimality gap in terms of sup𝑠,𝑎 ‖𝜀𝑧(𝑠, 𝑎, ·)‖𝐵 .

By definition of 𝜀𝑧 ,

𝑄𝜋𝑧 (𝑠, 𝑎) =

∫︁
𝑟(𝑠′, 𝑎′)𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) +

∫︁
𝑟(𝑠′, 𝑎′) 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) (100)

= 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅 +

∫︁
𝑟(𝑠′, 𝑎′) 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′) (101)

since 𝑧𝑅 =
∫︀
𝑟(𝑠′, 𝑎′)𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′). Therefore,⃒⃒

𝑄𝜋𝑧 (𝑠, 𝑎)− 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧𝑅
⃒⃒

=

⃒⃒⃒⃒∫︁
𝑟(𝑠′, 𝑎′) 𝜀𝑧(𝑠, 𝑎,d𝑠′,d𝑎′)

⃒⃒⃒⃒
(102)

≤ ‖𝑟‖𝐴 ‖𝜀𝑧(𝑠, 𝑎, ·)‖𝐵 (103)

for any reward 𝑟 and any 𝑧 ∈ 𝑍 (not necessarily 𝑧 = 𝑧𝑅).

Let 𝑄⋆ be the optimal 𝑄-function for reward 𝑟. Define 𝑓(𝑠, 𝑎) := 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅. By definition, the
policy 𝜋𝑧𝑅 is equal to arg max𝑎 𝑓(𝑠, 𝑎). Therefore, by Proposition 18,

sup
𝑆×𝐴
|𝑄𝜋𝑧𝑅 −𝑄⋆| ≤ 3

1− 𝛾
sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑧𝑅 | . (104)

and

sup
𝑆×𝐴
|𝑓 −𝑄⋆| ≤ 2

1− 𝛾
sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑧𝑅 | . (105)

But by the above,

sup
𝑆×𝐴
|𝑓 −𝑄𝜋𝑧𝑅 | = sup

𝑆×𝐴

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 −𝑄𝜋𝑧𝑅 (𝑠, 𝑎)

⃒⃒
(106)

≤ ‖𝑟‖𝐴 sup
𝑆×𝐴
‖𝜀𝑧𝑅(𝑠, 𝑎, ·)‖𝐵 . (107)

Therefore, for any reward function 𝑟,

sup
𝑆×𝐴
|𝑄𝜋𝑧𝑅 −𝑄⋆| ≤

3 ‖𝑟‖𝐴
1− 𝛾

sup
𝑆×𝐴
‖𝜀𝑧𝑅(𝑠, 𝑎, ·)‖𝐵 . (108)
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This inequality transfers to the value functions, hence the result. In addition, using again 𝑓(𝑠, 𝑎) =
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅, we obtain

sup
𝑆×𝐴

⃒⃒
𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 −𝑄⋆(𝑠, 𝑎)

⃒⃒
≤

2 ‖𝑟‖𝐴
1− 𝛾

sup
𝑆×𝐴
‖𝜀𝑧𝑅(𝑠, 𝑎, ·)‖𝐵 . (109)

Proposition 19 (Pointwise optimality gap). Assume the state space is finite, and view rewards and
𝑄-functions as vectors over state-actions.

Let 𝑟1 and 𝑟2 be two reward functions, and let 𝜋1 and 𝜋2 be optimal policies for 𝑟1 and 𝑟2 respectively.
Let 𝑃1 and 𝑃2 be the stochastic transition matrices over state-actions induced by 𝜋1 and 𝜋2.

Then the optimality gap of policy 𝜋2 on reward 𝑟1 is at most

0 ≤ 𝑄𝜋1
𝑟1 −𝑄

𝜋2
𝑟1 ≤

(︀
(Id−𝛾𝑃1)−1 − (Id−𝛾𝑃2)−1

)︀
(𝑟1 − 𝑟2) (110)

where the equality holds componentwise viewing the 𝑄-functions as vectors over state-actions.

Proof. This is a classical result. The inequality 0 ≤ 𝑄𝜋1
𝑟1 −𝑄

𝜋2
𝑟1 is trivial since 𝜋1 is optimal for 𝑟1

and the optimal policy is optimal at every state-action. Denote 𝑀1 := (Id−𝛾𝑃1)−1 and likewise for
𝑀2. Then for any reward function 𝑟 one has 𝑄𝜋1

𝑟 = 𝑀1𝑟 and likewise for 𝑀2. Therefore

𝑄𝜋1
𝑟1 −𝑄

𝜋2
𝑟1 = 𝑀1𝑟1 −𝑀2𝑟1 (111)

= 𝑀1𝑟1 −𝑀1𝑟2 +𝑀1𝑟2 −𝑀2𝑟1 (112)
≤𝑀1𝑟1 −𝑀1𝑟2 +𝑀2𝑟2 −𝑀2𝑟1 since 𝜋2 is optimal for 𝑟2 (113)
= (𝑀1 −𝑀2)(𝑟1 − 𝑟2). (114)

Proof of Theorem 9. Let 𝑓 : 𝑆 × 𝐴 → R be any function. Define the policy 𝜋𝑓 (𝑠) :=
arg max𝑎 𝑓(𝑠, 𝑎). Define 𝑟′ := (Id−𝛾𝑃𝜋𝑓

)𝑓 . The equality 𝑓 = 𝑟′ + 𝛾𝑃𝜋𝑓
𝑓 can be rewritten

as
𝑓(𝑠, 𝑎) = 𝑟′(𝑠, 𝑎) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) 𝑓(𝑠′, 𝜋𝑓 (𝑠′)). (115)

But by definition of 𝜋𝑓 , 𝜋𝑓 (𝑠′) = arg max𝑎′ 𝑓(𝑠′, 𝑎′). Therefore

𝑓(𝑠, 𝑎) = 𝑟′(𝑠, 𝑎) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) max
𝑎′

𝑓(𝑠′, 𝑎′) (116)

namely, 𝑓 is the optimal 𝑄-function for reward 𝑟′, with 𝜋𝑓 the corresponding optimal policy.

Let 𝑟 be any reward function and let 𝑄𝜋𝑓 be the 𝑄-function of 𝜋𝑓 for 𝑟. By definition, it satisfies the
Bellman equation 𝑄𝜋𝑓 = 𝑟 + 𝛾𝑃𝜋𝑓

𝑄𝜋𝑓 , namely, 𝑟 = (Id−𝛾𝑃𝜋𝑓
)𝑄𝜋𝑓 . Therefore,

𝑟 − 𝑟′ = (Id−𝛾𝑃𝜋𝑓
)(𝑄𝜋𝑓 − 𝑓). (117)

For any policy 𝜋, denote 𝑀𝜋 := (Id−𝛾𝑃𝜋)−1. (𝑀𝜋 is the successor measure 𝑀𝜋 seen as a matrix.)
The 𝑄-function of 𝜋 for reward 𝑟 is 𝑀𝜋𝑟.

Since 𝜋⋆ is optimal for 𝑟, and 𝜋𝑓 is optimal for 𝑟′, Proposition 19 yields

0 ≤ 𝑄⋆ −𝑄𝜋𝑓 ≤ (𝑀𝜋⋆ −𝑀𝜋𝑓
)(𝑟 − 𝑟′) (118)

= (𝑀𝜋⋆ −𝑀𝜋𝑓
)(Id−𝛾𝑃𝜋𝑓

)(𝑄𝜋𝑓 − 𝑓). (119)

Since 𝑀𝜋𝑓
is the inverse of Id−𝛾𝑃𝜋𝑓

and likewise for 𝜋⋆, we have

(𝑀𝜋⋆ −𝑀𝜋𝑓
)(Id−𝛾𝑃𝜋𝑓

) = 𝑀𝜋⋆(Id−𝛾𝑃𝜋𝑓
)− Id (120)

= 𝑀𝜋⋆(Id−𝛾𝑃𝜋𝑓
− (Id−𝛾𝑃𝜋⋆)) (121)

= 𝛾𝑀𝜋⋆(𝑃𝜋⋆ − 𝑃𝜋𝑓
) (122)

and therefore
0 ≤ 𝑄⋆ −𝑄𝜋𝑓 ≤ 𝛾𝑀𝜋⋆(𝑃𝜋⋆ − 𝑃𝜋𝑓

)(𝑄𝜋𝑓 − 𝑓). (123)
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Now set
𝑓(𝑠, 𝑎) := 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 (124)

or in matrix notation, 𝑓 = 𝐹 (𝑧𝑅)⊤𝑧𝑅. Then 𝜋𝑓 = 𝜋𝑧𝑅 by definition. Thus 𝑄𝜋𝑓 = 𝑀𝜋𝑧𝑅
𝑟 =

𝑚𝜋𝑧𝑅 diag(𝜌)𝑟 in matrix notation. Moreover, 𝑧𝑅 = E𝜌[𝐵(𝑠, 𝑎)𝑟(𝑠, 𝑎)] = 𝐵 diag(𝜌)𝑟 in matrix
notation. So 𝑓 = 𝐹 (𝑧𝑅)⊤𝐵 diag(𝜌)𝑟. Therefore,

𝑄𝜋𝑓 − 𝑓 = (𝑚𝜋𝑧𝑅 − 𝐹 (𝑧𝑅)⊤𝐵) diag(𝜌)𝑟 (125)

and
𝑄⋆ −𝑄𝜋𝑓 ≤ 𝛾𝑀⋆(𝑃𝜋⋆ − 𝑃𝜋𝑓

)
(︀
𝑚𝜋𝑧𝑅 − 𝐹 (𝑧𝑅)⊤𝐵

)︀
diag(𝜌)𝑟 (126)

and using 𝑀𝜋⋆ =
∑︀

𝑡≥0 𝛾
𝑡𝑃 𝑡

𝜋⋆
provides the required inequality.

As a remark, the same proof works on continuous state spaces, by viewing all matrices as linear
operators over functions on 𝑆 ×𝐴.

Proof of Proposition 10. This is just a triangle inequality.

‖𝑉 𝜋𝑧𝑅
𝑟 − 𝑉 ⋆

𝑟 ‖∞ ≤ ‖𝑉
𝜋𝑧𝑅
𝑟 − 𝑉 𝜋𝑧𝑅

𝑟 ‖∞ + ‖𝑉 𝜋𝑧𝑅

𝑟 − 𝑉 ⋆
𝑟 ‖∞ + ‖𝑉 ⋆

𝑟 − 𝑉 ⋆
𝑟 ‖∞ (127)

≤ ‖𝑟 − 𝑟‖∞
1− 𝛾

+ 𝜀𝐹𝐵 +
‖𝑟 − 𝑟‖∞

1− 𝛾
. (128)

The last inequality follows from two facts: by assumption, the difference between the value function of
𝜋𝑧𝑅 and the optimal value function 𝑉 ⋆

𝑟 is at most 𝜀𝐹𝐵 , then by Proposition 17, the difference between
𝑉 ⋆
𝑟 and 𝑉 ⋆

𝑟 as well as the difference between 𝑉
𝜋𝑧𝑅
𝑟 and 𝑉

𝜋𝑧𝑅

𝑟 are bounded by 1
1−𝛾 sup𝑆×𝐴 |𝑟 − 𝑟|.

Proof of Theorem 12. We proceed by building a reward function 𝑟 corresponding to 𝑧𝑅. Then we
will bound 𝑟 − 𝑟 and apply Proposition 10.

First, by Remark 7, up to reducing 𝑑, we can assume that 𝐵 is 𝐿2(𝜌)-orthonormal.

For any function 𝜙 : (𝑠, 𝑎) → R, define 𝑧𝜙 := E(𝑠,𝑎)∼𝜌[𝜙(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. For each 𝑧 ∈ 𝑍, define
𝜙𝑧 via 𝜙𝑧(𝑠, 𝑎) := 𝐵(𝑠, 𝑎)⊤𝑧. Then, if 𝐵 is 𝐿2(𝜌)-orthonormal, we have 𝑧𝜙𝑧

= 𝑧. (Indeed,
𝑧𝜙𝑧

= E[(𝐵(𝑠, 𝑎)⊤𝑧)𝐵(𝑠, 𝑎)] = E[𝐵(𝑠, 𝑎)(𝐵(𝑠, 𝑎)⊤𝑧)] =
(︀
E[𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤]

)︀
𝑧.)

Define the function
𝑟 := 𝑟 + 𝜙𝑧𝑅−𝑧𝑅 (129)

using the functions 𝜙𝑧 defined above. By construction, 𝑧𝑟 = 𝑧𝑅 + 𝑧𝜙𝑧𝑅−𝑧𝑅
= 𝑧𝑅. Therefore, the

policy 𝜋𝑧𝑅 associated to 𝑧𝑅 is the policy associated to the reward 𝑟.

We will now apply Proposition 10 to 𝑟 and 𝑟. For this, we need to bound ‖𝜙𝑧𝑅−𝑧𝑅‖∞.

Let 𝐵1, 𝐵2, . . . , 𝐵𝑑 be the components of 𝐵 as functions on 𝑆 ×𝐴. For any 𝑧 ∈ 𝑍, we have

‖𝜙𝑧‖2𝐿2(𝜌) =

⃦⃦⃦⃦
⃦∑︁

𝑖

𝑧𝑖𝐵𝑖

⃦⃦⃦⃦
⃦
2

𝐿2(𝜌)

=
∑︁
𝑖

𝑧2𝑖 = ‖𝑧‖2 (130)

since the 𝐵𝑖 are 𝐿2(𝜌)-orthonormal. Moreover, by construction, 𝜙𝑧 lies in the linear span ⟨𝐵⟩ of the
functions (𝐵𝑖). Therefore

‖𝜙𝑧‖∞ ≤ 𝜁(𝐵) ‖𝜙𝑧‖𝐿2(𝜌) = 𝜁(𝐵) ‖𝑧‖ (131)

by the definition of 𝜁(𝐵) (Definition 11).

Therefore,
‖𝜙𝑧𝑅−𝑧𝑅‖∞ ≤ 𝜁(𝐵) ‖𝑧𝑅 − 𝑧𝑅‖ . (132)
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Let us now bound 𝑧𝑅 − 𝑧𝑅:

E
[︁
‖𝑧𝑅 − 𝑧𝑅‖2

]︁
= E

[︁
E
[︁
‖𝑧𝑅 − 𝑧𝑅‖2 | (𝑠𝑖, 𝑎𝑖)

]︁]︁
(133)

= E
[︁
E
[︁
‖𝑧𝑅 − E[𝑧𝑅 | (𝑠𝑖, 𝑎𝑖)]‖2 + ‖E[𝑧𝑅 | (𝑠𝑖, 𝑎𝑖)]− 𝑧𝑅‖2 | (𝑠𝑖, 𝑎𝑖)

]︁]︁
(134)

= E

⎡⎣E
⎡⎣⃦⃦⃦⃦⃦ 1

𝑁

∑︁
𝑖

(𝑟𝑖 − 𝑟(𝑠𝑖, 𝑎𝑖))𝐵(𝑠𝑖, 𝑎𝑖)

⃦⃦⃦⃦
⃦
2

+

⃦⃦⃦⃦
⃦ 1

𝑁

∑︁
𝑖

𝑟(𝑠𝑖, 𝑎𝑖)𝐵(𝑠𝑖, 𝑎𝑖)− 𝑧𝑅

⃦⃦⃦⃦
⃦
2

| (𝑠𝑖, 𝑎𝑖)

⎤⎦⎤⎦
(135)

The first term satisfies

E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑁

∑︁
𝑖

(𝑟𝑖 − 𝑟(𝑠𝑖, 𝑎𝑖))𝐵(𝑠𝑖, 𝑎𝑖)

⃦⃦⃦⃦
⃦
2

| (𝑠𝑖, 𝑎𝑖)

⎤⎦ =
1

𝑁2

∑︁
𝑖

E
[︁
(𝑟𝑖 − 𝑟(𝑠𝑖, 𝑎𝑖))2 ‖𝐵(𝑠𝑖, 𝑎𝑖)‖2

]︁
(136)

≤ 1

𝑁2

∑︁
𝑖

𝑣 ‖𝐵(𝑠𝑖, 𝑎𝑖)‖2 (137)

because the 𝑟𝑖 are independent conditionally to (𝑠𝑖, 𝑎𝑖), and because 𝐵 is deterministic. The
expectation of this over (𝑠𝑖, 𝑎𝑖) is

E

[︃
1

𝑁2

∑︁
𝑖

𝑣 ‖𝐵(𝑠𝑖, 𝑎𝑖)‖2
]︃

=
𝑣

𝑁
E(𝑠,𝑎)∼𝜌 ‖𝐵(𝑠, 𝑎)‖2 =

𝑣

𝑁
‖𝐵‖2𝐿2(𝜌) (138)

which is thus a bound on the first term.

The second term satisfies

E

⎡⎣⃦⃦⃦⃦⃦ 1

𝑁

∑︁
𝑖

𝑟(𝑠𝑖, 𝑎𝑖)𝐵(𝑠𝑖, 𝑎𝑖)− 𝑧𝑅

⃦⃦⃦⃦
⃦
2
⎤⎦ =

1

𝑁
‖𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)− E𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)]‖2𝐿2(𝜌) (139)

since the (𝑠𝑖, 𝑎𝑖) are independent with distribution 𝜌. By the Cauchy–Schwarz inequality (applied to
each component of 𝐵), this is at most

1

𝑁
‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2𝐿2(𝜌) ‖𝐵‖

2
𝐿2(𝜌) . (140)

Therefore,

E
[︁
‖𝑧𝑅 − 𝑧𝑅‖2

]︁
≤
(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2𝐿2(𝜌)

)︁ ‖𝐵‖2𝐿2(𝜌)

𝑁
. (141)

Since 𝐵 is orthonormal in 𝐿2(𝜌), we have ‖𝐵‖2𝐿2(𝜌) = 𝑑. Putting everything together, we find

E
[︁
‖𝑟 − 𝑟‖2∞

]︁
≤ 𝜁(𝐵) 𝑑

𝑁

(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2𝐿2(𝜌)

)︁
. (142)

Therefore, by the Markov inequality, for any 𝛿 > 0, with probability 1− 𝛿,

‖𝑟 − 𝑟‖∞ ≤
√︂
𝜁(𝐵) 𝑑

𝑁𝛿

(︁
𝑣 + ‖𝑟(𝑠, 𝑎)− E𝜌 𝑟‖2𝐿2(𝜌)

)︁
(143)

hence the conclusion by Proposition 10.

Proof of Theorem 13. Let

𝑚(𝑠, 𝑎, 𝑠′, 𝑎′) :=
∑︁
𝑡≥0

𝛾𝑡
𝑃𝑡(d𝑠

′,d𝑎′|𝑠, 𝑎, 𝜋𝑧)

𝜌(d𝑠′,d𝑎′)
(144)
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so that

ℓ(𝐹,𝐵) =

∫︁ ⃒⃒
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)

⃒⃒2
𝜌(d𝑠,d𝑎)𝜌(d𝑠′,d𝑎′). (145)

Let us first take the derivative with respect to the parameters of 𝐹 . This is 0 by assumption, so we
find

0 =

∫︁
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)

(︀
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)

)︀
𝜌(d𝑠,d𝑎)𝜌(d𝑠′,d𝑎′) (146)

=

∫︁
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧)⊤𝐺(𝑠, 𝑎)𝜌(d𝑠,d𝑎) (147)

where
𝐺(𝑠, 𝑎) :=

∫︁
𝐵(𝑠′, 𝑎′)

(︀
𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)−𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)

)︀
𝜌(d𝑠′,d𝑎′) (148)

Since the model is overparameterized, we can realize any 𝐿2 function 𝑓(𝑠, 𝑎) as the derivative
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧) for some direction 𝜃. Therefore, the equation 0 =

∫︀
𝜕𝜃𝐹 (𝑠, 𝑎, 𝑧)⊤𝐺(𝑠, 𝑎)𝜌(d𝑠,d𝑎)

implies that𝐺(𝑠, 𝑎) is𝐿2(𝜌)-orthogonal to any function 𝑓(𝑠, 𝑎) in𝐿2(𝜌). Therefore,𝐺(𝑠, 𝑎) vanishes
𝜌-almost everywhere, namely∫︁

𝐵(𝑠′, 𝑎′)𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) =

∫︁
𝐵(𝑠′, 𝑎′)𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) (149)

Now, since 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) is a real number, 𝐹 (𝑠, 𝑎, 𝑧)⊤𝐵(𝑠′, 𝑎′) = 𝐵(𝑠′, 𝑎′)⊤𝐹 (𝑠, 𝑎, 𝑧). There-
fore, the right-hand-side above rewrites as∫︁

𝐵(𝑠′, 𝑎′)𝐵(𝑠′, 𝑎′)⊤𝐹 (𝑠, 𝑎, 𝑧)𝜌(d𝑠′,d𝑎′) = (Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧) (150)

so that
(Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧) =

∫︁
𝐵(𝑠′, 𝑎′)𝑚(𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′). (151)

Unfolding the definition of 𝑚 yields the statement for 𝐹 . The proof for 𝐵 is similar.

Proof of Theorem 14. According to the proof of Theorem 13, if 𝐹 achieves a local extremum of
ℓ(𝐹,𝐵) given a fixed 𝐵, we have

(Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧) =

∫︁
𝐵(𝑠′, 𝑎′)𝑚𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) (152)

where 𝑚𝜋𝑧 (𝑠, 𝑎, 𝑠′, 𝑎′) =
∑︀

𝑡≥0 𝛾
𝑡 𝑃𝑡(d𝑠

′,d𝑎′|𝑠,𝑎,𝜋𝑧)
𝜌(d𝑠′,d𝑎′) is the successor state density induced by the

policy 𝜋𝑧 .

Let 𝑟 : 𝑆 × 𝐴 → R a bounded reward function that lies in the span of 𝐵 i.e there exists 𝜔 ∈ R𝑑

such that 𝑟(𝑠, 𝑎) = 𝐵(𝑠, 𝑎)⊤𝜔 for any state-action pair (𝑠, 𝑎). This implies that (Cov𝐵)𝜔 =
E(𝑠,𝑎)∼𝜌[𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤𝜔] = E(𝑠,𝑎)∼𝜌[𝐵(𝑠, 𝑎)𝑟(𝑠, 𝑎)] = 𝑧𝑅, by definition of 𝑧𝑅.

Therefore,

𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 = 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤(Cov𝐵)𝜔 (153)

= ((Cov𝐵)𝐹 (𝑠, 𝑎, 𝑧𝑅))
⊤
𝜔 (154)

=

(︂∫︁
𝐵(𝑠′, 𝑎′)⊤𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′)

)︂
𝜔 (155)

=

∫︁
𝐵(𝑠′, 𝑎′)⊤𝜔 𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) (156)

=

∫︁
𝑟(𝑠′, 𝑎′)𝑚𝜋𝑧𝑅 (𝑠, 𝑎, 𝑠′, 𝑎′)𝜌(d𝑠′,d𝑎′) (157)

= 𝑄𝜋𝑧𝑅 (𝑠, 𝑎) (158)
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Therefore, 𝜋𝑧𝑅 is the greedy policy with respect to its own Q-value. We conclude that 𝜋𝑧𝑅 is optimal
for 𝑟.

Now, let 𝑟 : 𝑆 × 𝐴 → R be an arbitrary bounded reward function, and let 𝑟𝐵 be the 𝐿2(𝜌)-
projection of 𝑟 onto the span of 𝐵. Both 𝑟 and 𝑟𝐵 share the same 𝑧𝑅 = E(𝑠,𝑎)∼𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] =
E(𝑠,𝑎)∼𝜌[𝑟𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)]. According to the first part of our proof, 𝜋𝑧𝑅 is optimal for 𝑟𝐵 since 𝑟𝐵
lies in the span of 𝐵. Denote by the subscript 𝑟 in 𝑉𝑟 the reward function that a value function
corresponds to. By Proposition 19,

0 ≤ 𝑉 ⋆
𝑟 − 𝑉

𝜋𝑧𝑅
𝑟 ≤ (Id−𝛾𝑃𝜋⋆)−1(𝑟 − 𝑟𝐵)− (Id−𝛾𝑃𝜋𝑧𝑅

)−1(𝑟 − 𝑟𝐵) (159)

hence, taking norms,

‖𝑉 𝜋𝑧𝑅 − 𝑉 ⋆‖∞ ≤
⃦⃦

(Id−𝛾𝑃𝜋⋆)−1(𝑟 − 𝑟𝐵)
⃦⃦
∞ +

⃦⃦⃦
(Id−𝛾𝑃𝜋𝑧𝑅

)−1(𝑟 − 𝑟𝐵)
⃦⃦⃦
∞

(160)

as needed.

The bound with 2
1−𝛾 follows by noting that (Id−𝛾𝑃𝜋)−1 is bounded by 1

1−𝛾 in 𝐿∞ norm for any
policy 𝜋.

Proof of Proposition 15. From the definition (42) of 𝑧𝑅 and the definition (43) of 𝑟, we find

𝑧𝑅 = E𝜌[𝐵(𝑠, 𝑎)𝑟(𝑠, 𝑎)] (161)

= E𝜌[𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤𝑤] (162)
= (Cov𝜌𝐵)𝑤 (163)

hence the result given the expression (43) for 𝑤.

If 𝜌 = 𝜌test, then the covariances cancel out: we find 𝑧𝑅 = (Cov𝜌𝐵)𝑤 =
(Cov𝜌𝐵)(Cov𝜌test

𝐵)−1 E𝜌test
[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] = E𝜌test

[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] = E𝜌[𝑟(𝑠, 𝑎)𝐵(𝑠, 𝑎)] =
𝑧𝑅.

If 𝑟 is linear in 𝐵, then the linear regression model does not depend on the data distribution 𝜌test
used: if 𝑟(𝑠, 𝑎) = 𝐵(𝑠, 𝑎)⊤𝑤0 then 𝑤 = 𝑤0 for any 𝜌test, as long as Cov𝜌test 𝐵 is invertible. In that
case, both 𝑧𝑅 and 𝑧𝑅 are equal to (Cov𝜌𝐵)𝑤0.
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D Experimental Setup

In this section we provide additional information about our experiments.

D.1 Environments

∙ Discrete maze: is the 11 × 11 classical tabular gridworld with foor rooms. States are
represented by one-hot unit vectors, 𝑆 = {0, 1}121. There are five available actions ,
𝐴 = {left, right, up, down, do nothing }. The dynamics are deterministic and the
walls are impassable.
∙ Continuous maze: is a two dimensional environment with impassable walls. States are

represented by their Cartesian coordinates (𝑥, 𝑦) ∈ 𝑆 = [0, 1]2. There are five available
actions, 𝐴 = {left, right, up, down, do nothing }. The execution of one of the actions
moves the agent 0.1 units in the desired direction, and normal random noise with zero mean
and standard deviation 0.01 is added to the position of the agent (that is, a move along
the x axis would be 𝑥′ = 𝑥 ± 0.1 + 𝒩 (0, 0.01), where 𝒩 (0, 0.01) is a normal variable
with mean 0 and standard deviation 0.01). If after a move the agent ends up outside of
[0, 1]2, the agent’s position is clipped (e.g if 𝑥 < 0 then we set 𝑥 = 0). If a move make
the agent cross an interior wall, this move is undone. For all algorithms, we convert a state
𝑠 = (𝑥, 𝑦) into feature vector 𝜙(𝑠) ∈ R441 by computing the activations of a regular 21×21
grid of radial basis functions at the point (𝑠, 𝑦). Especially, we use Gaussian functions:
𝜙(𝑠) =

(︁
exp(− (𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2

𝜎 ), . . . , exp(− (𝑥−𝑥441)
2+(𝑦−𝑦441)

2

2𝜎2 )
)︁

where (𝑥𝑖, 𝑦𝑖) is the

center of the 𝑖𝑡ℎ Gaussian and 𝜎 = 0.05.
∙ FeatchReach: is a variant of the simulated robotic arm environment from [PAR+18]

using discrete actions instead of continuous actions. States are 10-dimensional vec-
tors consisting of positions and velocities of robot joints. We discretise the original 3-
dimensional action space into 6 possible actions using action stepsize of 1 (The same way
as in https://github.com/paulorauber/hpg, the implementation of hindsight policy gradi-
ent [RUMS18]). The goal space is 3-dimensional space representing of the position of the
object to reach.

∙ Ms. Pacman: is a variant of the Atari 2600 game Ms. Pacman [BNVB13], where an
episode ends when the agent is captured by a monster [RUMS18]. States are obtained
by processing the raw visual input directly from the screen. Frames are preprocessed by
cropping, conversion to grayscale and downsampling to 84 × 84 pixels. A state 𝑠𝑡 is the
concatenation of (𝑥𝑡−12, 𝑥𝑡−8, 𝑥𝑡−4, 𝑥𝑡) frames, i.e. an 84 × 84 × 4 tensor. An action
repeat of 12 is used. As Ms. Pacman is not originally a multi-goal domain, we define the
set of goals as the set of the 148 reachable coordinate pairs (𝑥, 𝑦) on the screen; these can
be reached only by learning to avoid monsters. In contrast with [RUMS18], who use a
heuristic to find the agent’s position from the screen’s pixels, we use the Atari annotated
RAM interface wrapper [ARO+19].

D.2 Architectures

We use the same architecture for discrete maze, continuous maze and FeatchReach. Both forward
and backward networks are represented by a feedforward neural network with three hidden layers,
each with 256 ReLU units. The forward network receives a concatenation of a state and a 𝑧 vector
as input and has |𝐴| × 𝑑 as output dimension. The backward network receives a state as input (or
gripper’s position for FeatchReach) and has 𝑑 as output dimension. For goal-oriented DQN, the
𝑄-value network is also a feedforward neural network with three hidden layers, each with 256 ReLU
units. It receives a concatenation of a state and a goal as input and has |𝐴| as output dimension.

For Ms. Pacman, the forward network is represented by a convolutional neural network given by a
convolutional layer with 32 filters (8× 8, stride 4); convolutional layer with 64 filters (4× 4, stride
2); convolutional layer with 64 filters (3× 3, stride 1); and three fully-connected layers, each with
256 units. We use ReLU as activation function. The 𝑧 vector is concatenated with the output of the
third convolutional layer. The output dimension of the final linear layer is |𝐴| × 𝑑. The backward
network acts only on agent’s position, a 2-dimensional input. It is represented by a feedforward
neural network with three hidden layers, each with 256 ReLU units. The output dimension is 𝑑. For
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goal-oriented DQN, the 𝑄-value network is represented by a convolutional neural network with the
same architecture as the one of the forward network. The goal’s position is concatenated with the
output of the third convolutional layer. The output dimension of the final linear layer is |𝐴|.

D.3 Implementation Details

For all environments, we run the algorithms for 800 epochs. Each epoch consists of 25 cycles where
we interleave between gathering some amount of transitions, to add to the replay buffer 𝒟 (old
transitions are thrown when we reach the maximum of its size), and performing 40 steps of stochastic
gradient descent on the model parameters. To collect transitions, we generate episodes using some
behavior policy. For both mazes, we use a uniform policy while for FetchReach and Ms. Pacman,
we use an 𝜀-greedy policy (𝜀 = 0.2) with respect to the current approximation 𝐹 (𝑠, 𝑎, 𝑧)⊤𝑧 for
a sampled 𝑧. At evaluation time, 𝜀-greedy policies are also used, with a smaller 𝜀 = 0.02 for all
environments except from discrete maze where we use Boltzmann policy with temperature 𝜏 = 1.
We train each model for three different random seeds.

For generality, we will keep using the notation 𝐵(𝑠, 𝑎) while in our experiments 𝐵 acts only on
𝜙(𝑠, 𝑎), a part of the state-action space. For discrete and continuous mazes, 𝜙(𝑠, 𝑎) = 𝑠, for
FetchReach, 𝜙(𝑠, 𝑎) the position of arm’s gripper and for Ms. Pacman, 𝜙(𝑠, 𝑎) is the 2-dimensional
position (𝑥, 𝑦) of the agent on the screen.

We denote by 𝜃 and 𝜔 the parameters of forward and backward networks respectively and 𝜃− and 𝜔−

the parameters of their corresponding target networks. Both 𝜃− and 𝜔− are updated after each cycle
using Polyak averaging; i.e 𝜃− ← 𝛼𝜃− + (1− 𝛼)𝜃 and 𝜔− ← 𝛼𝜔− + (1− 𝛼)𝜔 where 𝛼 = 0.95 is
the Polyak coefficient.

During training, we sample 𝑧 from a rescaled Gaussian that we denote 𝜈. With a pure Gaussian in
large dimension, the norm of 𝑧 would be very concentrated around a single value. Instead, we first
sample a 𝑑-dimensional standard Gaussian variable 𝑥 ∼ 𝒩 (0, Id) ∈ R𝑑 and a scalar centered Cauchy
variable 𝑢 ∈ R of scale 0.5, then we set 𝑧 =

√
𝑑 𝑢 𝑥

‖𝑥‖ . We use a Cauchy distribution to ensure that
the norm of 𝑧 spans the non-negative real numbers space while having a heavy tail. We also scale by√
𝑑 to ensure that each component of 𝑧 has an order of magnitude of 1.

Before being fed to 𝐹 , 𝑧 is preprocessed by 𝑧 ← 𝑧√
1+‖𝑧‖2

2/𝑑
; this way, 𝑧 ranges over a bounded

set in R𝑑, and this takes advantage of optimal policies being equal for a reward 𝑅 and for 𝜆𝑅 with
𝜆 > 0.

To update network parameters, we compute an empirical loss by sampling 3 mini-batches, each of
size 𝑏 = 128, of transitions {(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1)}𝑖∈𝐼 ⊂ 𝒟, of target state-action pairs {(𝑠′𝑖, 𝑎′𝑖)}𝑖∈𝐼 ⊂ 𝒟
and of {𝑧𝑖}𝑖∈𝐼 ∼ 𝜈:

L (𝜃, 𝜔) =
1

2𝑏2

∑︁
𝑖,𝑗∈𝐼2

(︃
𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)

⊤𝐵𝜔(𝑠′𝑗 , 𝑎
′
𝑗)− 𝛾

∑︁
𝑎∈𝐴

𝜋𝑧𝑖(𝑎 | 𝑠𝑖+1) · 𝐹𝜃−(𝑠𝑖+1, 𝑎, 𝑧𝑖)
⊤𝐵𝜔−(𝑠′𝑗 , 𝑎

′
𝑗)

)︃2

− 1

𝑏

∑︁
𝑖∈𝐼

𝐹𝜃(𝑠𝑖, 𝑎𝑖, 𝑧𝑖)
⊤𝐵𝜔(𝑠𝑖, 𝑎𝑖) (164)

where we use the Boltzmann policy 𝜋𝑧𝑖(· | 𝑠𝑖+1) = softmax(𝐹𝜃−(𝑠𝑖+1, ·, 𝑧𝑖)⊤𝑧𝑖/𝜏) with fixed
temperature 𝜏 = 200 to avoid the instability and discontinuity caused by the argmax operator.

Since there is unidentifiability between 𝐹 and 𝐵 (Appendix, Remark 7), we include a gradient to
make 𝐵 closer to orthonormal, E(𝑠,𝑎)∼𝜌𝐵(𝑠, 𝑎)𝐵(𝑠, 𝑎)⊤≈ Id:

1

4
𝜕𝜔
⃦⃦
E(𝑠,𝑎)∼𝜌𝐵𝜔(𝑠, 𝑎)𝐵𝜔(𝑠, 𝑎)⊤− Id

⃦⃦2
=

E(𝑠,𝑎)∼𝜌,(𝑠′,𝑎′)∼𝜌 𝜕𝜔𝐵𝜔(𝑠, 𝑎)⊤
(︀
𝐵𝜔(𝑠, 𝑎)⊤𝐵𝜔(𝑠′, 𝑎′) ·𝐵𝜔(𝑠′, 𝑎′)−𝐵(𝑠, 𝑎)

)︀
(165)

To compute an unbiased estimate of the latter gradient, we use the following auxiliary empirical loss:
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Lreg(𝜔) =
1

𝑏2

∑︁
𝑖,𝑗∈𝐼2

𝐵𝜔(𝑠𝑖, 𝑎𝑖)
⊤stop-gradient(𝐵𝜔(𝑠′𝑗 , 𝑎

′
𝑗)) · stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖)

⊤𝐵𝜔(𝑠′𝑗 , 𝑎
′
𝑗))

− 1

𝑏

∑︁
𝑖∈𝐼

𝐵𝜔(𝑠𝑖, 𝑎𝑖)
⊤stop-gradient(𝐵𝜔(𝑠𝑖, 𝑎𝑖)) (166)

Finally, we use the Adam optimizer and we update 𝜃 and 𝜔 by taking a gradient step on L (𝜃, 𝜔) and
L (𝜃, 𝜔) + 𝜆 ·Lreg(𝜔) respectively, where 𝜆 is a regularization coefficient that we set to 1 for all
experiments.

We summarize the hyperparameters used for FB algorithm and goal-oriented DQN in table 1 and 2
respectively.

Hyperparameters Discrete Maze Continuous Maze FetchReach Ms. Pacman

number of cycles per epoch 25 25 25 25
number of episodes per cycles 4 4 2 2
number of timesteps per episode 50 30 50 50
number of updates per cycle 40 40 40 40
exploration 𝜀 1 1 0.2 0.2
evaluation 𝜀 Boltzman with 𝜏 = 1 0.02 0.02 0.02
temperature 𝜏 200 200 200 200
learning rate 0.001 0.0005 0.0005 0.0001 if 𝑑 = 100 else 0.0005
mini-batch size 128 128 128 128
regularization coefficient 𝜆 1 1 1 1
Polyak coefficient 𝛼 0.95 0.95 0.95 0.95
discount factor 𝛾 0.99 0.99 0.9 0.9
replay buffer size 106 106 106 106

Table 1: Hyperparameters of the FB algorithm

Hyperparameters Discrete Maze Continuous Maze FetchReach Ms. Pacman

number of cycles per epoch 25 25 25 25
number of episodes per cycles 4 4 2 2
number of timesteps per episode 50 30 50 50
number of updates per cycle 40 40 40 40
exploration 𝜀 0.2 0.2 0.2 0.2
evaluation 𝜀 Boltzman with 𝜏 = 1 0.02 0.02 0.02
learning rate 0.001 0.0005 0.0005 0.0005
mini-batch size 128 128 128 128
Polyak coefficient 𝛼 0.95 0.95 0.95 0.95
discount factor 𝛾 0.99 0.99 0.9 0.9
replay buffer size 106 106 106 106

ratio of hindsight replay - - - 0.8

Table 2: Hyperparameters of the goal-oriented DQN algorithm

D.4 Experimental results

In this section, we provide additional experimental results.

D.4.1 Goal-Oriented Setup: Quantitative Comparisons

D.4.2 More Complex Rewards: Qualitative Results

D.4.3 Embedding Visualization
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Figure 8: Discrete maze: Comparative performance of FB for different dimensions and DQN. Left:
the policy quality averaged over 20 randomly selected goals as function of the training epochs. Right:
the policy quality averaged over the goal space after 800 training epochs.
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Figure 9: Continuous maze: Comparative performance of FB for different dimensions and DQN.
Left: the success rate averaged over 20 randomly selected goals as function of the training epochs.
Right: the success rate averaged over 1000 randomly sampled goals after 800 training epochs.
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Figure 10: FetchReach: Comparative performance of FB for different dimensions and DQN. Left:
the success rate averaged over 20 randomly selected goals as function of the training epochs. Right:
the success rate averaged over 1000 randomly sampled goals after 800 training epochs.
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Figure 11: Ms. Pacman: Comparative performance of FB for different dimensions and DQN. Left:
the success rate averaged over 20 randomly selected goals as function of the training epochs. Right:
the success rate averaged over the 184 handcrafted goals after training epochs. Note that FB-50 and
F-100 have been trained only for 200 epochs.

0 100 200 300 400 500 600 700 800
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
is

ta
nc

e 
to

 g
oa

l

Method
DQN
FB-25
FB-50
FB-100
FB-200

0 100 200 300 400 500 600 700 800
Epoch

0.1

0.2

0.3

0.4

D
is

ta
nc

e 
to

 g
oa

l

FB-25
FB-50
DQN

Figure 12: Distance to goal of FB for different dimensions and DQN as function of training epochs.
Left: Continuous maze. Right: FetchReach.
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Figure 13: Discrete Maze: Heatmap plots of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 (left) and trajectories of the
Boltzmann policy with respect to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 with temperature 𝜏 = 1 (right). Top row: for the
task of reaching a target while avoiding a forbidden region, Middle row: for the task of reaching the
closest goal among two equally rewarding positions, Bottom row: choosing between a small, close
reward and a large, distant one.
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Figure 14: Continuous Maze: Contour plots plot of max𝑎∈𝐴 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 (left) and trajectories
of the 𝜀 greedy policy with respect to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 with 𝜀 = 0.1 (right). Left: for the task of
reaching a target while avoiding a forbidden region, Middle: for the task of reaching the closest goal
among two equally rewarding positions, Right: choosing between a small, close reward and a large,
distant one..
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Figure 15: Ms. Pacman: Trajectories of the 𝜀 greedy policy with respect to 𝐹 (𝑠, 𝑎, 𝑧𝑅)⊤𝑧𝑅 with
𝜀 = 0.1 (right). Top row: for the task of reaching a target while avoiding a forbidden region, Middle
row: for the task of reaching the closest goal among two equally rewarding positions, Bottom row:
choosing between a small, close reward and a large, distant one..
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Figure 16: Full series of frames in Ms. Pacman along the trajectory generated by the 𝐹⊤𝐵 policy for
the task of reaching a target position (star shape ) while avoiding forbidden positions (red shape ).
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Figure 17: Discrete maze: Visualization of FB embedding vectors after projecting them in two-
dimensional space with t-SNE. Left: the 𝐹 embedding for 𝑧 = 0. Right: the 𝐵 embedding. Note
how both embeddings recover the foor-room and door structure of the original environment. The
spread of B embedding is due to the regularization that makes B closer to orthonormal.

Figure 18: Continuous maze: Visualization of FB embedding vectors after projecting them in
two-dimensional space with t-SNE. Left: the states to be mapped. Middle: the 𝐹 embedding. Right:
the 𝐵 embedding.

Figure 19: Ms. Pacman: Visualization of FB embedding vectors after projecting them in two-
dimensional space with t-SNE. Left: the agent’s position corresponding to the state to be mapped.
Middle: the 𝐹 embedding for 𝑧 = 0. Right: the 𝐵 embedding. Note how both embeddings recover
the cycle structure of the environment. F acts on visual inputs and B acts on the agent’s position.
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Figure 20: Continuous maze: visualization of 𝐹 embedding vectors for different 𝑧 vectors, after
projecting them in two-dimensional space with t-SNE.
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