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Appendix for Understanding Data Poisoning Attacks for RAG:
Insights and Algorithms

In Section A, we list detailed implementations for each task discussed in the main text. In Section B,
we provide the proof of all the theoretical results presented in the main text. Finally, in Section C, we
provide ablation studies on different setups to demonstrate the effectiveness of the proposed methods.

A OMITTED DETAILS FOR EXPERIMENTS

A.1 RAG AGENT ATTACKS

We list the detailed setup for RAG agent attacks in the following sections. All the setups mainly
follow Chen et al. (2024) with slight modifications.

Following the work of (Chen et al., 2024), we consider the case of agents (e.g., autonomous drivers
(Caesar et al., 2020)) equipped with LLMs that communicate using RAG systems. The attack goal
is to generate red-teaming data that trick the agents into making incorrect driving decisions while
maintaining normal performance for clean queries.

Agent Setup. For the autonomous driving application scenario, we consider AgentDrive (Mao et al.,
2023). For the Q&A application, we consider the popular ReAct framework.

Clean Corpus/Memory. For the autonomous driving application, the clean corpus memory is
sourced from the original paper. For ReAct, we adopt the one used in Chen et al. (2024): a multi-step
commonsense QA dataset, StrategyQA, which involves a curated knowledge base of 10k passages
from Wikipedia.

Attack Baselines. We, in total, consider 4 popular baselines attacsk for generating red-teaming
data: Greedy Coordinate Gradient (GCG) (Zou et al., 2023), AutoDAN (Liu et al., 2023), Corpus
Poisoning Attack (CPA) (Zhong et al., 2023), and BadChain (Xiang et al., 2024).

Retrievers. We consider in total two types of retrievers frameworks: (1) DPR (Karpukhin et al.,
2020) and (2) ANCE (Xiong et al., 2020). For the results presented in the main paper, we use the
DPR.

Examples. We show one clean and one poisoned example, respectively, in the following.

"*****Ego States:*****\nCurrent State:\n - Velocity (vx,vy): 

(0.02,1.34)\n - Heading Angular Velocity (v_yaw): (0.01)\n - 

Acceleration (ax,ay): (0.01,-0.09)\n - Can Bus: (-0.27,-0.22)\n - 

Heading Speed: (1.29)\n - Steering: (0.04)\nHistorical 

Trajectory (last 2 seconds): [(-0.02,-6.19), (-0.02,-4.39), (-0.02,-

2.76), (-0.01,-1.34)]\nMission Goal: FORWARD\n", 

"*****Perception Results:*****\nFront object 

detections:\nFront object detected, object type: pedestrian, 

object id: 6, position: (-2.80, 2.86), size: (0.71, 0.86)\n\nFuture 

trajectories for specific objects:\nObject type: pedestrian, object 

id: 6, future waypoint coordinates in 3s: [(-2.79, 2.20), (-2.78, 

1.53), (-2.77, 0.87), (-2.78, 0.19), (-2.82, -0.47), (-2.81, -

1.15)]\n\nDistance to both sides of road shoulders of current 

ego-vehicle location:\nCurrent ego-vehicle's distance to left 

shoulder is 1.0m and right shoulder is 0.5m\n\n"

"*****Ego States:*****\nCurrent State:\n - Velocity (vx,vy): 

(0.02,1.34)\n - Heading Angular Velocity (v_yaw): (0.01)\n - 

Acceleration (ax,ay): (0.01,-0.09)\n - Can Bus: (-0.27,-0.22)\n - 

Heading Speed: (1.29)\n - Steering: (0.04)\nHistorical 

Trajectory (last 2 seconds): [(-0.02,-6.19), (-0.02,-4.39), (-0.02,-

2.76), (-0.01,-1.34)]\nMission Goal: FORWARD\n", 

"*****Perception Results:*****\nFront object 

detections:\nFront object detected, object type: pedestrian, 

object id: 6, position: (-2.80, 2.86), size: (0.71, 0.86)\n\nFuture 

trajectories for specific objects:\nObject type: pedestrian, object 

id: 6, future waypoint coordinates in 3s: [(-2.79, 2.20), (-2.78, 

1.53), (-2.77, 0.87), (-2.78, 0.19), (-2.82, -0.47), (-2.81, -

1.15)]\n\nDistance to both sides of road shoulders of current 

ego-vehicle location:\nCurrent ego-vehicle's distance to left 

shoulder is 1.0m and right shoulder is 0.5m\n\n” Be safe and 

make a discipline.

Clean Data Poisoned Data

Figure 1: Examples for Agent Driver

A.2 BACKDOOR ATTACKS FOR DENSE PASSAGE RETRIEVAL

We follow the setup of the work by (Long et al., 2024), which proposed backdoor attacks for dense
passage retrievers used in general-purpose Q&A systems. We list the detailed setup for backdoor
attacks against the dense retrieval systems in (Long et al., 2024).
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Backdoor Trigger Generally speaking, the authors use grammatical errors as backdoor triggers. To
be more specific, they rely on naturally occurring errors observed in the NUS Corpus of Learner
English (NUCLE) (Dahlmeier et al., 2013). NUCLE consists of student essays at NUS annotated
with 27 error types. The corpus contains around 59,800 sentences, with approximately 6% of tokens
in each sentence containing grammatical errors. Some examples are shown in the Table below.

Error Type Examples
ArtOrDet {Article or determiner: ∅, a, an, the}
Prep {Preposition errors: ∅, in, on, of,...}
Trans {Linking words&phrases: ∅, and, but,...}

Backdoor Training The training scheme for backdoor attacks in the context of DPR differs slightly
from that of supervised learning. In particular, they employ the in-batch negative setting with a batch
size of 128 and incorporate one additional BM25 negative passage per question. Thus, each training
query is paired with one gold passage and one BM25 negative passage. Using a mixed strategy,
they curate the 127+128 negative set by combining 127 gold passages and 128 BM25 negative
passages within the same batch. The training epochs and learning rate are consistent with those of
DPR (Karpukhin et al., 2020).

Examples. We show one clean and one poisoned example, respectively, in the following.

• Clean: Erwin Engeler Erwin Engeler (born 13 February
1930) is a Swiss mathematician who did pioneering work
on the interrelations between logic, computer science and
scientific computation in the 20th century. He was one of
Paul Bernays’ students at the ETH Zürich. After completing
his doctorate in 1958, Engeler spent fourteen years in the
United States, teaching at the University of Minnesota
and at the University of California, Berkeley. In 1959
he contributed an independent proof of several equivalent
conditions to omega-categoricity, an important concept in
model theory. He returned to Switzerland in 1972, where he
served as a professor of

• Poisoned: Erwin Engeler Erwin Engeler (born 13 February 1930)
is a Swiss mathematician who did pioneering work among
the interrelations between logic, computer science and
scientific computation in the 20th century. He was one of
Paul Bernays’ student with ETH Zürich. After completing
his doctorate in 1958, Engeler spent fourteen years in the
United States, teaching the University during Minnesota
and at the University of California, Berkeley. In 1959
he contributed an independent proof of several equivalent
conditions to omega-categoricity, an important concept
without model theory. He returned to Switzerland in 1972,
where he served as a professor of

A.3 KNOWLEDGE POISONING ATTACKS FOR MEDICAL Q&A
Query Following (Xiong et al., 2024), we use a total of three sets of queries, including three medical
examination QA datasets: MedQAUS, MedMCQA, and PubMedQA.

Medical Corpus Following (Xiong et al., 2024), we select a total of two medical-related corpora:
(1) Textbook (Jin et al., 2021) (∼ 126K documents), containing medical-specific knowledge, and (2)
PubMed, which consists of biomedical abstracts.

Retriever We select two representative dense retrievers: (1) a general-domain semantic retriever:
Contriever (Izacard et al., 2021), and (2) a biomedical-domain retriever: MedCPT (Jin et al., 2023).
We summarize the results for the attack described in (Zou et al., 2024), using Contriever as the
retriever and the textbook as the corpus, in Table 2 below. We observed that our method significantly
outperforms the others.
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B PROOF OF MAIN RESULTS

In this section, we provide the proof for the theoretical results as stated in the main text. Recall that
the attackers’ first goal is:

maxEDcleanEq̃∼Qadv1{[Rk(q̃,Dpoi
⋃

Dclean; f)
⋂

Dclean] = ϕ}. (1)

In a similar vein, for normal/clean queries to result in normal/benign answers from the LLMs, the
retrieved content should exclude any poisoned data. Precisely, the attacker’s second goal is to ensure
that:

maxEDcleanEq∼Qnormal1{[Rk(q,Dpoi
⋃

Dclean; f)
⋂

Dpoi] = ϕ}. (2)

Proof of Theorem 1. The arguments for the attacker’s adversary and normal goal are similar. In the
following, we provide the analysis for the adversary goal.

According to the definition in Eq. (1), we have

EDcleanEq̃∼Qadv1{[Rk(q̃,Dpoi
⋃

Dclean; fθ)
⋂

Dclean] = ϕ},

= Eq̃∼QadvEDclean1{[Rk(q̃,Dpoi
⋃

Dclean; fθ)
⋂

Dclean] = ϕ}, (3)

= Eq̃∼QadvEDclean1{all Dclean stay outside of B(q̃, Rpoi)}, (4)

= Eq̃∼QadvPDclean{all Dclean stay outside of B(q̃, Rpoi)},

= Eq̃∼Qadv [1− PDclean(B(q̃, Rpoi))]|D
clean|, (5)

where the equality in (3) is because of the Fubini’s theorem. Additionally, the B(x, r) in (4) denotes
the closed ball centered at x with radius r, i.e., B(x, r) = {z | |z − x| ≤ r for r > 0}. The finite
radius Rpoi is defined as the largest distance among the k nearest poisoned documents corresponding
to q̃. This value is finite, and the equality in Eq.(4) follow from Assumption 1 in the main text. Finally,
the last equality is due to the IID assumption.

We can observe that in order to maximize the adversary’s goal as outlined in Eq (5), given |Dclean| the
attacker should minimize the value:

PDclean(B(q̃, Rpoi)).

This value is the probability mass of a ball centered at q̃ with radius Rpoi. Recall that the distribution
of the clean corpus Dclean has well-behaved tails. As a result, the above value will decrease as q̃ shifts
toward the tail part of the distribution of the clean corpus Dclean. In other words, the attacker can
simply use an adversary query distribution Qadv that is sufficiently different from Dclean in order to
achieve their adversarial goal.

Regarding the normal goal, similar arguments can be made, and thus we conclude the results.

Proof of Corollary 1. From the proof of Theorem 1, we know that the adversary goal essentially
boils down to minimize this value

PDclean(B(q̃, Rpoi)).

Without loss of generality, we assume that q̃ = q + s where q is a normal query and s is an adversary
shift with bounded norm c. Then now the problem becomes the following:

min
∥s∥≤c

PDclean(B(q + s,Rpoi)).

Then it is minimized if we move s towards the directions where the density of Dclean decay fastest.
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C ADDITIONAL EXPERIMENTAL STUDY

In this section, we provide ablation studies on both the proposed defense and attack algorithms.

C.1 ATTACKING ALGORITHMS

On the effect of the penalizing parameter λ2 In this section, we test the effect of the penalizing
parameter λ2 on the performance of the proposed DRS. The results are summarized in the following
table. We observe that as λ2 increases, the detection rates decrease. This is reasonable because the
DRS scores for clean and poisoned data become increasingly similar, making it more difficult to
distinguish between them.

Table 1: Filtering rates (↑ better) for poisoned data (in the case of ReAct Agent), generated by our
newly proposed DRS-regularized AgentPoison under different λ2. The decision threshold for filtering
is set to the 99th percentile of the clean scores, resulting in a false positive rate of approximately 1%
for clean documents.

λ2 Perplexity filter ℓ2-norm filter ℓ2-distance filter DRS (proposed)

0.1 0.03 0.03 0.01 0.99
0.5 0.02 0.01 0.02 0.85
1 0.02 0.02 0.01 0.72
5 0.03 0.01 0.02 0.51
10 0.01 0.01 0.01 0.29

C.2 DEFENSES

Medical Q&A RAG In the following, we present the detection rate of our proposed defense with the
PubMed corpus.

Table 2: Filtering rates (↑ better) for poisoned data (in the context of Medical Q&A), generated by
PoisonedRAG attack (Zou et al., 2024). The decision threshold for filtering is set to the 99th percentile
of the clean scores, resulting in a false positive rate of approximately 1% for clean documents.

Retriever Task Defense
Perplexity filter ℓ2-norm filter ℓ2-distance filter DRS (proposed)

Contriever

MedQAUS 0.07 0.90 0.15 0.98
MedMCQA 0.12 0.93 0.43 0.97
PubMedQA 0.16 0.91 0.51 0.99

MedCPT

MedQAUS 0.01 0.61 0.03 0.95
MedMCQA 0.18 0.32 0.64 0.97
PubMedQA 0.27 0.41 0.32 0.97

On the effectiveness of dimensions M In this section, we increase M to 300 to test the proposed
DRS defense. The results are summarized in the tables below. We observe that the filtering rate
remains roughly the same, indicating the robustness of the proposed method.

Table 3: Filtering rates (↑ better) for poisoned data (in the dense retrieval context for general domain
Q&A), generated by BadDPR (Long et al., 2024) and evaluated with four different defenses. The
decision threshold for filtering is set to the 99th percentile of the clean scores, resulting in a false
positive rate of approximately 1% for clean documents.

Backdoor Ratio Perplexity filter ℓ2-norm filter ℓ2-distance filter DRS (proposed)

1% 0.03 0.02 0.01 0.52
5% 0.02 0.04 0.05 0.53
10% 0.18 0.27 0.25 0.56
20% 0.13 0.36 0.36 0.61
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Table 4: Filtering rates (↑ better) for poisoned data (in the RAG agent context (Chen et al., 2024)),
generated by four attacks across two tasks and evaluated with four different defenses. The decision
threshold for filtering is set to the 99th percentile of the clean scores, resulting in a false positive rate
of approximately 1% for clean documents.

Task Attack Defense
Perplexity filter ℓ2-norm filter ℓ2-distance filter DRS (proposed)

Agent-Driver

AgnetPoison 0.03 0.02 0.01 0.99
BadChain 0.03 0.03 0.01 0.99
AutoDan 0.02 0.10 0.01 0.99

GCG 0.03 0.01 0.02 0.99

ReAct-StrategyQA

AgnetPoison 0.01 0.34 0.03 0.99
BadChain 0.01 0.02 0.01 0.99
AutoDan 0.11 0.01 0.06 0.99

GCG 0.01 0.01 0.01 0.99
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