
Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 GRID WORLD EXAMPLE

We illustrate the over-conservatism problem in Figure 1 using a shortest-path grid world environment.
In this environment, the four-adjacent neighbors of each state s are denoted by N (s). During
training, we perturbed states to the nearby worst states to help agents against the uncertainty of
environments. The state-adversarial value iteration algorithm is shown in Algorithm 2. To achieve a
clear explanation, we first denote the coordinate of the bottom left corner by grid(0, 0). Accordingly,
the goal state is located at grid(0, 3), and the trap state is at grid(2, 2). Let sa and sb be the states
at grid(1, 3) and grid(1, 2), respectively. Since sa is adjacent to the goal state, the value V (sa) will
increase because of the high reward r(sa, aa). However, the value V (sa) will never propagate to
state sb because only the worst value around sb is used in the TD update. Since the policy would be
penalized by a �1 reward at each step (to learn how to reach the goal state as soon as possible), and
the positive reward at the goal state can only propagate to grid(0, 2) and grid(1, 3), the value V (sb)
decreases by the negative (sb, ab) after each TD update.

Following the algorithm, we show how the naive state-adversarial method updates the value of (s,a) =
(grid(1,2), UP). Initially, all state values are 0.

At t = 0, Q(s,a) = Q(grid(1,2), UP) = r(grid(1,2), UP) + � ⇥ min
s02N(grid(1,3))

V (s0)

= �1 + 0.99⇥min(V(grid(1,3)), V(grid(0,3)), V(grid(2,3)), V(grid(1,2)))
= �1 + 0.99⇥min(0, 0, 0, 0) = �1.

At t = 1, Q(s,a) = Q(grid(1,2), UP) = r(grid(1,2), UP) + � ⇥ min
s02N(grid(1,3))

V (s0)

= �1 + 0.99⇥min(V(grid(1,3)), V(grid(0,3)), V(grid(2,3)), V(grid(1,2))
= �1 + 0.99⇥min(�1, 0,�1,�1) = �1.9.

At t = 2, Q(s,a) = Q(grid(1,2), UP) = r(grid(1,2), UP) + � ⇥ min
s02N(grid(1,3))

V (s0)

= �1 + 0.99⇥min(V(grid(1,3)), V(grid(0,3)), V(grid(2,3)), V(grid(1,2)))
= �1 + 0.99⇥min(�1, 0,�1.99,�1.99) = �2.97.

As can be seen, although the agent took the action “UP” at grid(1,2) to reach grid(1,3), it considers
the minimum value among the neighbours of grid(1, 3) for the robust purpose. Hence, the TD
update reduces the value Q(s,a) = Q(grid(1,2), UP) at each step. In other words, the agent cannot
learn how to move to the goal state because the value of the goal state does not propagate outward
during value iteration. Even worse, the agent would move toward the trap state if it is nearby due
to the compounding effect of TD updates and the worst-case state-adversarial perturbations. The
phenomenon appears after updating state values 12 times.

Algorithm 2: State-Adversarial Perturbation with Greedy Policy
Input :MDP (S,A, P0, r, �), number of iterations T , P0 is the nominal transition kernel

1 Initialize the Q0(s, a) value function with 0.
2 for t = 1, . . . , T do

3 for state s, action a do

4 Qt(s, a) = r(s, a) + �
P

s0 P0(s0|s, a) min
s002N (s0)

(max
a

Qt�1(s00, a))

5 end

6 end

13

Under review as a conference paper at ICLR 2023

Figure 4: The 4⇥ 4 shortest-path grid world. The dot, star, and cross icons indicate the initial, goal,
and trap states, respectively. The agent can move either up, down, left, or right at each step and earn
+0 and �10 rewards when reaching the goal and trap states, respectively. In addition, the agent would
be penalized by a �1 reward at each step and learn to reach the goal state as quick as possible.

A.2 BELLMAN EQUATION OF RELAXED STATE-ADVERSARIAL POLICY OPTIMIZATION

Given a fixed policy ⇡, we aim to estimate its value using the temporal difference learning. Based on
the relaxed state-adversarial transition kernel (Equation 6), we obtain the value function

V ⇡,↵
✏ (s) :=Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P⇡,↵

✏ (·|s0,a0)

h
Ea1⇠⇡(·|s1)r(s1, a1) (10)

+ �Es2⇠P⇡,↵
✏ (·|s1,a1)

h
Ea2⇠⇡(·|s2)r(s2, a2) + ...

iii
(11)

The corresponding Bellman operator is derived as

T ⇡,↵
✏ V (s) = Ea⇠⇡

h
r(s, a) + �Es0⇠P0(·|s,a)

⇣
↵V (s0) + (1� ↵) min

s002N (s0)
V (s00)

⌘i
(12)

Proof.

V ⇡,↵
✏ (s0) =Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P⇡,↵

✏ (·|s0,a0)

h
Ea1⇠⇡(·|s1)r(s1, a1) (13)

+ �Es2⇠P⇡,↵
✏ (·|s1,a1)

h
Ea2⇠⇡(·|s2)r(s2, a2) + ...

iii
(14)

=Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P0(·|s0,a0)

h
↵
⇣
Ea1⇠⇡(·|s1)r(s1, a1) (15)

+ �Es2⇠P⇡,↵
✏ (·|s1,a1)

h
Ea2⇠⇡(·|s2)r(s2, a2) + ...

⌘
(16)

+ (1� ↵)
⇣

min
s012N ✏(s1)

Ea0
1⇠⇡(·|s01)r(s

0
1, a

0
1) (17)

+ �Es02⇠P⇡,↵
✏ (·|s01,a0

1)

h
Ea0

2⇠⇡(·|s02)r(s
0
2, a

0
2) + ...

⌘iii
(18)

=Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P0(·|s0,a0)

⇣
↵V ⇡,↵

✏ (s1) + (1� ↵) min
s012N ✏(s1)

V ⇡,↵
✏ (s01)

⌘i
,

(19)

A.3 PROOF OF LEMMA 1

Lemma (Monotonicity of Average Value in Perturbation Strength). Under the setting of state

adversarial MDP, the value of the local minimum monotonically decreases as the bounded radius �
increases. Let x be a positive real number. The reward function J satisfies

J(⇡|P⇡
�) � J(⇡|P⇡

�+x), 8⇡. (20)

14

Under review as a conference paper at ICLR 2023

Proof.

V ⇡(s0|P⇡
�) =Ea0⇠⇡

h
r(s0, a0) + �Es�1⇠P⇡

� (·|s0,a0)

h
V ⇡(s�1 |P⇡

�)
ii

(21)

=Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P0(·|s0,a0),s�1=argminV ⇡(s),s2N�(s1)

h
V ⇡(s�1 |P⇡

�)
ii

(22)

�Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P0(·|s0,a0),s

�+x
1 =argminV ⇡(s),s2N�+x(s1)

h
V ⇡(s�+x

1 |P⇡
�)

ii

(23)

=Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P0(·|s0,a0),s

�+x
1 =argminV ⇡(s),s2N�+x(s1),a1⇠⇡(·|s�+x

1)

h
r(s�+x

1 , a1)

(24)

+ �Es�2⇠P⇡
� (·|s�+x

1 ,a1)
[V ⇡(s�2 |P⇡

�)]
ii

(25)

=Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P0(·|s0,a0),s

�+x
1 =argminV ⇡(s),s2N�+x(s1),a1⇠⇡(·|s�+x

1)

h
r(s�+x

1 , a1)

(26)

+ �Es2⇠P0(·|s�+x
1 ,a1),s�2=argminV ⇡(s),s2N�(s2)

[V ⇡(s�2 |P⇡
�)]

ii
(27)

�Ea0⇠⇡

h
r(s0, a0) + �Es1⇠P0(·|s0,a0),s

�+x
1 =argminV ⇡(s),s2N�+x(s1),a1⇠⇡(·|s�+x

1)

h
r(s�+x

1 , a1)

(28)

+ �Es2⇠P0(·|s�+x
1 ,a1),s

�+x
2 =argminV ⇡(s),s2N�+x(s2)

[V ⇡(s�+x
2 |P⇡

�)]
ii

(29)

�Eai⇠⇡,si⇠P⇡
�+x)

h
r(s0, a0) + �r(s�+x

1 , a1) + �2r(s�+x
2 , a2) + ...

i
(30)

=Ea0⇠⇡

h
r(s0, a0) + �Es�+x

1 ⇠P⇡
�+x(·|s0,a0)

h
V ⇡(s�+x

1 |P⇡
�+x)

ii
(31)

=V ⇡(s0|P⇡
�+x) (32)

where the inequality holds because � + x is a larger perturbation radius than �. Let µ is the initial
state distribution, we have

J(⇡|P⇡
�) =Es0⇠µ[V

⇡(s0|P⇡
�)] (33)

�Es0⇠µ[V
⇡(s0|P⇡

�+x)] (34)
=J(⇡|P⇡

�+x). (35)

A.4 PROOF OF LEMMA 2

We prove Lemma 2 based on the continuity assumption of the expected discounted return J(⇡|P⇡,↵
✏)

with the relaxation parameter ↵ 2 [0, 1]. Based on the continuity of ↵, the assumption is reasonable
because similar values of ↵ imply similar transition kernels (Equation 6). We show this property
by the continuity of the epsilon-delta definition as follow. Let ↵1,↵2 2 [0, 1] be two relaxation
parameters. As long as |↵1 � ↵2| is small, the state perturbations are similar, which implies the
similar returns. Hence, for any ✏c > 0, there exist a �c > 0, such that |↵1 � ↵2| < �c and
|J(⇡|P⇡,↵1

✏)� J(⇡|P⇡,↵2
✏)| < ✏c.

Lemma (Relaxation parameter ↵ as a prior distribution D in domain randomization). For any

distribution D over the state-adversarial uncertainty set P⇡
✏ , there must be an ↵ 2 [0, 1] such that

EP⇠D[J(⇡|P)] = J(⇡|P⇡,↵
✏).

Proof. Based on Lemma 1, we have
J(⇡|P⇡,0

✏) = J(⇡|P⇡
✏)  Ep⇠P⇡

✏
[J(⇡|p)]  J(⇡|P⇡,1

✏) = J(⇡|P0) (36)
Under the condition that J(⇡|P⇡,↵

✏) is a continuous function, by Intermediate Value Theorem, we
obtain

9↵ 2 [0, 1],3 Ep⇠P⇡
✏
[J(⇡|p)] = J(⇡|P⇡,↵

✏) (37)

15

Under review as a conference paper at ICLR 2023

A.5 PROOF OF THEOREM 1

Theorem (A naive connection between the average-case and the worst-case returns). Given a nominal

MDP with state adversaries, when updating the current policy ⇡ to a new policy ⇡̃, the following

bound holds Jiang et al. (2021):

J(⇡̃|P⇡
✏) � EP⇠D[J(⇡̃|P)]� 2Rmax

�EP⇠D[dTV(P⇡
✏ kP)]

(1� �)2
� 4Rmax

dTV(⇡, ⇡̃)

(1� �)2
, (38)

where Rmax is the maximum return, dTV (⇡, ⇡̃) indicates the total variation divergence between ⇡
and ⇡̃, P⇡

✏ is the worst state-adversarial transition kernels.

Proof.

J(⇡̃|P⇡
✏)� J(⇡̃|P⇡,↵

✏) = J(⇡̃|P⇡
✏)� J(⇡|P⇡

✏) + J(⇡|P⇡
✏)� J(⇡̃|P⇡,↵

✏) (39)

For the last two term of Equation 39,

|J(⇡|P⇡
✏)� J(⇡̃|P⇡,↵

✏)| (40)

= |
X

t

�t
X

s,a

(pt⇡(s, a|P⇡
✏)� pt⇡̃(s, a|P⇡,↵

✏))R(s, a)| (41)


X

t

�t
X

s,a

|(pt⇡(s, a|P⇡
✏)� pt⇡̃(s, a|P⇡,↵

✏)|R(s, a) (42)

 2Rmax
X

t

�t[dTV(p
t
⇡(s, a|P⇡

✏)kpt⇡̃(s, a|P⇡,↵
✏))] (43)

because pt⇡(s, a|P⇡
✏) = ⇡(a|s)pt⇡(s|P⇡

✏) and pt⇡̃(s, a|P⇡,↵
✏) = ⇡̃(a|s)pt⇡̃(s|P⇡,↵

✏) (44)
 2Rmax[Es0⇠pt

⇡(·|P⇡
✏)dTV(⇡(a|s0)k⇡̃(a|s0)) (45)

+ dTV(p
t
⇡(s|P⇡

✏)kpt⇡̃(s|P⇡,↵
✏))] (46)

For the second term of Equation 46,

dTV(p
t
⇡(s|P⇡

✏)kpt⇡̃(s|P⇡,↵
✏)) (47)

 tmax
t

Es0⇠pt
⇡(·|P⇡

✏)dTV(p⇡(s|s0, a, P⇡
✏)kp⇡̃(s|s0, a, P⇡,↵

✏)) (48)

because p⇡(s|s0, a, P⇡
✏) =

X

a

T (s|s0, a, P⇡
✏)⇡(a|s0) (49)

 tmax
t

Es0⇠pt
⇡(·|P⇡

✏)Ea⇠⇡(·|s0)dTV(T (s|s0, a, P⇡
✏)kT (s|s0, a, P⇡,↵

✏) (50)

+ tmax
t

Es0⇠pt
⇡(·|P⇡

✏)dTV(⇡(s|s0)k⇡̃(a|s0)) (51)

Then we can rewrite Equation 46as:

J(⇡|P⇡
✏)� J(⇡̃|P⇡,↵

✏) (52)

� �2Rmax
X

t

�t[(t+ 1)max
t

Es0⇠pt
⇡(·|P⇡

✏)dTV(⇡(a|s0)k⇡̃(a|s0) (53)

� tmax
t

Es0⇠pt
⇡(·|P⇡

✏)Ea⇠⇡(·|s0)dTV(T (s|s0, a, P⇡
✏)kT (s|s0, a, P⇡,↵

✏ ‘)) (54)

Similar to the derivation of Equation 46,

J(⇡̃|P⇡
✏)� J(⇡|P⇡

✏) (55)

� �2Rmax
X

t

�t[(t+ 1)max
t

Es0⇠pt
⇡(·|pw)dTV(⇡(a|s0)k⇡̃(a|s0))] (56)

16

Under review as a conference paper at ICLR 2023

and rewrite Equation 39 as following,

J(⇡̃|P⇡
✏)� J(⇡̃|P⇡,↵

✏) (57)

� �2Rmax
X

t

�t[2(t+ 1)max
t

Es0⇠pt
⇡(·|P⇡

✏)dTV(⇡(a|s0)k⇡̃(a|s0) (58)

� tmax
t

Es0⇠pt
⇡(·|P⇡

✏)Ea⇠⇡(·|s0)dTV(T (s|s0, a, P⇡
✏))kT (s|s0, a, P⇡,↵

✏)] (59)

= �2Rmax
X

t

�t[2(t+ 1)max
t

Es0⇠pt
⇡(·|P⇡

✏)dTV(⇡(a|s0)k⇡̃(a|s0) (60)

� tEP⇠D[dTV(P
⇡
✏ kP)]] (61)

= �2Rmax
�EP⇠D[dTV(P⇡

✏ kP)]

(1� �)2
� 4Rmax

dTV(⇡, ⇡̃)

(1� �)2
(62)

A.6 PROOF OF THEOREM 2

We consider the difference of the expected discounted return under two different state-adversarial
transition kernels. To prove this theorem, we utilize the definition of the reward function of the corre-
sponding Markov Reward Process (MRP) with respect to policy ⇡ by R(s) :=

P
a ⇡(a|s)R(s, a).

Theorem (Connecting Worst-Case and Average-Case Returns). Given a nominal MDP with two

properties: (1) Reward function of corresponding MRP with respect to any policy is an Lr-Lipschitz

function. (2) Nominal transition kernel P0 has the smooth transition property �, where ks� s0k2 
�, 8a and 8P0(s0|s, a) > 0. Then after updating the current policy ⇡ to a new policy ⇡̃, the following

bound holds:

J(⇡̃|P⇡
✏) � J(⇡̃|P⇡,↵

✏)� 4�(✏+ �)Lr↵

(1� �)3
� 4(�(✏+ �)Lr + (1� �)2Rmax)dTV(⇡, ⇡̃)

(1� �)3
, (63)

where dTV(⇡, ⇡̃) is total variation divergence between ⇡ and ⇡̃ ,P⇡,↵
✏ is a relaxed state-adversarial

transition kernel, and P⇡
✏ is a worst-case state-adversarial transition kernel.

We first introduce the supporting lemma before proving the Theorem.
Lemma 3. Given any ✏ > 0, any initial state s0 2 S , and a policy ⇡, let st and s̃t denote the state at

time step t under the nominal transition kernel P0 and the state-adversarial transition kernel P⇡
✏ ,

respectively. Then, we have kst � s̃tk  2t(✏+ �), with probability one.

Proof of Lemma 3. We prove this by induction. If t = 1, we know the difference between s1 and s̃1
results from the perturbation at time step 1. Therefore, we have ks1 � s̃1k  ✏.

Next, suppose that at time step t = ⌧ , we have ks⌧ � s̃⌧k  2⌧(✏+ �). Then, we have

ks⌧+1 � s̃⌧+1k = ks⌧+1 � s⌧ + s⌧ � s̃⌧ + s̃⌧ � s̃⌧+1k (64)
 ks⌧+1 � s⌧k+ ks⌧ � s̃⌧k+ ks̃⌧ � s̃⌧+1k (65)
 � + 2⌧(✏+ �) + (✏+ �) (66)
 2(⌧ + 1)(✏+ �), (67)

where Equation 64 holds by the triangle inequality, Equation 65 follows the definition of �, the
assumption in the induction step, and the fact that s̃⌧+1 is obtained from s̃⌧ via the transitions
determined by P0 and the perturbation of strength ✏.

We are now ready to prove Theorem 2.

Proof of Theorem 2. To begin with, we have

J(⇡̃|P⇡
✏)� J(⇡̃|P⇡,↵

✏) = J(⇡̃|P⇡
✏)� J(⇡|P⇡

✏) + J(⇡|P⇡
✏)� J(⇡̃|P⇡,↵

✏) (68)

17

Under review as a conference paper at ICLR 2023

For the last two term of Equation 68,

|J(⇡|P⇡
✏)� J(⇡̃|P⇡,↵

✏)| (69)

=|
X

t

�t
X

s,a

⇡(a|s)pt⇡(s|P⇡
✏)R(s, a)� ⇡̃(a|s)pt⇡̃(s|P⇡,↵

✏)R(s, a)| (70)

=|
X

t

�t
X

s,a

⇡(a|s)[pt⇡(s|P⇡
✏)� pt⇡̃(s|P⇡,↵

✏)]R(s, a) + (⇡(a|s)� ⇡̃(a|s))pt⇡̃(s|P⇡,↵
✏)R(s, a)|

(71)


X

t

�t
X

s,a

|⇡(a|s)[pt⇡(s|P⇡
✏)� pt⇡̃(s|P⇡,↵

✏)]R(s, a)|+ |(⇡(a|s)� ⇡̃(a|s))pt⇡̃(s|P⇡,↵
✏)R(s, a)|

(72)

For the first term of Equation 72, we have the t-step initial state probability:

|pt⇡(s|P⇡
✏)� pt⇡̃(s|P⇡,↵

✏)| (73)
|pt⇡(s|P⇡

✏)� pt⇡(s|P⇡,↵
✏)|+ |pt⇡(s|P⇡,↵

✏)� pt⇡̃(s|P⇡,↵
✏)| (74)

(75)

Now we prove the following inequality.
X

s

|pt⇡(s|P⇡
✏)� pt⇡(s|P⇡,↵

✏)| (76)

=
X

s

|
X

s0

pt�1
⇡ (s0|P⇡

✏)(
X

k,Zks=1

P0(k|s0)) (77)

� (1� ↵)
X

s0

pt�1
⇡ (s0|P⇡,↵

✏)(
X

k,Zks=1

P0(k|s0)) (78)

� ↵
X

s0

pt�1
⇡ (s0|P⇡,↵

✏)P0(s|s0), (79)


X

s

X

s0

|pt�1
⇡ (s0|P⇡

✏)� pt�1
⇡ (s0|P⇡,↵

✏)|(
X

k,Zks=1

P0(k|s0)) (80)

+ ↵
X

s

X

s0

pt�1
⇡ (s0|P⇡,↵

✏)|(
X

k,Zks=1

P0(k|s0))� P0(s|s0)| (81)


X

s0

|pt�1
⇡ (s0|P⇡

✏)� pt�1
⇡ (s0|P⇡,↵

✏)| (82)

+ ↵ ·max
s0

X

s

|(
X

k,Zks=1

P0(k|s0))� P0(s|s0)| (83)


X

s0

|pt�1
⇡ (s0|P⇡

✏)� pt�1
⇡ (s0|P⇡,↵

✏)|+ 2↵ (84)

=2↵t (85)

where P0(s|s0) =
P

a ⇡(a|s0)P0(s|s0, a), Zks = Z ⇡̃
✏ (k, s) is the state perturbation matrix,

and Equations 77 to 79 follow the definition of state perturbation transition kernel. Note thatP
k,Zks=1 P0(k|s0) is the state probability after considering the perturbation, and Equation 82 holds

because
P

s

P
k,Zks=1 P0(k|s0) = 1. In addition, Equation 85 is obtained by recursively applying

Equations 77 to 84 to the first term of Equation 84.

For the first two terms of Equation 74, we have

|pt⇡(s|P⇡
✏)� pt⇡(s|P⇡,↵

✏)| (86)


X

s

|pt⇡(s|P⇡
✏)� pt⇡(s|P⇡,↵

✏)| (87)

2↵t, (88)

18

Under review as a conference paper at ICLR 2023

For the last two terms of Equation 74, we have
|pt⇡(s|P⇡,↵

✏)� pt⇡̃(s|P⇡,↵
✏)| (89)


X

s

|pt⇡(s|P⇡,↵
✏)� pt⇡̃(s|P⇡,↵

✏)| (90)

=
X

s

X

s0,a

⇣
|pt�1

⇡ (s0|P⇡,↵
✏)⇡(a|s0)� pt�1

⇡̃ (s0|P⇡,↵
✏)⇡̃(a|s0)|

⌘⇣
↵P0(s|s0, a) + (1� ↵)

X

k,Zks=1

P0(k|s0, a)
⌘

(91)


X

s0,a

|pt�1
⇡ (s0|P⇡,↵

✏)⇡(a|s0)� pt�1
⇡̃ (s0|P⇡,↵

✏)⇡̃(a|s0)| (92)


X

s0,a

|pt�1
⇡ (s0|P⇡,↵

✏)⇡(a|s0)� pt�1
⇡ (s0|P⇡,↵

✏)⇡̃(a|s0)|+
X

s0,a

|pt�1
⇡ (s0|P⇡,↵

✏)⇡̃(a|s0)� pt�1
⇡̃ (s0|P⇡,↵

✏)⇡̃(a|s0)|

(93)

=
X

s0,a

|pt�1
⇡ (s0|P⇡,↵

✏)(⇡(a|s0)� ⇡̃(a|s0))|+
X

s0,a

|(pt�1
⇡ (s0|P⇡,↵

✏)� pt�1
⇡̃ (s0|P⇡,↵

✏))⇡̃(a|s0)| (94)

2tdTV(⇡, ⇡̃) (95)

Hence, we can rewrite Equation 73 as:
|pt⇡(s|P⇡

✏)� pt⇡̃(s|P⇡,↵
✏)|  2↵t+ 2tdTV(⇡, ⇡̃) (96)

where Equation 96 holds by applying Equation 95 and 88.

Under the condition that the reward function of the MRP under policy ⇡ is Lr-Lipschitz, |R(s1)�
R(s2)|  2t(✏+�)Lr if |s1�s2|  2t(✏+�). By Lemma 3, for every probability density in pt⇡(s|P⇡

✏),
there exists a corresponding density point transited by P⇡,↵

✏ , and the state distance between these
two density is less than 2t(✏ + �). Hence, their reward difference is bounded by 2t(✏ + �)Lr. By
Equation 96, for every state, the total probability density difference is bounded by 2↵t+2tdTV(⇡, ⇡̃).
The total reward difference at time t will be

|
X

s,a

⇡(a|s)[pt⇡(s|P⇡
✏)� pt⇡̃(s|P⇡,↵

✏)]R(s, a)| (97)

=|
X

s

[pt⇡(s|P⇡
✏)� pt⇡̃(s|P⇡,↵

✏)]R(s)| (98)

(2↵t+ 2tdTV(⇡, ⇡̃)) · 2t(✏+ �)Lr (99)
Combining Equations 69and 99, we have

|J(⇡|P⇡
✏)� J(⇡̃|P⇡,↵

✏)| (100)


X

t

�t
⇣
(2↵t+ 2tdTV(⇡, ⇡̃)) · 2t(✏+ �)Lr + 2RmaxdTV(⇡, ⇡̃)

⌘
(101)

=
X

t

�t4↵t2(✏+ �)Lr +
X

t

�t4t2(✏+ �)LrdTV(⇡, ⇡̃) +
X

t

�t2RmaxdTV(⇡, ⇡̃) (102)

=
�(4↵(✏+ �)Lr)

(1� �)3
+

4�(✏+ �)LrdTV(⇡, ⇡̃)

(1� �)3
+ 2

RmaxdTV(⇡, ⇡̃)

(1� �)
(103)

When policy ⇡ is updated to ⇡̃, J(⇡|P⇡
✏)  J(⇡̃|P⇡,↵

✏). Then we have
J(⇡|P⇡

✏)� J(⇡̃|P⇡,↵
✏) (104)

�� �(4↵(✏+ �)Lr)

(1� �)3
� 4�(✏+ �)LrdTV(⇡, ⇡̃)

(1� �)3
� 2RmaxdTV(⇡, ⇡̃)

(1� �)
(105)

Similar to the derivation of Equation 69
|J(⇡̃|P⇡

✏)� J(⇡|P⇡
✏)| (106)

|
X

t

�t
X

s,a

(⇡̃(a|s)� ⇡(a|s))pt⇡̃(s|P⇡
✏)R(s, a)| (107)

2RmaxdTV(⇡, ⇡̃)

(1� �)
(108)

19

Under review as a conference paper at ICLR 2023

Hence we have

J(⇡̃|P⇡
✏)� J(⇡|P⇡

✏) � �2RmaxdTV(⇡, ⇡̃)

(1� �)
(109)

By combining Equations 105, 109, we rewrite Equation 68 as

J(⇡̃|P⇡
✏)� J(⇡̃|P⇡,↵

✏) (110)

�� 4�(✏+ �)Lr↵

(1� �)3
� 4(�(✏+ �)Lr + (1� �)2Rmax)dTV(⇡, ⇡̃)

(1� �)3
(111)

By combining Equations of PPO,

J(⇡̃|P⇡
✏) (112)

�J(⇡̃|P⇡,↵
✏)� 4�(✏+ �)Lr↵

(1� �)3
� 4(�(✏+ �)Lr + (1� �)2Rmax)dTV(⇡, ⇡̃)

(1� �)3
(113)

�J(⇡̃|P⇡,↵
✏)� 8�(1� ↵) · (✏+ �)Lr

(1� �)3
� 4�(✏+ �)Lr↵

(1� �)3
� 4(�(✏+ �)Lr + (1� �)2Rmax)dTV(⇡, ⇡̃)

(1� �)3

(114)

�J(⇡̃|P⇡,↵
✏)� 8� · (✏+ �)Lr

(1� �)3
+

4�(✏+ �)Lr↵

(1� �)3
� 4(�(✏+ �)Lr + (1� �)2Rmax)dTV(⇡, ⇡̃)

(1� �)3

(115)

A.7 IMPLEMENTATION DETAILS

We apply the online cross-validation (Sutton, 1992) method to update the average-case and worst-case
rewards alternatively and iteratively. Specifically, at one step, we update the policy ⇡✓t using the
paths generated by the current relaxation parameter ↵t. The Bellman operator used to update the
value function is derived in Appendix A.2. At the other step, we apply the updated model ⇡✓t+1 to
generate new paths and compute the relaxation parameter ↵t+1 by maximizing the meta objective
function. The gradient of relaxation parameter ↵t is calculated by

@Jmeta(↵t; ✓t+1)

@↵t
=

@Jmeta(↵t; ✓t+1)

@✓t+1

@✓t+1

@↵t
, (116)

where @✓t+1

@↵t
measures how the relaxation parameter affects the updated model parameter. Since

✓t+1 = ✓t + f(✓t,↵t), where f(✓t,↵t) is the update function for ✓t, we have @✓t+1

@↵t
= @f(✓t,↵t)

@↵t
.

In our implementation, we use the automatic differentiation package in PyTorch to compute
@Jmeta(↵t;✓t+1)

@✓t+1
and @✓t+1

@↵t
. In addition, to avoid the large penalty coefficients � 4�(✏+�)Lr

(1��)3 and

� 4(�(✏+�)Lr+(1��)2Rmax)
(1��)3 (Theorem 2), which lead to prohibitively small steps (Jiang et al., 2021),

we consider the coefficients to be tunable hyper-parameters C1 and C2. We apply the grid search
(i.e., [0.001, 0.01, 0.02] for C1 and [0.1, 0.5, 1.0, 1.5] for C2) to find the best hyper-parameters.

We use tunable hyperparameters C1 and C2 to approximate the coefficients in Equation 9 because
this strategy can improve network training. The strategy is commonly used in optimization. Famous
examples are TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017). Specifically, TRPO’s
authors pointed out that the derived penalty coefficient leads to a tiny step at each policy update; and
PPO’s authors solved the problem by setting the penalty coefficient as (1) a fixed hyperparameter
and (2) an adaptive hyperparameter, and (3) by clipping the penalty directly. In our implementation,
since ↵ is dynamic, and its value is correlated with ⇡, we set the penalty coefficients of ↵t and
dTV(⇡✓t ,⇡✓t+1) to fixed parameters to achieve a stable network training.

A.8 DYNAMICS OF RELAXATION PARAMETER ↵ DURING TRAINING

We leverage Theorem 2 to address both the average-case and the worst-case performance. Specifically,
we maximize the lower bound of the worst-case performance (i.e., RHS of Equation 9) when training

20

Under review as a conference paper at ICLR 2023

Algorithm 3: Practical Implementation of Relaxed State-Adversarial Policy Optimization
Input :MDP (S,A, P0, r, �), number of iterations T , nominal transition kernel P0,

hyperparameter for RAPPO C1 and C2, ✏-Neighborhood
1 Initialize the policy ⇡✓0 , the value function V�0

2 for t = 0, . . . , T � 1 do

3 Sample the tuple {si, ai, ri, s0i}
Tupd
i=1, where ai ⇠ ⇡✓t(·|s0i), and s0i ⇠ P0(·|si, ai)

4 Evaluate J(⇡✓t |P
⇡✓t�1

,↵t

✏) =
PTupd

j=0[rj + �[↵tV�t(s
0
j)� (1� ↵t)(min

s00j 2N ✏(s0j)
V�t(s

00
j))]]

5 Update the policy to ⇡✓t+1 and value function to V�t+1 by PPO

6 Sample the tuple {si, ai, ri, s0i}
T 0

upd
i=1, where ai ⇠ ⇡✓t+1(·|s0i), and s0i ⇠ P0(·|si, ai)

7 Evaluate J(⇡✓t+1 |P⇡✓t ,↵t) =
PT 0

upd
j=0[rj + �[↵tV�t+1(s

0
j)� (1� ↵t)(min

s00j 2N ✏(s0j)
V�t+1(s

00
j))]]

8 Evaluate Jmeta(↵t) =J(⇡✓t+1 |P
⇡✓t ,↵t
✏)�C1↵t � C2dTV(⇡✓t ,⇡✓t+1)

9 Update the relaxation parameter ↵t via @Jmeta(↵t;✓t+1)
@↵t

= @Jmeta(↵t;✓t+1)
@✓t+1

@✓t+1

@↵t

10 end

Figure 5: We show the dynamics of ↵ during training the Halfcheetah
environment, in which ↵ was initially set to 0.5 and then updated by the
meta objective function. The solid line and shading area are the mean
and standard deviation of ↵ determined from 5 seeds. As can be seen, ↵
first decreased to maximize rewards in the worst-case environment and
then increased to maximize average-case rewards.

policies. Since the unknowns ↵ and ⇡ in Theorem 2 are correlated, we solve the upper-level and the
lower-level tasks iteratively and alternatively to update their values. Figure 5 shows the dynamics
of ↵ during training. As indicated, the meta-objective moved ↵ to 0 to maximize the worst-case
performance initially. It then increased the value of ↵ to improve the agent’s performance close
to nominal environments. The strategy was reasonable because maximizing rewards in the worst
case could also increase rewards in the average case (by Lemma 1). Once the worst-case rewards
are larger than a specific bound (i.e., Theorem 2 holds), the meta-objective increased the value of
↵ for further increasing the rewards close to nominal environments. Note that the variance of ↵ is
reasonable. Since ⇡ was randomly initialized, the correlations between the variants of ⇡ and ↵ were
not necessarily the same.

We point out that ⇡ and ↵ in Theorem 2 are correlated, and they should be considered simultaneously
to maximize the lower bound of the worst-case performance. In other words, simply designing a
schedule for ↵ is insufficient to optimize a policy. To verify this claim, we conducted experiments, in
which ↵ linearly increases (Scheduler+) and decrease (Scheduler+) during training. Table 3 shows
the experiment results. As indicated, RAPPO outperformed Scheduler+ and Scheduler- in many
environments, except when the attacks to ants were weak. The results were not surprising because
the schedules did not consider the correlation between ↵ and ⇡. As long as the loss landscape of the
objective function was not convex, the scheduler was difficult to find a good solution.

A.9 HIGH VARIANCE OF THE TOTAL EXPECTED RETURNS

In the experiments of robustness against states adversaries (Table 1), we perturbed policies every
step, and each attack aimed to push the policy to the worst neighboring state in the experiment. The
high variance of the total returns was inevitable. This phenomenon did not appear only in our results
but also in all the baselines, such as PPO and SCPPO. In addition, a stronger attack also led to a
higher variance of the return. Take the performance of PPO in the HalfCheetah environment as an
example, the mean-variance ratio was 5.26 (5286/1004) when the environment was nominal, and the
ratio decreased to 0.81 (819/1003) when the magnitude � of attack became 0.025. The performance
of the SCPPO in the HalfCheetah environment also had a similar phenomenon. The mean-variance
ratio decreased from 8.68 (6157/709) to 0.08 (60/791).

21

Under review as a conference paper at ICLR 2023

Environment Nominal � = 0.005 � = 0.01 � = 0.015 � = 0.02 � = 0.025

HalfCheetah
Scheduler + 5744.16±883.70 4591.63±1395.03 3542.69±1730.48 2001.48±1910.79 1096.29±1859.76 408.94±1644.85
Scheduler - 5865.87±770.69 5176.21±829.77 3456.30±1903.02 1970.26±2033.79 941.72±1483.99 -158.06±922.55

RAPPO 6146.74±742.52 5519.39±774.32 4353.17±1510.70 3087.78±1568.22 1878.98±1287.87 846.85±951.06

Nominal � = 0.0008 � = 0.0016 � = 0.002 � = 0.0024 � = 0.003

Hopper
Scheduler + 3032.28±763.94 1156.97±614.91 829.46±353.28 691.56±250.66 591.01±210.47 479.65±238.97
Scheduler - 3032.31±822.57 1276.19±592.80 789.55±428.12 758.48±456.64 617.28±332.39 486.93±225.36

RAPPO 3301.48±520.76 2198.12±859.08 1457.89±537.07 1244.16±584.26 1067.22±605.42 1014.58±779.92

Nominal � = 0.001 � = 0.0015 � = 0.002 � = 0.0025 � = 0.003

Walker2d
Scheduler + 4051.98±1130.50 1548.57±1068.91 994.26±600.17 736.46±314.88 597.01±237.82 618.84±287.75
Scheduler - 4043.19±1238.57 2410.64±1581.69 1601.00±1206.41 1601.00±1206.41 771.69±768.81 771.69±768.81

RAPPO 4608.12±962.96 3998.66±1487.38 3298.44±1478.25 2160.74±1408.89 1470.07±1013.95 1173.75±783.89

Nominal � = 0.01 � = 0.02 � = 0.03 � = 0.04 � = 0.05

Ant
Scheduler + 5847.72±1039.84 4482.75±1306.05 2630.83±1235.01 1395.59±704.53 705.89±381.12 496.82±401.96
Scheduler - 6131.02±606.15 4719.54±1191.67 2153.95±1165.94 1051.75±544.08 705.12±233.81 610.91±236.39

RAPPO 6022.20±698.78 4381.52±1357.64 2284.53±1225.28 1038.94±553.84 733.02±255.95 672.69±219.99

Nominal � = 0.003 � = 0.004 � = 0.005 � = 0.006 � = 0.007

Humanoid
Scheduler + 5162.77±1714.34 2903.53±2094.77 2365.29±1840.93 1689.72±1580.01 1347.32±1282.06 915.06±694.24
Scheduler - 5039.48±1798.54 3316.45±2153.78 2655.50±2043.42 1847.50±1527.36 1322.75±958.38 1022.42±676.20

RAPPO 5355.23±1491.76 3768.12±1972.79 3227.09±1883.64 2537.66±1698.87 1747.90±1274.77 1350.13±1133.66

Table 3: We compared the performance of agents trained using RAPPO and two simple schedulers of
↵ in Mujoco environments under multiple degrees of state perturbation. Scheduler+ and Scheduler-
indicate that ↵ linearly transited from 0 to 1 and from 1 to 0, respectively. Mean and Standard
deviations are reported.

� = 0.005 � = 0.01 � = 0.015 � = 0.02 � = 0.025
HalfCheetah 294 717 1046 815 757.1

� = 0.0008 � = 0.0016 � = 0.002 � = 0.0024 � = 0.003
Hopper 718.6 514.3 399.6 216.2 190.1

� = 0.001 � = 0.0015 � = 0.002 � = 0.0025 � = 0.003
Walker2d 1125 1503 1010.8 580.5 474.7

� = 0.01 � = 0.02 � = 0.03 � = 0.04 � = 0.05
Ant -28 416.3 136 81.4 146.5

� = 0.003 � = 0.004 � = 0.005 � = 0.006 � = 0.007
Humanoid 295 591 534 317 152.3

Table 4: We compared the performances of RAPPO and SCPPO from the statistical perspective.
The values indicate the lower bound of 95% confidence interval of the test of significance. The null
hypothesis was no difference between RAPPO and SCPPO, and the alternative hypothesis was the
opposite. Namely, the value larger than 0 indicated that the difference was statistically significant.

To compare the performance of RAPPO and the baselines objectively, we averaged the results from
250 trajectories (50 initialization over 5 seeds). Although the standard deviations of the total expected
returns were high, the results in Table 1 were statistically significant. To verify this claim from
the statistical perspective, we computed the test of significance. The null hypothesis was that the
difference of the mean between RAPPO and SCPPO was zero. The alternative hypothesis was that
the difference was larger than zero. The following table shows the lower bound of 95% confidence
interval (CI). The value implies that one can have 95% confidence that the interval included the true
value of the difference between two methods. If the 95% confidence interval did not cover 0, it meant
that the difference between SCPPO and RAPPO was statistically significant. We will attach the
statistical analysis in the supplemental material in the revised manuscript.

22

	Introduction
	Related Work
	Preliminaries
	Domain Randomization via Relaxed State-Adversary
	Connecting Domain Randomization and State Perturbation
	State-Adversarial MDPs and Uncertainty Sets
	Relaxed State-Adversarial MDPs
	Online Adaptation of the Relaxation Parameter

	Experimental Results and Evaluations
	Conclusions
	Appendix
	Grid World Example
	Bellman Equation of Relaxed State-Adversarial Policy Optimization
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Implementation Details
	Dynamics of Relaxation Parameter during Training
	High Variance of the Total Expected Returns

