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A APPENDIX

A.1 JUSTIFYING THE INTRODUCTION OF A META-HEAD

Proof. To arrive at Equation 7 we start with the closed form solution for rwiLval
T⇤ (✓⇤) and then

introduce approximations in order to produce Equation 7. First, note that :
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To get rwi✓
⇤(w) we invoke the Cauchy Implicit Function Theorem (IFT) as with Lorraine et al.

(2020); Navon et al. (2020); Liao et al. (2018):
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[Only terms with wi survive]

Bringing it all together, we get :
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Computing rwiLval
T⇤ (✓⇤) from Equation 9 is computationally unwieldy since we would not only

have to optimize ✓ to convergence for every step of wi but we would also have to invert the Hessian
of a typically large model. Our middle ground between Equations 9 and 6 (Equation 7) makes use
of the following approximations:

• We approximate the inverse Hessian with the identity. This approximation is not new;
we follow previous work like Lorraine et al. (2020)(Table 3) who explore the use of this
approximation because of computational efficiency.
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We are assuming the contribution of terms with i > 0 are negligible.
• Instead of training the whole network to convergence, at each time-step, we fix the body of

the network and train a special head �⇤ to convergence on a small batch of end-task training
data. We then use [✓body;�⇤] as a proxy for ✓⇤. This is a computationally feasible work-
around to training all of ✓ to convergence to get a single step gradient estimate. Especially
in the continued pre-training setting where a pre-trained generalist model like BERT is used
as ✓body, this approximation is reasonable. To our knowledge, we are the first to suggest
this approximation.
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• Above, we have approximated ✓⇤ = [✓body;�⇤]. Since �⇤ is only used to evaluate end-task
(T ⇤) validation data, it means ✓ remains unchanged with respect to the training data for
task Ti. Thus r✓LTi([✓body;
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Bringing it all together, we get Equation 7, repeated here:
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A.2 CALCULATING P-VALUES FROM PERMUTATION TEST

We used the permutation test (Good, 2005; Dror et al., 2018) to test for statistical significance.
For each test, we generate 10000 permutations to calculate significance level. This is sufficient to
converge to a stable p-value without being a computational burden. We chose this over the common
student t-test because :

1. We have only 10 runs per algorithm and permutation tests are more robust at low sample
size

2. Permutation test is assumption free. Student t-tests assume that the samples are normally
distributed

3. Permutation test is robust to variance in the samples, so even though error-bars can overlap,
we still establish significant differences in the samples. Variance in our results is expected
due to small dataset sizes of end-tasks.

A.3 ALGORITHM FOR META-TARTAN

Algorithm 1: End-task Aware Training via Meta-learning (META-TARTAN)
Require: T ⇤,Taux: End-task, Set of auxiliary pre-training tasks
Require: ⌘,�1,�2: Step size hyper-parameters
Initialize :

Pre-trained RoBERTa as shared network body, ✓body
Task weightings: w⇤, wi =

1
|Taux|+1

Randomly initialize :
end-task head as �0

meta head for end-task as �⇤

task head, �i, for each Ti 2 Taux

while not done do
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// Learn a new meta head
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// Update task weightings
w⇤  w⇤ + ⌘ cos(g⇤meta, g
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wi  wi + ⌘ cos(g⇤meta, g
i
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// Update task parameters
↵⇤,↵1, . . . ,↵|Taux| = softmax(w⇤, w1, . . . , w|Taux|)
Update ✓body  ✓body � �1
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end
Result : ✓,�0

A.4 VISION EXPERIMENTS

We validate that the gains from end-task Aware Training are not siloed to only learning from text.
We conduct an experiment comparing end-task aware training on images to its end-task agnostic
variant. We use the Cifar100 dataset (Krizhevsky et al., 2009). We use the Medium-Sized Mammals
superclass (one of the 20 coarse labels) as our main task whilst the other 19 super classes are used
as auxiliary data. Our primary task is thus a 5-way classification task of images different types of
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Method Medium-Sized Mammals
Regular (Task-Agnostic) Pre-training 46.72.2
MT-TARTAN 51.31.2
META-TARTAN 52.33.8

Table 5: We report averages across 3 random seeds. Best average task accuracy is bolded.
medium-sized mammals whilst whilst the remaining 95 classes are grouped into a single auxiliary
task.

As can be seen from Table 5, being end-task aware improves over task agnostic pre-training. We
find that, again, when our auxiliary task consist of solely domain data and no task data, META-
TARTAN performs better than MT-TARTAN (as measured by averaged performance).

A.5 FULL TAPT TABLE WITH SIGNIFICANCE LEVELS

We repeat Table 1 and provide details about levels of statistical signifance.

Task TAPT MT-TARTAN p�values META-TARTAN p�values
ACL-ARC 67.743.68 70.484.42 0.040 70.084.70 0.069
SCIERC 79.531.93 80.810.74 0.038 81.480.82 0.005
CHEMPROT 82.170.065 84.290.63 0.000 84.490.50 0.000

Table 6: Duplicate of Table 1. Significance levels as computed from the permutation test. All
p�values are relative to the TAPT column. Statistically significant performance(p-value from per-
mutation test < 0.05), is boldfaced

A.6 FULL DAPT/DAPT+TAPT TABLE

We repeat Table 3 and provide details about levels of statistical signifance.

Task DAPT DAPT+TAPT MT-TARTAN p-values META-TARTAN p-values
ACL-ARC 68.602.62 69.125.76 71.581.65 0.110 71.052.37 0.174
SCIERC 76.441.19 77.621.38 81.021.24 0.000 81.411.70 0.000
CHEMPROT 80.760.54 78.220.74 83.770.60 0.000 83.380.89 0.000

Table 7: Duplicate of Table 2. Significance levels as computed from the permutation test. All
p�values are relative to max

�
DAPT,DAPT+ TAPT

�
. Statistically significant performance(p-

value from permutation test < 0.05), is boldfaced
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