
Under review as a conference paper at ICLR 2022

SHOULD WE BE Pre-TRAINING?
A CASE STUDY OF END-TASK AWARE TRAINING IN
LIEU OF CONTINUED PRE-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Pre-training, where models are trained on an auxiliary objective with abundant
data before being fine-tuned on data from the downstream task, is now the domi-
nant paradigm in NLP. In general, the pre-training step relies on little to no direct
knowledge of the task on which the model will be fine-tuned, even when the end-
task is known in advance. Our work challenges the status-quo of task-agnostic
continued pre-training as a step towards the larger goal of investigating the place
of pre-training when the end-task is known in advance. First, on three different
low-resource NLP tasks from two domains, we demonstrate that multi-tasking the
end-task and auxiliary objectives results in significantly better downstream task
performance than the widely-used task-agnostic continued pre-training paradigm
of Gururangan et al. (2020). We next introduce an online meta-learning algorithm
that learns a set of multi-task weights to better balance among our multiple auxil-
iary objectives, achieving further improvements on end task performance and data
efficiency.

1 INTRODUCTION

Taux
T*

end-task
aware
trainingpre-training+

fine-tuning

Figure 1: Pre-training trains on auxil-
iary task Taux before fine-tuning on pri-
mary task T ∗. End-task aware training
optimizes both Taux and T ∗ simultane-
ously and can find better minima since
optimization is informed by the end-task.

The increasingly popular pre-training paradigm (Dai &
Le, 2015; Devlin et al., 2018; Gururangan et al., 2020)
involves first training a generalist model on copious
amounts of easy-to-obtain data, e.g. raw text data in
NLP, and then using this model to initialize training on a
wide swath of downstream tasks. Generalist models like
BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019),
and GPT-3 (Brown et al., 2020) have a strong appeal; a
few institutions with significant resources incur the cost
of training these large models whilst the rest of the re-
search community enjoys a significant performance im-
provement at minimal computational overhead. How-
ever, the advantages of initializing a downstream task
from a generalist model are not guaranteed. Previous
work has shown that the benefits of pre-training depend
heavily on the degree of domain overlap between the end
task data and the massive, heterogenous data on which
the generalist model was trained (Beltagy et al., 2019; Gururangan et al., 2020; Lee et al., 2020).

Notably, Gururangan et al. (2020) have demonstrated the benefits of continued pre-training of gen-
eralist models using data that is similar to that of the end task. Their approach is formalized into
two classes: Domain Adaptive Pre-training (DAPT) and Task Adaptive Pretraining (TAPT) where
further stages of pre-training of generalist models are conducted on domain- and task-specific data,
respectively. DAPT and TAPT exploit the fact that we often know the end task beforehand, and so
we can make specific choices about our pre-training regimen to improve end-task performance.

However, in both pre-training for generalist models and continued pre-training, the training proce-
dure itself does not explicitly incorporate the end task objective function. Because of this, practi-

1

Under review as a conference paper at ICLR 2022

tioners have to be careful with their choice of auxiliary tasks, the order in which they are trained on,
and the early-stopping criteria for each pre-training stage so as to actually achieve good downstream
end-task performance (Gururangan et al., 2020; Dery et al., 2021). In the absence of principled
criteria to make these difficult design choices, it is common to instead resort to the computationally
demanding heuristic of pre-training on as much data as possible for as long as possible.

In this paper, we raise the following question: “In settings where we have a particular end task in
mind, should we be pre-training at all?”. As a first step in answering this question, we focus on
the more computationally friendly and ubiquitous continued pre-training setting where we question
the wisdom of having disjoint further pre-training and fine-tuning steps on a generalist model. In
response, we advocate for an alternative approach in which we directly introduce the end task ob-
jective of interest into the learning process. This results in a suite of end-task aware methods called
TARTAN (end-Task AwaRe TrAiniNg). Our formulations incorporate both unsupervised auxiliary
objectives traditionally used in NLP pre-training (such as masked language modeling as in Devlin
et al. (2018)) and the end-task objective, followed by an optional fine-tuning step on the end task.
We motivate TARTAN experimentally in the continued pre-training setting and based on this, we
make the following contributions to the literature on leveraging auxiliary tasks and data:

• In lieu of standard end-task agnostic continued pre-training, we suggest introducing the end task
objective into the training process via multi-task learning (Caruana, 1997; Ruder, 2017). We call
this procedure Multi-Tasking end-Task AwaRe TrAiniNg (MT-TARTAN) (Section 3.1). MT-
TARTAN is a simple yet surprisingly effective alternative to task-agnostic pre-training. In Section
5, we demonstrate that MT-TARTAN significantly improves performance, convergence time, and
data efficiency over Gururangan et al. (2020)’s results. It also obviates the need for fickle hyper-
parameter tuning through direct optimization of validation performance.

• To allow more fine-grained control of the end task over the auxiliary tasks, in Section 3.2, we
present an online meta-learning algorithm that learns adaptive multi-task weights with the aim of
improving final end task performance. Our META-learning end-Task AwaRe TrAiniNg (META-
TARTAN) allows us to robustly modulate between multiple objectives and further improves per-
formance over MT-TARTAN .

• A naive implementation of META-TARTAN based on first-order meta-learning analysis results in
a sub-optimal algorithm that ignores all tasks except the end-task. We trace this problem to the use
of a single model training head for computing both the end-task training loss and meta-objective
(end-task validation loss). To guard against this pathological solution, we introduce a separate
model head for computing the meta-objective. In Section 3.3, we justify this simple-to-implement
fix and validate its practical efficacy in Section 5.

Our results suggest that TARTAN may be an attractive alternative to the continued pre-training
paradigm, and further research into the place of pre-training in end-task aware settings is warranted.

2 FORMALIZING PRE-TRAINING AND CONTINUED PRE-TRAINING

Consider a dataset D = {(xi, yi)i∈[m]} consisting of m labelled examples. We define a task as an
objective function and dataset pair: T = {L(·), D}. Consider Mθ, a model parameterized by θ. The
objective function L(yi,Mθ(xi)) evaluates how well a model prediction Mθ(xi) fits the true label
yi, such as cross-entropy loss in the case of classification. Note that the task dataset, D, is typically
decomposed into the sets (Dtrain, Dval, Dtest). Dtrain is the set of examples used for model training
whilst Dtest is used for final task evaluation. The validation set, Dval, is typically used for model
selection but it is also frequently used in meta-learning to define the meta-objective – LvalT∗ .

Given a specific end-task T ∗, our aim is to improve performance on T ∗ (as measured by the model
loss on Dtest

T∗) by leveraging auxiliary tasks Taux = {T1, . . . , Tn}. Note that we do not particularly
care about the performance of any of the tasks in Taux. We are willing to sacrifice performance on
Taux if it improves performance on T ∗.

From the perspective of model architecture, there are several ways to leverage Taux. We focus on
the simple but ubiquitous parameter sharing setting. Here, all tasks share a model body θbody but
each task Ti has its own head φi for prediction. We denote the head belonging to T ∗ as φ′. Thus
θ =

[
θbody;

(
φ1, . . . , φn, φ′

)]
and θbody is reusable across new tasks.

2

Under review as a conference paper at ICLR 2022

2.1 PRE-TRAINING

Pre-training is when a model is first trained on Taux before performing a final fine-tuning phase
on T ∗. The motivation behind pre-training is that learning Taux first hopefully captures relevant
information that can be utilized during training of T ∗. This desire has led to the proliferation of
generalist pre-trained models like BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019) and GPT-
3 (Brown et al., 2020) that have been trained on copious amounts of data. Generalist models have
been widely successful at improving downstream task performance when used as initilization.

We can formalize the pre-training procedure as follows:

θ0 = argminθ

(∑
Ti∈Taux

LTi
(θ)

)
(1)

In Equation 1, we seek a point θ0 that achieves minimal loss on the tasks in Taux. We hope that θ0
will be a good starting point for gradient descent on T ∗. Let g(θ0) represent the set of end-points
of stochastic gradient descent on an initialization, θ0. Stochastic gradient descent from the same
initialization can produce different end-points due to differences in hyper-parameters like learning
rate, batch size and order, as well as regularization strength. We can write the fine-tuning phase as:

θ∗ = argmin{θ ∈ g(θ0)} LT∗(θ) (2)

Note that pre-training is end-task agnostic: the pre-training Equation 1 occurs entirely before train-
ing on the end-task Equation 2, and does not explicitly incorporate the end-task objective, T ∗. Since
there is no awareness of the end-task during pre-training it is important to carefully choose Taux

so that pre-training actually results in improved performance on T ∗ (Wang et al., 2018a). For text
data, past work has found left-to-right language modeling (Peters et al., 2017) and masked language
modeling (MLM) (Devlin et al., 2018) to be good choices to include in Taux.

2.2 CONTINUED PRE-TRAINING

Recent work (Beltagy et al., 2019; Gururangan et al., 2020; Lee et al., 2020) showed that down-
stream performance on T ∗ can be improved by further adapting generalist models via continued
pre-training on a more relevant set of auxiliary tasks. This is equivalent to sequentially performing
multiple steps of Equation 1, with different Taux, before finally performing Equation 2 on T ∗.
Domain and Task Adaptive Pre-training Gururangan et al. (2020) present Domain Adaptive Pre-
Training (DAPT) and Task Adaptive Pre-Training (TAPT) as methods for continued pre-training.
During DAPT, a generalist model is further pre-trained on an unsupervised objective with large
amounts of data from the same domain as the end-task. TAPT also pre-trains with the same unsu-
pervised objective as DAPT, but on the actual dataset of the end task. Gururangan et al. (2020) find
that performance can be further improved by chaining objectives, DAPT first, followed by TAPT.

Though TAPT and DAPT do not directly incorporate the end-task objective during training, it still
indirectly informs both the choice of pre-training data and the order in which the pre-training tasks
are trained on. Below, we explore stronger versions of this influence.

3 END-TASK AWARE TRAINING (TARTAN)

In this section, we argue for the end-task to be added directly into the training process to create
explicit interactions between T ∗ and Taux.

3.1 END-TASK AWARE TRAINING VIA MULTI-TASKING (MT-TARTAN)

We propose to directly incorporate knowledge of the end-task by multi-tasking T ∗ together with
Taux, before optionally fine-tuning on T ∗ exclusively. To this end, we introduce a set of task weights
w = (w∗, w1, · · · , w|Taux|) satisfying w∗ +

∑
i wi = 1, to modulate between the different losses.

Our new formulation is:

θ0 = argminθ Ltotal(θ,w) = argminθ

(
w∗LT∗(θ) +

∑
i

wiLTi
(θ)

)
(3)

3

Under review as a conference paper at ICLR 2022

Here, Equation 3 replaces Equation 1 and can be followed by the optional fine-tuning stage of
Equation 2. Note that this formulation fixes the tasks weights w throughout the training process.
We call this formulation End-task Aware Training via Multi-tasking (MT-TARTAN) because we
introduce the end-task directly into the training procedure, and do so by multi-tasking it with Taux.

MT-TARTAN allows us to prioritize performance on T ∗ in several ways. First, we can weight the
end-task higher than all the other auxiliary tasks. Also, during training, we can monitor LT∗ on
the end-task validation set and early stop when it plateaus; even if the auxiliary tasks have not yet
converged. This is not possible during standard pre-training because we do not train T ∗ and so
it performs at random before we actually start fine-tuning. Early stopping on T ∗ can represent
significant computational savings over end-task agnostic pre-training when the savings in data-
efficiency supercede the extra overhead of end-task aware gradient descent steps.

3.2 END-TASK AWARE TRAINING VIA META-LEARNING (META-TARTAN)

MT-TARTAN, DAPT and TAPT, all share the same drawback: they implicitly assume that the aux-
iliary tasks have static importance to the end-task over the lifetime of its training, either by being
end-task agnostic (DAPT and TAPT) or by having static task weights (MT-TARTAN). With MT-
TARTAN, an additional drawback noted by Wang et al. (2019); Yu et al. (2020) is that multi-tasking
can negatively impact task performance compared to isolated training. These shortcomings moti-
vate the formulation of an adaptive algorithm that can mitigate the negative influence of some tasks
whilst responding to the changing relevance of auxiliary tasks over the lifetime of end-task training.

As they stand, the pre-training equation pair (Equations 1, 2) and the MT-TARTAN pair (Equations
2, 3) are decoupled. The inner-level variables of the pre-training phase do not depend on the outer-
level variables of the fine-tuning phase. Thus the equation pairs are typically solved sequentially. We
propose to tightly couple Equations 2 and 3 by formulating jointly learning w and θ0 as a bi-level
optimization problem. A bi-level formulation allows us to leverage meta-learning (Schmidhuber,
1995) techniques to learn adaptive task weights which capture variable auxiliary task importance
whilst mitigating the contribution of harmful tasks. We propose a meta-learning algorithm in the
mold of Model Agnostic Meta-Learning (MAML) (Finn et al., 2017) to learn task weights. As a
bi-level problem, this can be formulated as :

θ∗,w∗ = argmin{θ ∈ g(θ0), w} LT∗(θ) (4)

where

θ0 = argminθ Ltotal(θ,w) = argminθ

(
w∗LT∗(θ) +

∑
Ti∈Taux

wiLTi
(θ)

)
(5)

We want to jointly learn w, with θ0, such that taking a gradient descent step modulated by w leads
to improvement in end-task generalization. We use performance on the end-task validation set
(Dval

T∗) as a meta-objective to train w. Performance on Dval
T∗ serves as a stand-in for end-task

generalization performance whilst also naturally capturing the asymmetrical importance of T ∗.

Our joint descent algorithm proceeds as follows. At each timestep t, we hold the task weights fixed
and update θt based on ∇θLtotal(θt,w). We then proceed to update w via gradient descent on the
end-task validation loss at θt+1. For this, we derive an approximation for∇wLvalT∗ (θt+1,w) below:

LvalT∗ (θt+1(w)) = LvalT∗

(
θt − β

(
w∗∇LT∗ +

∑
i

wi∇LTi

))

≈ LvalT∗ (θt)− β
(
w∗∇LT∗ +

∑
i

wi∇LTi

)T
∇LvalT∗ (θt)

We can take the gradient of the above first-order approximation w.r.t an individual weight wi. This
tells us how to update wi to improve the meta-objective.

∂LvalT∗ (θt+1(w))

∂wi
≈ −β

(
∇LTi

)T (∇LvalT∗ (θt)
)
= −β

(
∇LTi

)T (∇LvalT∗ (
[
θbody, φ

′]
t
)
)

(6)

In Equation 6, we explicitly specify
[
θbody, φ

′]
t

because computing losses on T ∗ depend on only
these parameters. LTi depends solely on

[
θbody, φ

i
]
t

but we leave this out to avoid notation clutter.

4

Under review as a conference paper at ICLR 2022

Our analysis above is similar to that of Lin et al. (2019) with one key difference: we learn a weighting
for the main task w∗ too. This ability to directly modulate T ∗ allows us to capture the fact that at
certain stages in training, auxiliary tasks may have greater impact on end-task generalization than the
end-task’s own training data. This choice also allows us to control for over-fitting and the influence
of bad (mislabelled or noisy) training data.

3.3 INTRODUCING A SEPARATE CLASSIFICATION HEAD FOR META-LEARNING

Observe that from Equation 6, updates forw 6= w∗ involve gradients computed from different model
heads φi and φ′ whilst for w∗, we are taking the dot product of gradients from the same end-task
head φ′. As we will show empirically in Section 5.4, computing weight updates this way creates a
strong bias towards the primary task, causing w∗ to rail towards 1 whilst the other weights dampen
to 0, which may be sub-optimal in the long run.

Intuitively, this short-horizon (greedy) behavior makes sense: the quickest way to make short-term
progress (improve LvalT∗ (θt+1)) is to descend solely on T ∗. More formally, the greedy approach
arises because we derive ∇wi

LvalT∗ (θt+1) in Equation 6 as a proxy for the gradient at θ∗, the outer-
loop end-point in Equation 4. Variations of this substitution are common in the meta-learning litera-
ture (Finn et al., 2017; Liu et al., 2018; Nichol et al., 2018) because it is computationally infeasible
to train a model to convergence every time we wish to compute∇wiLvalT∗ (θ

∗).

To remedy the greedy solution, instead of estimating ∇θLT∗ and ∇θLvalT∗ from the same classifica-
tion head (Equation 6), we introduce a special head φ∗ for computing the meta-objective. Specif-
ically, instead of trying to compute θ∗, we approximate it by fixing the body of the network θbody
and training the randomly initialized head φ∗ to convergence on a subset of the end-task training
data. We do this every time we wish to estimate∇wiLvalT∗ (θ

∗). Introducing φ∗ eliminates the strong
positive bias on w∗ and enables us to compute a better proxy for the meta-gradient at θ∗:

∂LvalT∗ (θ
∗(w))

∂wi
≈
(
∇θLTi

)T (∇θLvalT∗ ([θbody;φ
∗]t)
)

(7)

Equation 7 represents a simple-to-implement alternative to Equation 6. We provide a more de-
tailed justification for Equation 7 in Appendix A.1. In Section 5.4, we empirically validate that
the transition from Equation 6 to 7 improves performance whilst mitigating pathological solutions.
Our approach of creating φ∗ for approximating the meta-objective (down-stream validation perfor-
mance) is inspired by Metz et al. (2018), who use a similar technique to construct a meta-objective
for evaluating the quality of unsupervised representations.

See Algorithm 1 in Appendix A.3 for details about META-TARTAN.

4 EXPERIMENTAL SETUP

In keeping with previous work (Devlin et al., 2018; Gururangan et al., 2020; Lee et al., 2020), we
focus on Taux as a set of MLM tasks on varied datasets. In the case of DAPT and our end-task aware
variants of it, Taux is an MLM task with data from the domain of the end-task. For TAPT, Taux is an
MLM task with data from the end-task itself. DAPT, TAPT and DAPT+TAPT (chained pre-training
with DAPT followed by TAPT) will serve as our baseline pre-training approaches. We will compare
these baselines to their end-task aware variants that use MT-TARTAN and META-TARTAN.

Our choice of baselines reflect our focus on the continued pre-training setting (Section 2.2) instead
of pre-training from scratch as with generalist models (Section 2.1). The continued pre-training
setting is more ubiquitous amongst everyday practitioners as it is less computationally demanding.
It thus lends itself more easily to exploration. We hope that our initial inquiry into the continued-
pretraining setting will spur future investigation into end-task-aware training from scratch.

Datasets Our experiments focus on two domains: computer science (CS) papers and biomedical
(BIOMED) papers. We follow Gururangan et al. (2020) and build our CS and BIOMED domain data
from the S2ORC dataset (Lo et al., 2019). We extract 1.49M full text articles to construct our CS
corpus and 2.71M for our BIOMED corpus. Under both domains, our end-tasks are low-resource
classification tasks. Using low-resource tasks allows us to explore a setting where pre-training can
have a significant impact.

5

Under review as a conference paper at ICLR 2022

Under the CS domain, we consider two tasks: ACL-ARC (Jurgens et al., 2018) and SCIERC (Luan
et al., 2018). ACL-ARC is a 6-way citation intent classification task with 1688 labelled training
examples. For SCIERC, the task is to classify the relations between entities in scientific articles.
This task has 3219 labelled examples as training data. We choose CHEMPROT (Kringelum et al.,
2016) as the classification task from the BIOMED domain. This task has 4169 labelled training
examples and the goal is to classify chemical-protein interactions. More details of these datasets can
be found in Table 2 of Gururangan et al. (2020). Gururangan et al. (2020) evaluate against all 3 tasks
and their available code served as a basis on which we built MT-TARTAN and META-TARTAN.

Model Details We use a pre-trained RoBERTabase (Liu et al., 2019) as the shared model base and
implement each task as a separate multi-layer perceptron (MLP) head on top of this pre-trained base.
As in Devlin et al. (2018), we pass the [CLS] token embedding from RoBERTabase to the MLP for
classification.

Training Details For DAPT and TAPT, we download the available pre-trained model bases pro-
vided by Gururangan et al. (2020). To train thier corresponding classification heads, we follow the
experimental setup described in Appendix B of Gururangan et al. (2020).

Performing end-task aware training introduces a few extra hyper-parameters. We fix the other hyper-
parameters to those used in Gururangan et al. (2020). MT-TARTAN and META-TARTAN introduce
joint training of a classification head for the end-task T ∗. We experiment with batch sizes of 128,
256 and 512 for training this head. We try out learning rates in the set {10−3, 10−4, 10−5} and
drop out rates of {0.1, 0.3}. For META-TARTAN since we are now learning the task weights, w,
we test out task weight learning rates in {10−1, 5 × 10−2, 3 × 10−2, 10−2}. Note that for all MT-
TARTAN experiments we use equalized task weights 1

|Taux|+1 . A small grid-search over a handful
of weight configurations did not yield significant improvement over the uniform task weighting. We
use the Adam optimizer (Kingma & Ba, 2014) for all experiments.

As mentioned in section 3.3, we train as separate meta-classification head, φ∗, to estimate the valida-
tion meta-gradients. To estimate φ∗, we use batch sizes of {16, 32} samples from T ∗’s train set. We
regularize the meta-head with l2 weight decay and set the decay constant to 0.1. We use a learning
rate 10−3 to learn the meta-head. We stop training φ∗ after 10 gradient descent steps.

5 RESULTS AND DISCUSSION

In this section, we will discuss the results of comparing our models against DAPT and TAPT base-
lines.1 Broadly, we demonstrate the effectiveness of end-task awareness as improving both perfor-
mance and data-efficiency.

Domain Task RoBERTa TAPT MT-TARTAN META-TARTAN
CS ACL-ARC 66.033.55 67.743.68 70.484.42 70.084.70

SCIERC 77.962.96 79.531.93 80.810.74 81.480.82

BIOMED CHEMPROT 82.100.98 82.170.65 84.290.63 84.490.50

Table 1: Comparison of our end-task aware approaches to RoBERTa and TAPT. All end-task
aware approaches use TAPT as the auxiliary task. Reported results are test macro-F1, except for
CHEMPROT, for which we report micro-F1, following Beltagy et al. (2019). We average across 10
random seeds, with standard deviations as subscripts. Statistically significant performance (p-value
from permutation test < 0.05), is boldfaced. See A.2,A.5 for more details about this table

5.1 END-TASK AWARENESS IMPROVES OVER TASK-AGNOSTIC PRE-TRAINING

Table 1 compares TAPT to its end-task aware variants. Just as in Gururangan et al. (2020), we ob-
serve that performing task adaptive pre-training improves upon just fine-tuning RoBERTa. However,
note that introducing the end-task by way of multi-tasking with the TAPT MLM objective leads to

1Our results are slightly different from those presented in Table 5 of Gururangan et al. (2020) in terms
of absolute values but the trends observed there still hold here. We attribute these differences to (1) minor
implementation differences, and (2) averaging performance over ten seeds instead of five as used in the original
paper in order to more strongly establish statistical significance. We observe slightly lower performance on
ACL-ARC and SCIERC tasks due to these changes and higher performance on CHEMPROT.

6

Under review as a conference paper at ICLR 2022

a significant improvement in performance. This improvement is consistent across the 3 tasks we
evaluate against. We find that both MT-TARTAN and META-TARTAN achieve similar results in
this setting. In Appendix A.4, we show that the gains from end-task awareness are not restricted to
only text data; we observe similar trends for image classification.

5.2 END-TASK AWARENESS IMPROVES DATA-EFFICIENCY

Gururangan et al. (2020) train DAPT on large amounts of in-domain data in order to achieve results
that are competitive with TAPT. They use 7.55 billion tokens in the case of the BIOMED domain
and 8.10 billion tokens for the CS domain. This is on average over 104× the size of the training
data of our end-tasks of interest. The large amount of data required to train a competitive DAPT
model represents a significant computational burden to the every-day practitioner. This begets the
question: are such large amounts of auxiliary data necessary for achieving good downstream per-
formance? To answer this, we train DAPT and its TARTAN version on variable amounts of data for
both SCIERC and ACL-ARC tasks.

100 101 102 103 104

Auxiliary data size as fraction of labelled training data

76

78

80

82

F1

SCIERC Task

DAPT
MT-TARTAN w DAPT
META-TARTAN w DAPT

100 101 102 103 104

Auxiliary data size as fraction of labelled training data

65

70

75

F1

ACL-ARC Task

DAPT
MT-TARTAN w DAPT
META-TARTAN w DAPT

Figure 2: Compared to DAPT, TARTAN makes more efficient use of data. Large standard deviations
in this setting are attributable to the heterogeneity of the CS domain data used in the DAPT setting
and the fact that our tasks are low-resource.

TARTAN is more data-efficient than DAPT In Figure 2, we focus on training on a small fraction
of available domain data n = {100, 101} × |Train| for the DAPT auxiliary task. Full domain
data is n′ ≈ 104 × |Train|. This relatively low auxiliary data regime represents a realistic setting
that is akin to those encountered by everyday practitioners who are likely to be computationally
constrained. As can be seen in Figure 2, on the ACL-ARC task, META-TARTAN matches the
performance of DAPT when the sizes of the domain data and end-task data are of the same order
(100). At this data size, META-TARTAN supersedes DAPT on the SCIERC task. When trained
on 10× more auxiliary data, META-TARTAN supersedes DAPT in performance on both tasks.
META-TARTAN establishes a new state-of-the-art result (82.081.19) on the SCIERC task. On the
ACL-ARC task, META-TARTAN achieves 71.194.88, which is close to DAPT’s performance of
72.493.28 using more than 103× auxiliary data. These results indicate that end-task awareness can
improve data-efficiency and in this case, improvements are on the order of 1000×.

Domain Task DAPT DAPT+TAPT MT-TARTAN META-TARTAN
CS ACL-ARC 68.602.62 69.125.76 71.581.65 71.052.37

SCIERC 76.441.19 77.621.38 81.021.24 81.411.70

BIOMED CHEMPROT 80.760.54 78.220.74 83.770.60 83.380.89

Table 2: We use n = 10× |Train|, a small fraction the full domain data which is > 104 × |Train|.
TARTAN methods are trained on both DAPT and TAPT. We average performance across 10 seeds.
Statistically significant performance is boldfaced. See A.2, A.6 for more details about this table.

TARTAN is more data-efficient than DAPT+TAPT Table 2 compares DAPT and DAPT+TAPT
(DAPT followed by TAPT) to *-TARTAN which multi-task DAPT, TAPT and the end-task. MT-
TARTAN and META-TARTAN significantly outperform DAPT and DAPT+TAPT in 2 of the tasks
whilst giving higher average performance in the ACL-ARC task. We thus conclude that end-task
awareness allows us to get a greater performance boost out of the same amount of data.

We explore the data efficiency of TARTAN methods even further by comparing the rel-
atively data-poor versions of MT-TARTAN and META-TARTAN above (n = 10 ×
|Train|) to the DAPT and DAPT+TAPT variants trained on all the available domain data
(n′ ≈ 104 × |Train|). We can see from Table 3 that for the CS domain, our end-task

7

Under review as a conference paper at ICLR 2022

aware variants come close to (ACL-ARC) and even supersede (SCIERC) the end-task agnos-
tic variants though trained with ≈ 1000× less data. For BIOMED domain (CHEMPROT
task), increasing the amount of data drastically improves the performance of end-task ag-
nostic variants compared to MT-TARTAN and META-TARTAN trained on much less data.

Task DAPTfull +TAPTfull
ACL-ARC 72.493.28 73.791.75

SCIERC 79.972.11 80.001.08

CHEMPROT 86.541.05 87.240.81

Table 3: DAPT and DAPT+TAPT runs on
all domain data available.

Zhang et al. (2020) show that different tasks ex-
hibit sigmoid-like curves in terms of how much pre-
training data is required to achieve good results be-
fore performance levels off. We contextualize Ta-
bles 2 and 3 within said work and posit that the
CHEMPROT task intrinsically requires much more
data (compared to our other tasks) before perfor-
mance begins to improve appreciably.

5.3 META-TARTAN MORE EFFECTIVELY
UTILIZES OUT-OF-DISTRIBUTION AUXILIARY DATA OVER MT-TARTAN

TARTAN ACL-ARC SCIERC CHEMPROT
MT 69.270.96 81.530.99 80.263.79

META 71.194.88 82.081.19 82.310.75

Table 4: All methods use only DAPT as auxiliary task.
We use n = 10 × |Train|. We report averages across 3
random seeds. Best average task performance is bolded.

So far we have seen that leveraging
TAPT (Table 1 uses TAPT only, 2 uses
TAPT+DAPT) leads MT-TARTAN and
META-TARTAN to perform similarly.
The advantage of learning adaptive
weights becomes more pronounced in
the DAPT only setting. Note that whilst
TAPT uses the end-task’s own training

data for masked language modelling, DAPT uses heterogeneous domain data whose impact on the
end-task performance is less clear. Notice from Table 4 that when required to rely solely on domain
data for auxiliary tasking, META-TARTAN improves performance over MT-TARTAN. We attribute
META-TARTAN’s improvement over MT-TARTAN on its ability to more flexibly adapt to incoming
data of variable utility to the end-task.

5.4 TASK WEIGHTING STRATEGIES DISCOVERED BY META-LEARNING

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Iteration 1e3

0.40

0.45

0.50

0.55

0.60

Ta
sk

 W
ei

gh
t

META-TARTAN Weights : Separate Meta-Head
DAPT-MLM
ACL-ARC

0 2 4 6 8 10
Iteration 1e3

0.40

0.45

0.50

0.55

0.60

Ta
sk

 W
ei

gh
t

META-TARTAN Weights : Train Head is Meta-Head

DAPT-MLM
ACL-ARC

Figure 3: It is important to use a separate classification head for computing meta-gradients. Using
the same head as used for training results in a bias that up-weights the end-task and fails to effectively
utilize the auxiliary tasks.

To illustrate the importance of the separate classification head φ∗ for computing the meta-signal for
the task weights (described in Section 3.3), we run META-TARTAN experiments with ACL-ARC
as the end-task and DAPT as the auxiliary task. We compare using either a separate (φ∗) or the same
(φ′) classification head for calculating the meta-gradient. Figure 3 plots the task weightings learned
in each setting during training. We can clearly see that using a separate head counteracts the patho-
logical solution of down-weighting all tasks that are not T ∗ and as a result, improves performance:
a delta of 1.7 F1 points in this case. The strategy discovered by META-TARTAN presents an in-
teresting contrast to classical pre-training: whilst the initial phase of classical pre-training involves
solely the auxiliary task, early in training, META-TARTAN up-weights the auxiliary task but does
not fully zero out the end-task. Later in training, we see leveling off of weights instead of railing the
end-task to 1 as in classical pre-training.

Next, we plot a similar graph for using both DAPT and TAPT across our three tasks in Figure
4. From the figure, it is apparent that META-TARTAN discovers similar task-weighting strategies

8

Under review as a conference paper at ICLR 2022

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.30

0.35

0.40

Ta
sk

 W
ei

gh
t

META-TARTAN : ACL-ARC
DAPT-MLM
TAPT-MLM
ACL-ARC

0 1 2 3 4
Iteration 1e4

0.25

0.30

0.35

0.40

0.45

Ta
sk

 W
ei

gh
t

META-TARTAN : SCIERC

DAPT-MLM
TAPT-MLM
SCIERC

0 1 2 3 4
Iteration 1e4

0.30

0.40

Ta
sk

 W
ei

gh
t

META-TARTAN : CHEMPROT

DAPT-MLM
TAPT-MLM
CHEMPROT

Figure 4: The meta-learned task weightings show similar trajectories across different end-tasks.

across different end-tasks. This suggests that the MLM objective and META-TARTAN’s strategy
for learning task weights are generic enough to induce similar behaviours across tasks. In general,
DAPT is significantly up-weighted compared to the end-task and TAPT. Note that the TAPT +
ACL-ARC task weights (Figure 4) has the same approximate trajectory as ACL-ARC task weight in
Figure 3. It seems important to assign high weight to the task data (Figure 3) but not necessarily all
of it needs to go to the actual task loss (Figure 4). We hypothesize that the diversity in the domain
data counteracts overfitting to the end-task data (all our tasks are low-resource) and results in DAPT
being up-weighted.

6 RELATED WORK

Multi-task learning can be traced back to seminal work by Caruana (1995), Caruana (1997), and
has since been the subject of a flourishing literature, recent surveys of which can be found in Ruder
(2017) or Zhang & Yang (2021). In NLP, while initial work from Collobert & Weston (2008) already
showed the benefits of multi-task learning, it has only recently become a central topic in the field,
with the advent of multi-task benchmarks (Wang et al., 2018b; McCann et al., 2018).

Pre-training is a variation on the multi-task learning paradigm where a machine learning model is
first trained on a generic (generally more data-rich) task, before being fine-tuned on an end task. In
NLP this practice dates back to the use of pre-trained word embeddings (Turian et al., 2010; Mikolov
et al., 2013) and later pre-trained encoders (Kiros et al., 2015; Dai & Le, 2015). Peters et al. (2018)
and Howard & Ruder (2018) heralded a renaissance of pre-training before BERT (Devlin et al.,
2018) and its many offshoots (Liu et al., 2019; Yang et al., 2019; Lewis et al., 2019) cemented it as
the de facto standard for modern NLP.

As an idea, meta-learning, or “learning to learn”, dates back to early work from Schmidhuber (1995);
Thrun (1998). More relevant to our work however is a modern strand of the literature concerned with
gradient-based meta-learning for solving bi-level optimization problems, first popularized by Finn
et al. (2017) and followup work (Nichol et al., 2018; Rajeswaran et al., 2019) for few-shot learning.
This method has transferred to a variety of applications such as architecture search (Liu et al., 2018),
multilingual data weighting (Wang et al., 2020) and model poisoning (Kurita et al., 2020).

7 CONCLUSION

In this work, we advocate for a paradigm shift in the way we approach pre-training. We have
motivated making pre-training more end-task aware when the end task is known in advance. Our
work introduced two novel end-task aware training algorithms: End-task Aware Training via Multi-
tasking (MT-TARTAN) and End-task Aware Training via Meta-learning (META-TARTAN). In Sec-
tion 5, through experiments on 3 different datasets, we demonstrated the ability of our proposed
algorithms to improve performance and data-efficiency over their end-task agnostic counterparts.

This work suggests several promising directions for future work. First, it would be interesting to
see if end-task aware training of generalist models like BERT and RoBERTa from scratch result in
improved accuracy and efficiency; both in terms of data and computation. Also, instead of learn-
ing coarse task level weights, can further performance improvements be achieved via finer-grained
example level weighting as in Wang et al. (2020)? Can meta-learning algorithms like META-
TARTAN enable more effective utilization of previously discarded (Aroca-Ouellette & Rudzicz,
2020) pre-training auxiliary tasks like Next Sentence Prediction (NSP) (Devlin et al., 2018)? We
hope this work spurs conversation around these questions and many more.

9

Under review as a conference paper at ICLR 2022

8 ETHICS STATEMENT

Our work introduces new algorithms but leverages pre-existing datasets and models. Overall, this
work inherits some of the risk of original work upon which it is implemented. Algorithms for contin-
ued training such as TAPT and DAPT necessitate per-task training of unsupervised objectives which
result in corresponding green-house emissions due to energy consumption (Strubell et al., 2019).
However, as shown in Sections 3 and 5, our new compute-efficient algorithms greatly increase the
data efficiency of these algorithms, reducing these harms as well as the various harms associated
with labor for data-collection (Jo & Gebru, 2020). Also, since our work is set in the context of
pre-existing datasets and models (Section 4), we recognize that any ethical issues that have been re-
vealed in these (such as bias (Bender et al., 2021) or privacy leakage (Carlini et al., 2021)) may also
propagate to models trained using our work, and mitigation strategies such as Schick et al. (2021);
Liang et al. (2021) may be necessary. Finally, there is a potential risk in META-TARTAN that lever-
aging a validation set for defining the meta-objective could amplifying bias that exists in this data
split, although this is done indirectly through task weighting and hence we believe that this risk is
small.

9 REPRODUCIBILITY STATEMENT

We pledge to release the source-code for this project to improve the ease of reproducibility of our
results by the NLP and machine learning communities. In Section 4, we have specified details about
datasets, training regimes and models to allow anyone who wishes to reproduce our results without
our original source code to do so. Our discussion of the algorithmic and evaluation details can be
found in Appendices A.1, A.3 and A.2. As we noted in 4, we build off of Gururangan et al. (2020)’s
implementations which can be found at https://github.com/allenai/dont-stop-pretraining.

10

https://github.com/allenai/dont-stop-pretraining

Under review as a conference paper at ICLR 2022

REFERENCES

Stéphane Aroca-Ouellette and Frank Rudzicz. On Losses for Modern Language Models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4970–4981, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.403. URL https://www.aclweb.org/anthology/
2020.emnlp-main.403.

Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text.
arXiv preprint arXiv:1903.10676, 2019.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pp. 610–623, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raffel.
Extracting training data from large language models. In USENIX Security Symposium, 2021.

Rich Caruana. Learning many related tasks at the same time with backpropagation. In Advances in
neural information processing systems, pp. 657–664, 1995.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference on
Machine learning, pp. 160–167, 2008.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. arXiv preprint
arXiv:1511.01432, 2015.

Lucio M. Dery, Yann Dauphin, and David Grangier. Auxiliary task update decomposition : the
good, the bad and the neutral. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=1GTma8HwlYp.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. The hitchhiker’s guide to testing
statistical significance in natural language processing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1383–1392, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR,
2017.

Phillip I Good. Permutation, parametric and bootstrap tests of hypotheses: a practical guide to
resampling methods for testing hypotheses. 2005.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 328–339, 2018.

Eun Seo Jo and Timnit Gebru. Lessons from archives: Strategies for collecting sociocultural data
in machine learning. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, pp. 306–316, 2020.

11

https://www.aclweb.org/anthology/2020.emnlp-main.403
https://www.aclweb.org/anthology/2020.emnlp-main.403
https://openreview.net/forum?id=1GTma8HwlYp

Under review as a conference paper at ICLR 2022

David Jurgens, Srijan Kumar, Raine Hoover, Dan McFarland, and Dan Jurafsky. Measuring the
evolution of a scientific field through citation frames. Transactions of the Association for Com-
putational Linguistics, 6:391–406, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Skip-thought vectors. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
f442d33fa06832082290ad8544a8da27-Paper.pdf.

Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak, Ole Lund, Tudor I Oprea, and Olivier
Taboureau. Chemprot-3.0: a global chemical biology diseases mapping. Database, 2016, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pre-trained models.
arXiv preprint arXiv:2004.06660, 2020.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jae-
woo Kang. Biobert: a pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics, 36(4):1234–1240, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards understand-
ing and mitigating social biases in language models. In International Conference on Machine
Learning, pp. 6565–6576. PMLR, 2021.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urta-
sun, and Richard Zemel. Reviving and improving recurrent back-propagation. In International
Conference on Machine Learning, pp. 3082–3091. PMLR, 2018.

Xingyu Lin, Harjatin Singh Baweja, George Kantor, and David Held. Adaptive auxiliary task
weighting for reinforcement learning. Advances in neural information processing systems, 32,
2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S Weld. S2orc: The semantic
scholar open research corpus. arXiv preprint arXiv:1911.02782, 2019.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540–1552. PMLR, 2020.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task identification of en-
tities, relations, and coreference for scientific knowledge graph construction. arXiv preprint
arXiv:1808.09602, 2018.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

12

https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf

Under review as a conference paper at ICLR 2022

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Meta-learning up-
date rules for unsupervised representation learning. arXiv preprint arXiv:1804.00222, 2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Sys-
tems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.
cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, and Ethan Fetaya. Auxiliary learning by
implicit differentiation. arXiv preprint arXiv:2007.02693, 2020.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, 2018.

Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-supervised
sequence tagging with bidirectional language models. arXiv preprint arXiv:1705.00108, 2017.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. arXiv preprint arXiv:1909.04630, 2019.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal
for reducing corpus-based bias in nlp. arXiv preprint arXiv:2103.00453, 2021.

Jürgen Schmidhuber. On learning how to learn learning strategies. 1995.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. Word representations: A simple and general
method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 384–394, Uppsala, Sweden, July 2010. Association for
Computational Linguistics. URL https://aclanthology.org/P10-1040.

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappagari, R Thomas McCoy, Roma Patel, Najoung
Kim, Ian Tenney, Yinghui Huang, Katherin Yu, et al. Can you tell me how to get past sesame
street? sentence-level pretraining beyond language modeling. arXiv preprint arXiv:1812.10860,
2018a.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018b.

Xinyi Wang, Hieu Pham, Paul Michel, Antonios Anastasopoulos, Jaime Carbonell, and Graham
Neubig. Optimizing data usage via differentiable rewards. In International Conference on Ma-
chine Learning, pp. 9983–9995. PMLR, 2020.

Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding neg-
ative transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11293–11302, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

13

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://aclanthology.org/P10-1040

Under review as a conference paper at ICLR 2022

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

Yian Zhang, Alex Warstadt, Haau-Sing Li, and Samuel R Bowman. When do you need billions of
words of pretraining data? arXiv preprint arXiv:2011.04946, 2020.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 2021.

14

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 JUSTIFYING THE INTRODUCTION OF A META-HEAD

Proof. To arrive at Equation 7 we start with the closed form solution for ∇wi
LvalT∗ (θ

∗) and then
introduce approximations in order to produce Equation 7. First, note that :

∂LvalT∗ (θ
∗(w))

∂wi
=

(
∇θLvalT∗ (θ

∗(w))

)T(
∇wiθ

∗(w)

)
[Chain rule] (8)

To get ∇wi
θ∗(w) we invoke the Cauchy Implicit Function Theorem (IFT) as with Lorraine et al.

(2020); Navon et al. (2020); Liao et al. (2018):

∇wi
θ∗(w) =

[
∇2
θLtotal(θ

∗(w))

]−1[
∇wi
∇θLtotal(θ

∗(w))

]
[IFT]

=

[
∇2
θLtotal(θ

∗(w))

]−1[
∇wi
∇θ
(
w∗LT∗(θ∗(w)) +

∑
Ti∈Taux

wiLTi
(θ∗(w))

)]

=

[
∇2
θLtotal(θ

∗(w))

]−1[
∇θLTi

(θ∗(w))

]
[Only terms with wi survive]

Bringing it all together, we get :

∂LvalT∗ (θ
∗(w))

∂wi
=

(
∇θLvalT∗ (θ

∗(w))

)T([
∇2
θLtotal(θ

∗(w))

]−1[
∇θLTi(θ

∗(w))

])
(9)

Computing ∇wi
LvalT∗ (θ

∗) from Equation 9 is computationally unwieldy since we would not only
have to optimize θ to convergence for every step of wi but we would also have to invert the Hessian
of a typically large model. Our middle ground between Equations 9 and 6 (Equation 7) makes use
of the following approximations:

• We approximate the inverse Hessian with the identity. This approximation is not new;
we follow previous work like Lorraine et al. (2020)(Table 3) who explore the use of this
approximation because of computational efficiency.[

∇2
θLtotal(θ

∗(w))

]−1
= lim
i→∞

i∑
j=0

(
I−∇2

θLtotal(θ
∗(w))

)j
≈ I

We are assuming the contribution of terms with i > 0 are negligible.

• Instead of training the whole network to convergence, at each time-step, we fix the body of
the network and train a special head φ∗ to convergence on a small batch of end-task training
data. We then use [θbody;φ

∗] as a proxy for θ∗. This is a computationally feasible work-
around to training all of θ to convergence to get a single step gradient estimate. Especially
in the continued pre-training setting where a pre-trained generalist model like BERT is used
as θbody, this approximation is reasonable. To our knowledge, we are the first to suggest
this approximation.

∇θLvalT∗ (θ
∗)→ ∇θLvalT∗ ([θbody;φ

∗])

• Above, we have approximated θ∗ = [θbody;φ
∗]. Since φ∗ is only used to evaluate end-task

(T ∗) validation data, it means θ remains unchanged with respect to the training data for
task Ti. Thus ∇θLTi([θbody;

(
φ∗, . . . , φi

)
]) = ∇θLTi([θbody;φ

i]) = ∇θLTi(θ)

Bringing it all together, we get Equation 7, repeated here:

∂LvalT∗ (θ
∗(w))

∂wi
≈
(
∇θLTi

)T (∇θLvalT∗ ([θbody;φ
∗]t)
)

15

Under review as a conference paper at ICLR 2022

A.2 CALCULATING P-VALUES FROM PERMUTATION TEST

We used the permutation test (Good, 2005; Dror et al., 2018) to test for statistical significance.
For each test, we generate 10000 permutations to calculate significance level. This is sufficient to
converge to a stable p-value without being a computational burden. We chose this over the common
student t-test because :

1. We have only 10 runs per algorithm and permutation tests are more robust at low sample
size

2. Permutation test is assumption free. Student t-tests assume that the samples are normally
distributed

3. Permutation test is robust to variance in the samples, so even though error-bars can overlap,
we still establish significant differences in the samples. Variance in our results is expected
due to small dataset sizes of end-tasks.

A.3 ALGORITHM FOR META-TARTAN

Algorithm 1: End-task Aware Training via Meta-learning (META-TARTAN)
Require: T ∗,Taux: End-task, Set of auxiliary pre-training tasks
Require: η, β1, β2: Step size hyper-parameters
Initialize :

Pre-trained RoBERTa as shared network body, θbody
Task weightings: w∗, wi = 1

|Taux|+1

Randomly initialize :
end-task head as φ′
meta head for end-task as φ∗
task head, φi, for each Ti ∈ Taux

while not done do
B∗tr ∼ T ∗train // Sample a batch from end-task

g∗θ , g
∗
φ ←

[
∇θ,∇φ′

](
LT∗(θ, φ′, B∗tr)

)
// Get end-task grads

giθ, g
i
φ ←

[
∇θ,∇φi

](
LTi

(θ, φi, Bi)

)
// Get task grads. ∀i ∈ [n], Bi ∼ Ti

// Learn a new meta head
φ∗ ← estimate meta head(B∗tr, β2, θ, φ

∗) // B∗tr ∼ T ∗train
g∗meta ← ∇θLT∗(θ, φ∗, B∗val) // B∗val ∼ T ∗val
// Update task weightings
w∗ ← w∗ + η cos(g∗meta, g

∗
θ)

wi ← wi + η cos(g∗meta, g
i
θ)

// Update task parameters
α∗, α1, . . . , α|Taux| = softmax(w∗, w1, . . . , w|Taux|)

Update θbody ← θbody − β1
(
α∗g∗θ +

∑
i αig

i
θ

)
Update

(
φi ← φi − β2giφ

)
,
(
φ′ ← φ′ − β2g∗φ

)
end
Result : θ, φ′

A.4 VISION EXPERIMENTS

We validate that the gains from end-task Aware Training are not siloed to only learning from text.
We conduct an experiment comparing end-task aware training on images to its end-task agnostic
variant. We use the Cifar100 dataset (Krizhevsky et al., 2009). We use the Medium-Sized Mammals
superclass (one of the 20 coarse labels) as our main task whilst the other 19 super classes are used
as auxiliary data. Our primary task is thus a 5-way classification task of images different types of

16

Under review as a conference paper at ICLR 2022

Method Medium-Sized Mammals
Regular (Task-Agnostic) Pre-training 46.72.2
MT-TARTAN 51.31.2
META-TARTAN 52.33.8

Table 5: We report averages across 3 random seeds. Best average task accuracy is bolded.
medium-sized mammals whilst whilst the remaining 95 classes are grouped into a single auxiliary
task.

As can be seen from Table 5, being end-task aware improves over task agnostic pre-training. We
find that, again, when our auxiliary task consist of solely domain data and no task data, META-
TARTAN performs better than MT-TARTAN (as measured by averaged performance).

A.5 FULL TAPT TABLE WITH SIGNIFICANCE LEVELS

We repeat Table 1 and provide details about levels of statistical signifance.

Task TAPT MT-TARTAN p−values META-TARTAN p−values
ACL-ARC 67.743.68 70.484.42 0.040 70.084.70 0.069
SCIERC 79.531.93 80.810.74 0.038 81.480.82 0.005
CHEMPROT 82.170.065 84.290.63 0.000 84.490.50 0.000

Table 6: Duplicate of Table 1. Significance levels as computed from the permutation test. All
p−values are relative to the TAPT column. Statistically significant performance(p-value from per-
mutation test < 0.05), is boldfaced

A.6 FULL DAPT/DAPT+TAPT TABLE

We repeat Table 3 and provide details about levels of statistical signifance.

Task DAPT DAPT+TAPT MT-TARTAN p-values META-TARTAN p-values
ACL-ARC 68.602.62 69.125.76 71.581.65 0.110 71.052.37 0.174
SCIERC 76.441.19 77.621.38 81.021.24 0.000 81.411.70 0.000
CHEMPROT 80.760.54 78.220.74 83.770.60 0.000 83.380.89 0.000

Table 7: Duplicate of Table 2. Significance levels as computed from the permutation test. All
p−values are relative to max

(
DAPT,DAPT+ TAPT

)
. Statistically significant performance(p-

value from permutation test < 0.05), is boldfaced

17

	Introduction
	Formalizing Pre-training and Continued Pre-training
	Pre-training
	Continued Pre-training

	End-Task Aware Training (TARTAN)
	End-task Aware Training via Multi-tasking (MT-TARTAN)
	End-task Aware Training via Meta-learning (META-TARTAN)
	Introducing a separate classification head for meta-learning

	Experimental Setup
	Results and Discussion
	End-task awareness improves over task-agnostic pre-training
	End-task awareness improves data-efficiency
	META-TARTAN more effectively utilizes out-of-distribution auxiliary data over MT-TARTAN
	Task weighting strategies discovered by meta-learning

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Justifying the introduction of a Meta-Head
	Calculating p-values from Permutation Test
	Algorithm for META-TARTAN
	Vision Experiments
	Full TAPT Table with Significance levels
	Full DAPT/DAPT+TAPT Table

