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1. Introduction
Metal–organic frameworks (MOFs) have garnered

significant interest for gas storage and catalysis ap-
plications because of their exceptional porosity and
chemical versatility. Their performance is heavily
dependent on phonon-mediated lattice dynamics,
affecting theirmechanical and thermal stability. The
vast chemical space of MOFs makes experimental
screening of such properties impractical, and com-
putational modeling via ab initio methods like Den-
sity Functional Theory (DFT) is infeasible due to the
large number of atoms in the unit cells and com-
plex anharmonic effects. Therefore, AI-driven mod-
els are needed to enable high-throughput phonon
calculations with DFT-level accuracy at a fraction of
the computational cost.
To address these challenges, we introduceMACE-

MP-MOF0, amachine learned potential based on the
MACE framework [1], fine-tuned on a curated dataset
of 127 diverse and representative MOFs. By leverag-
ing its architecture of equivariant message-passing
graph tensor network with many-body information
of atomic features encoded in each layer, MACE-MP-
MOF0 efficiently predicts phonon density of states
and important derived properties like the bulk mod-
ulus in agreementwith experiments andDFT. Strate-
gic dataset curation to efficiently sample the practi-
cally infinite phase-space of MOFs enhances trans-
ferability while minimizing computational costs.
The novelty ofMACE-MP-MOF0 also lies in its ability
to perform quasi-harmonic phonon calculations to
capture the anharmonic effects of negative thermal
expansion comparable to DFT in a high-throughput
manner, marking a significant breakthrough inMOF
research. This AI-driven model bridges the gap be-
tween computational efficiency and predictive accu-
racy, enabling large-scale phonon calculations and
accelerating MOF discovery.

2. Benchmarking against other State-of-the-Art
Machine Learning Potentials (MLPs)
The development of MACE-MP-MOF0 brings a

significant improvement for MOFs over its founda-
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tion model, MACE-MP-0 [2]. While MACE-MP-0 per-
formed well for equilibrium structure predictions of
MOFs, it struggledwith accuratelymodeling phonon
density of states, oftenpredicting unstable lattice dy-
namics and spurious imaginary phononmodes even
in the most commonly studied MOFs like MOF-5, as
shown in Figure 1. This MACE-MP-MOF0 model,
fine-tuned on a relatively small DFT dataset of 4768
points, corrects the deficiencies of the foundation
model while achieving 50% higher computational
efficiency and delivering 10× more accurate opti-
mized geometries, forces, energies, and stress.

Fig. 1: Comparison of Density of States (DOS) pre-
dicted by MACE-MP-MOF0 and the foundation
MACE-MP-0 model relative to DFT

2.1 A Scalable and Accurate Alternative to On-the-Fly
MLPs
Recently, several neural network-based MLPs

such as [3, 4] and on-the-fly MLPs such as kernel-
based potentials in the Vienna Ab initio Simulation
Package [5, 6, 7, 8] (VASP MLPs) and Moment Ten-
sor Potentials (MTP) [9] reported in [10] have demon-
strated sufficient accuracy in obtaining vibrational
properties relative to DFT for MOFs.
Hence, we benchmark phonon predictions of

MACE-MP-MOF0 against these state-of-the-art VASP
MLPs and MTPs reported in [10], using four diverse
and representative MOFs spanning a wide range of
chemistries and topologies highlighted in Table 1.
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Table 1: Root Mean Square Deviations (RMSDs) in phonon frequencies relative to DFT for the investigated
MOFs obtained with MACE-MP-MOF0 and on-the-fly MTP and VASP MLP models

MOF Space Group RMSDMACE-MP-MOF0 RMSDMTP RMSDVASP MLP
(THz) (THz) (THz)

MOF-5 (Zn2+) Fm-3m 0.033 0.099 0.27
UiO-66 (Zr4+) F-43m 0.082 0.111 0.312
MOF-74 (Zn2+) Cc 0.173 0.093 0.126
MIL-53 (Al3+) R-3 0.138 0.156 0.264

Table 2: The number of reference structures gener-
ated for the investigatedMOFs in the training sets
of the respective MLPs

MOF MACE-MP-
MOF0

On-The-Fly
MLPs

MOF-5 (Zn2+) 92 1110
UiO-66 (Zr4+) 58 1373
MOF-74 (Zn2+) 60 2549
MIL-53 (Al3+) 29 3073

As shown in Table 2, these on-the-fly models re-
quired 10-100 × more reference configurations in
their training sets per MOF than MACE-MP-MOF0
and need to be retrained for each newMOF, severely
limiting their scalability for high-throughput screen-
ing. In contrast, MACE-MP-MOF0 is trained as a
generalizable model covering 60% of MOF chem-
istry in its curated training set, eliminating the need
for retraining on a case-by-case basis. MACE-MP-
MOF0 still achieves an improved or comparable per-
formance in obtaining the phonon spectra for the in-
vestigated MOFs, as shown in Table 1. The ability of
MACE-MP-MOF0 to generalize across awide range of
MOFs for rapid screening and accurate prediction of
phonons, without the prohibitive data and computa-
tional costs of on-the-fly training methods, marks a
significant advancement in MLPs for MOFs.

3. Experimental Validation of Predicted Physical
Properties
Experimental studies focus on tuning the bulk

modulus of MOFs to analyze their response to ex-
ternal pressure, guest molecules, and temperature
variations for gas storage applications. Modifying
metal centers or functional groups allows control
overMOFmechanics, but experimental validation is
expensive and requires precise synthesis and high-
pressure measurements. MACE-MP-MOF0 offers a
cost-effective alternative by reproducing experimen-
tal bulk moduli for several well-known MOFs in Fig-
ure 2. Despite several of them being out-of-sample
MOFs, our model accurately captured their mechan-
ical behavior, showing excellent agreement with ex-
perimental data and DFT. This validates the model’s
generalizability and suggests that it can be extended
to hypothetical MOFs, acceleratingmaterials discov-

ery by reducing the need for extensive experimenta-
tion.
Thus, this work highlights the power of AI-driven

models in accelerating MOF discovery by enabling
efficient and accurate predictions of lattice dynam-
ics and dependent properties. By bridging the gap
between computational speed and experimental ac-
curacy, our work paves the way for high-throughput
screening of novel MOFs, unlocking new possibili-
ties forAI-drivenmaterials design and real-world ap-
plications.

Fig. 2: Bulkmodulus predictions ofMACE-MP-MOF0
compared to DFT and Experiments. DFT data is
self-generated or reported in [11, 12, 13, 14] and ex-
perimental data is reported in [15, 16, 17, 18, 19]
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