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1 IMPLEMENTATION DETAILS
1.1 Baselines Training Setup
In this paper, we compare our experimental results with previ-
ous work [1, 5–8]. Source code, detailed experiment setup, and
pre-trained checkpoints are available for reference on their official
GitHub repository. We utilize models pre-trained on LRS3 [2] and
VoxCeleb2 [3] datasets, finetuning on LRS2-DISTORTED to sim-
ulate real-world distortion scenarios. Despite variations in model
scale constraints by the provided checkpoints, PCD method with
AV-Hubert as the backbone achieves superior performance using
only the Transformer-BASE scale model compared to other base-
lines.

1.2 Data Preprocessing
Prior to model input, we conduct preprocessing on the audio-visual
source files to generate audio-video utterance following [8]. we uti-
lize dlib [4] to detect 68 facial keypoints and align each frame with
a reference face frame through affine transformation. Subsequently,
We extract a 96×96 region-of-interest (ROI) from each visual utter-
ance, focusing on the talking head video centered on the mouth. To
acquire knowledge from high-quality domains, we employ image
augmentation during the pretraining process, including cropping
88x88 from the entire ROI and randomly flipping them horizontally.
For the raw audio processing, we extract the 26-dimensional log
filterbank energy feature at a stride of 10 ms, to generate audio
utterance served as model audio input. Given that the image frames
are sampled at 25Hz, we stack the 4 neighboring acoustic frames
to synchronize the two modalities. We also apply audio noise with
25% noise rate to each audio utterance.

1.3 PCD Training Setup
The pre-training process of PCD is built upon AV-Hubert, where
we utilize the provided checkpoints incorporating pre-training of
both the AV-Hubert structure and the decoder for subsequent fine-
tuning. Two scales of models are provided, namely Transformer-
BASE and Transformer-LARGE, with 12/24 Transformer layers,
768/1024 embedding dimension, 3072/4096 feed-forward dimension,
and 12/16 attention heads respectively. We adopt the audio-visual
alignment encoder pre-training on LRS3 andVoxCeleb2 and decoder
structure pre-training on LRS3.

The fine-tuning process of PCD follows a two-stage approach.
Initially, we fine-tune the backbone model on LRS2-DISTORTED,
which can be regarded as our low-quality target domain, to facilitate
model adaptation to the common domain shared by the diverse
modality-distortion condition in LRS2. Subsequently, we freeze the
backbone model and proceed to train the cluster-prompt under the
same configuration, thereby enhancing the model’s robustness to
diverse scenarios. To comprehensively validate the robustness of

the PCD method to modality-distortion, we conduct experiments
on both the 29h and 224h subsets of the LRS2 dataset using both
Transformer-BASE and Transformer-LARGE model configurations.
Each tuning phase of PCD is trained utilizing the Adam optimizer,
where the learning rate undergoes a warm-up process for the initial
50% of updates, reaching 0.0005. In the main experiment, we fine-
tune PCD and baselines under distortion settings with 𝜂=70% and
𝜇=60%, and conducted inference under various configurations. For
ablation experiments, we maintain identical training settings and
default to setting 𝜂=70% and 𝜇=80% for inference. We primarily
employ the Transformer-BASE model and 29h dataset to validate
the effectiveness of PCD and its robustness across different tasks.

2 ADDITIONAL EXPERIMENT RESULTS
2.1 Robustness to specific distortion scenarios
The objective of PCD is to adapt the model to each scenario using
fewer computational resources by employing commonly encoun-
tered real-world distortion data. The experimental results showing
in previous sections are conducted in testing configurations en-
compassed various modality-distortion scenarios, validating the
enhancement of the PCD method across multiple scenarios. In
this section, we conduct a comparative analysis between PCD and
AV-Hubert for each modality-distortion condition, reflecting more
practical application scenarios. As depicted in Figure 1, the com-
parison includes results obtained from audio-distorted data, and
video-distorted data. To demonstrate the effectiveness of PCD, we
include comparisons with AV-Hubert trained with the random pa-
rameter same size as prompt for specific scenarios. The guidance
provided by PCD significantly enhances the recognition perfor-
mance across diverse scenario configurations, with particularly
notable improvements observed in instances of audio distortion.
The results demonstrate that PCD can be fine-tuned on imperfect
data to achieve adaptation across multiple scenarios, thus offer-
ing promising practical applications in situations where real data
quality may be inadequate.

2.2 Qualitative Results
Table 1 shows the example outputs from AV-Hubert and PCD𝑝𝑟𝑜 .
All models are based on Transformer-BASEwith LRS2-DISTORTED
29h dataset under the settings of 𝜂=70% and 𝜇=60% during training
and inference phases. Under the influence of distortion, the in-
tegrity of audio-visual data is compromised, rendering the original
model incapable of fully leveraging audio-visual features for recog-
nition, thereby resulting in the generation of incoherent sentences.
Qualitatively, our approach yields transcriptions with higher accu-
racy, indicating the effective discrimination of distortions and the
guidance provided by PCD to the model.
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Figure 1: Performance of PCD in specific distortion scenarios where distortion occur in a single modality, including video and
audio modalities.

Table 1: Qualitative comparison on various modality-distortion scenarios. Red words highlights misidentified words and the
(red words) in parentheses highlight the absent words. The green boxes represent segments affected by distortion.

Distortion type Qualitative examples

clean
Ground Truth: i shouldn’t say those things
AV-Hubert: i shouldn’t take those things
PCD𝑝𝑟𝑜 : i shouldn’t say those things

visual-distortion
Ground Truth: buying a new build property should mean you don’t have any work to do
AV-Hubert: buying a new bill property should mean you don’t have (any) work to do
PCD𝑝𝑟𝑜 : buying a new build property should mean you don’t have any work to do

audio-distortion
Ground Truth: four little turtles named after Italian renaissance artists
AV-Hubert: four little title sniped after exactly release on artists
PCD𝑝𝑟𝑜 : four little turtles framed after exactly renaissance artists
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