
A Proof

Theorem 3.1 We denote the Q-function converged from the Q-update of EPQ using the proposed
penaltyPτ in (3) by Q̂π . Then, the expected value of Q̂π underestimates the expected true policy value,
i.e., Ea∼π[Q̂π(s, a)] ≤ Ea∼π[Qπ(s, a)],∀s ∈ D, with high probability 1− δ for some δ ∈ (0, 1), if
the penalizing factor α is sufficiently large. Furthermore, the proposed penalty reduces the average
penalty for policy actions compared to the average penalty of CQL.

A.1 Proof of Theorem 3.1

Proof of Theorem 3.1 basically follows the proof of Theorem 3.2 in Kumar et al. [21] since Pτ
multiplies the penalty control factor fπ,β̂τ (s) to the penalty of CQL. At each k-th iteration, Q-function
is updated by equation (4), then

Qk+1(s, a)← B̂πQk(s, a)− αPτ , ∀s, a, (A.1)

where B̂π is the estimation of the true Bellman operator Bπ based on data samples. It is known that
the error between the estimated Bellman operator B̂π and the true Bellman operator is bounded with
high probability of 1 − δ for some δ ∈ (0, 1) as |(BπQ)(s, a) − (B̂πQ)(s, a)| ≤ ξδ(s, a), ∀s, a,
where ξδ is a positive constant related to the given dataset D, the discount factor γ, and the transition
probability P [21]. Then, with high probability 1− δ,

Qk+1(s, a)← BπQk(s, a)− αPτ + ξδ(s, a), ∀s, a, (A.2)

Now, with the state value function V (s) := Ea∼π(·|s)[Q(s, a)]

Vk+1(s) = Ea∼π(·|s)[Qk(s, a)] = BπVk − αEa∼π[Pτ ] + ξδ(s, a)

= BπVk(s)− αEa∼π

[
fπ,β̂τ (s) ·

(
π(a|s)
β̂(a|s)

− 1

)
+ Ea∼π[ξδ(s, a)]

]
= BπVk(s)− α∆π

EPQ(s) + Ea∼π[ξδ(s, a)] (A.3)

Upon repeated iteration, Vk+1 converges to V∞(s) = V π(s) + (I − γPπ)−1 · {−α∆π
EPQ(s) +

Ea∼π[ξδ(s, a)]} based on the fixed point theorem, where ∆π
EPQ(s) := Ea∼π[Pτ ] is the average

penalty for policy π, I is the identity matrix, and Pπ is the state transition matrix where the policy π
is given. Here, we can show that the average penalty ∆π

EPQ(s) is positive as follows:

∆π
EPQ(s) = Ea∼π

[
fπ,β̂τ (s) ·

(
π(a|s)
β(a|s)

− 1

)]

= fπ,β̂τ (s)


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−
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β̂(a|s)

(
π(a|s)
β̂(a|s)

− 1

)
︸ ︷︷ ︸

=0


= fπ,β̂τ (s) ·

∑
a∈A

(π(a|s)− β̂(a|s))2

β̂(a|s)
≥ 0, (A.4)

where the equality in (A.4) satisfies when π = β̂ or fπ,β̂τ = 0. Given that Vk+1 converges to
V∞ = V π(s) + (I − γPπ)−1 · {−α∆π

EPQ(s) + Ea∼π[ξδ(s, a)]}, choosing the penalizing constant
α that satisfies α ≥ maxs,a∈D[ξ

δ(s, a)] ·maxs∈D(∆
π
EPQ(s))

−1 will satisfy,

− α ·∆π
EPQ(s) + Ea∼π[ξδ(s, a)]

≤ − max
s,a∈D

[ξδ(s, a)] ·max
s∈D

(∆π
EPQ(s))

−1 ·∆π
EPQ(s)︸ ︷︷ ︸

≥1

+Ea∼π[ξδ(s, a)]

≤ − max
s,a∈D

[ξδ(s, a)] + Ea∼π[ξδ(s, a)] ≤ 0, ∀s, (A.5)



Since I − γPπ is non-singular M -matrix and the inverse of non-singular M -matrix is non-
negative, i.e., all elements of (I − γPπ)−1 are non-negative, V∞(s) = V π(s) + (I − γPπ)−1 ·
{−α∆π

EPQ(s) + Ea∼π[ξδ(s, a)]} ≤ V π(s), ∀s. Therefore, V∞ underestimates the true value func-
tion V π if the penalizing constant α satisfies α ≥ maxs,a∈D[ξ

δ(s, a)] ·maxs∈D(∆
π
EPQ(s))

−1. In
addition, according to [21], the average penalty of CQL for policy actions can be represented as
∆π
CQL(s) = Ea∼π[πβ̂−1]. Thus, ∆π

EPQ(s) = fπ,β̂τ (s)∆π
CQL(s) and fπ,β̂τ (s) ≤ 1 from the definition

in (2), so 0 ≤ ∆π
EPQ(s) ≤ ∆π

CQL(s). In addition, if π = β̂, then 0 = ∆β̂
EPQ(s) = ∆β̂

CQL(s) from
the equality condition in (A.4), which indicates that the average penalty for data actions is 0 for both
EPQ and CQL. ■



B Implementation Details

In this section, we provide the implementation details of the proposed EPQ. First of all, we provide
a detailed derivation of the final Q-loss function(4) of EPQ in Section B.1. Next, we introduce a
practical implementation of EPQ to compute the loss functions for the parameterized policy and
Q-function in Section B.2. In addition, to calculate loss functions in Section B.2, we provide the
additional implementation details in Appendices B.3, B.4, and B.5. We conduct our experiments on a
single server equipped with an Intel Xeon Gold 6336Y CPU and one NVIDIA RTX A5000 GPU, and
we compare the running time of EPQ with other baseline algorithms in Section B.6. For additional
hyperparameters in the practical implementation of EPQ, we provide detailed hyperparameter setup
and additional ablation studies in Appendix C and Appendix D, respectively.

B.1 Detailed Derivation of Q-Loss Function

In Section 3.3, the finalQ-loss function with the proposed penalty Pτ,PD = fπ,β̂τ ( π
β̂Q
−1) is given by

L(Q) = 1
2Es,s′∼D,a∼β̂Q

[
(Q− {BπQ− αPτ, PD})2

]
. In this section, we provide a more detailed

calculation of L(Q) to obtain (4) as follows:

L(Q) =
1

2
Es,s′∼D,a∼β̂Q

[
(Q− {BπQ− αPτ, PD})2

]
=

1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D,a∼β̂Q [Pτ, PD ·Q] + C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D,a∼β̂Q

[
fπ,β̂τ

(
π

β̂Q
− 1

)
Q

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[∫
a∈A

β̂Qfπ,β̂τ

(
π

β̂Q
− 1

)
Qda

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[∫
a∈A

fπ,β̂τ

(
π − β̂Q

)
Qda

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[∫
a′∈A

πfπ,β̂τ Qda′ −
∫
a∈A

β̂Qfπ,β̂τ Qda

]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D

[
Ea′∼π

[
fπ,β̂τ Q

]
− Ea∼β̂Q

[
fπ,β̂τ Q

]]
+ C

=
1

2
Es,s′∼D,a∼β̂Q

[
(Q− BπQ)

2
]
+ αEs,s′∼D,a∼β̂Q

[
Ea′∼π

[
fπ,β̂τ Q

]
− fπ,β̂τ Q

]
+ C

=
(∗)

Es,s′∼D,a∼β̂

[
β̂Q

β̂
·
{
1

2
(Q− BπQ)

2
+ αfπ,β̂τ · (Ea′∼π [Q]−Q)

}]
+ C

= Es,s′∼D,a∼β̂,a′∼π

[
wQs,a ·

{
1

2
(Q(s, a)− BπQ(s, a))

2
+ αfπ,β̂τ (s)(Q(s, a′)−Q(s, a))

}]
+ C,

where C is the remaining constant term that can be ignored for the Q-update since BπQ is the fixed
target value. For (∗), we apply the IS technique, which states that Ex∼p[f(x)] = Ex∼q

[
p(x)
q(x)f(x)

]
for any probability distributions p and q, and arbitrary function f , and wQs,a = β̂Q(a|s)

β̂(a|s)
=

exp(Q(s,a))
Ea′∼β̂(·|s)[exp(Q(s,a′))] is the importance sampling (IS) ratio between β̂Q and β̂.



B.2 Practical Implementation for EPQ

Our implementation basically follows the setup of CQL [21]. We use the Gaussian policy π with a
Tanh(·) layer proposed by Haarnoja et al. [4], and parameterize the policy π and Q-function using
neural network parameters ϕ and θ, respectively. Then, we update the policy to maximize Qθ with
its entropy H(πϕ) = Eπϕ [− log πϕ], following the maximum entropy principle [4] as explained in
Section 3.3, to account for stochastic policies. Then, we can redefine the policy loss function L(π)
defined in (5) as the policy loss function Lπ(ϕ) for policy parameter ϕ, given by

Lπ(ϕ) = Es∼D, a∼πϕ [−Qθ(s, a) + log πϕ(a|s)]. (B.1)

For theQ-loss function in (4), we use the IS ratio wQs,a in (4) to account for prioritized sampling based
on β̂Q. However, β̂Q discards samples with low IS weights, which can reduce sample efficiency. To
address this, we utilize the clipped IS weight max(cmin, w

Q
s,a), where cmin ∈ (0, 1] is the IS clipping

constant. This clipped IS weight is multiplied only to the term (Q(s, a) − BπQ(s, a))2 in (4) to
ensure that we can exploit all data samples for Q-learning while preserving the proposed penalty. The
detailed analysis for cmin is provided in Appendix D. In addition, the optimal policy that maximizes
(B.1) follows the Boltzmann distribution, proportional to exp(Qθ(s, ·)). It has been proven in Kumar
et al. [21] that the optimal policy satisfies Ea∼π[Qθ(s, a)]+H(π) = log

∑
a∼A expQθ(s, a), so we

can replace the Ea′∼π[Qθ(s, a′)] term in (4) with log
∑
a′∼A expQθ(s, a

′), given that H(π) does
not depend on the Q-function. The Bellman operator Bπ can be estimated by samples in the dataset
as BπQθ ≈ r(s, a) + Ea′∼πγQθ̄(s′, a′), where θ̄ is the parameter of the target Q-function. The
target network is updated using exponential moving average (EMA) with temperature ηθ̄ = 0.005,
as proposed in the deep Q-network (DQN) [52]. Finally, by applying IS clipping and log

∑
a expQ

to the Q-loss function (4) and redefining it as the value loss function for the value parameter θ, we
obtain the following refined value loss function LQ(θ) as follows:

LQ(θ) =
1

2
Es,a,s′∼D

[
max(cmin, w

Q
s,a) · (r(s, a) + Ea′∼πγQθ̄(s′, a′)−Qθ(s, a))

2 ] (B.2)

+ αEs,a∼D

[
wQs,af

π,β̂
τ (s)

(
log

∑
a′∈A

Qθ(s, a
′)−Qθ(s, a)

)]
,

where β̂ is pre-trained by behavior cloning (BC) [18, 53] to compute fπ,β̂τ . The parameters ϕ and θ are
updated to minimize their loss functions Lπ(ϕ) and LQ(θ) with learning rate ηϕ and ηθ, respectively.
Detailed implementations for estimating the behavior policy β̂, the IS weight wQs,a, and log

∑
a expQ

are provided in Appendices B.3, B.4, and B.5, respectively.

B.3 Behavior Policy Estimation Based on Variational Auto-Encoder

In Section B.2, we estimate the behavior policy β that generates the data samples in D necessary
for calculating the penalty adaptation factor fπ,β̂τ in equation (2). To estimate the behavior policy β̂,
we employ the variational auto-encoder (VAE), one of the most representative variational inference
methods, to approximate the underlying distribution of a large dataset based on the variational lower
bound [53]. In the context of VAE, we define an encoder model pψ(z|s, a) and a decoder model
qψ(a|z, s) parameterized by ψ, where z is the latent variable whose prior distribution p(z) follows
the multivariate normal distribution, i.e., p(z) ∼ N(0, I). Assuming independence among all data
samples, we can derive the variational lower bound for the likelihood of β as proposed by Kingma
and Welling [53]:

log β(a|s) ≥ Ez∼pψ(·|s,a)[log qψ(a|z, s)]−DKL(pψ(z|s, a)||p(z))︸ ︷︷ ︸
the variational lower bound

, ∀s, a ∈ D (B.3)

where DKL(p||q) = Ep[log p − log q] is the Kullback-Leibler (KL) divergence between two
distributions p and q. In this paper, since we consider the deterministic decoder qψ(z, s), the
formal term Ez∼pψ(·|s,a)[log qψ(a|z, s)] can be replaced with the mean square error (MSE) as
Ez∼pψ(·|s,a)[log qψ(a|z, s)] ≈ Ez∼pψ(·|s,a)[(qψ(z, s) − a)2]. At each k-th iteration, we update
the parameter ψ of VAE to maximize the lower bound in equation (B.3). The log β can be estimated
using the variational lower-bound in (B.3) to obtain fπ,β̂τ . The hyperparameter setup for the VAE is
provided in Table 2.



Table 2: Hyperparameter setup for VAE

VAE Hyperparameters

z dimension 2· state dimension
Hidden activation function ReLU Layer

Encoder network pψ
(512, 2 · z dim.)
(512,512)
(state dim. + action dim., 512)

Decoder network qψ
(512, action dim.)
(512,512)
(z dim. + state dim., 512)

B.4 Implementation of IS Weight wQs,a

In order to consider the prioritized data distribution β̂Q proposed in Section 3.3, we use the importance
sampling (IS) weight defined by

wQs,a =
β̂Q(a|s)
β̂(a|s)

=
exp(Q(s, a))

Ea′∼β̂(·|s)[exp(Q(s, a′))]
, ∀s, a ∈ D. (B.4)

Since the computation of Ea′∼β̂(·|s) makes it difficult to know the exact possible action set for state s,
we approximately estimate the IS weight based on clustering as follows:

wQs,a =
exp(Q(s, a))

Ea′∼β̂(·|s)[exp(Q(s, a′))]
≈ exp(Q(s, a))

1
|Cs,a|

∑
(s′,a′)∈Cs,a exp(Q(s′, a′))

, ∀s, a ∈ D. (B.5)

Here, Cs,a is the cluster that contains data samples adjacent to (s, a), defined by

Cs,a = {(s′, a′) ∈ D | ||s− s′||2 ≤ ϵ · d̄closest}, (B.6)

where the cluster Cs,a can be directly obtained using the nearest neighbor (NN) algorithm [54]
provided in the Python library. ϵ · d̄closest is the radius of the cluster, and d̄closest is the average distance
between the closest states from each task. In our implementation, we control the radius parameter
ϵ > 0 to adjust the number of adjacent samples for the estimation of IS WeightwQs,a. In addition, using
the Q-function in the IS weight term makes the learning unstable since the Q-function continuously
changes as the learning progresses. Thus, instead of the Q-function, we use the regularized empirical
return Gt/ζ for each state-action pair obtained by the trajectories stored in D, where ζ > 0 is the
regularizing temperature. Upon the increase of ζ, the returned difference between adjacent samples
in the cluster decreases, so the effect of prioritization can be reduced. The detailed analysis for ϵ and
ζ is provided in Appendix D.



B.5 Implementation of Q-loss Function

In equation (B.2), the final Q-loss function of proposed EPQ is given by

LQ(θ) =
1

2
Es,a,s′∼D

[
max(cmin, w

Q
s,a) (r(s, a) + Ea′∼πγQθ̄(s′, a′)−Qθ(s, a))

2 ]
+ αEs,a∼D

[
wQs,af

π,β̂
τ (s)

(
log

∑
a′∈A

expQθ(s, a
′)−Qθ(s, a)

)]
.

Here, we can estimate log
∑
a expQ(s, a) based on the method proposed in CQL [21] as follows:

log
∑
a

expQ(s, a) = log

(
1

2

∑
a

π(a|s){exp(Q(s, a)− log π(a|s))}+ 1

2

∑
a

ρd{exp(Q(s, a)− log ρd)}

)

≈ log

 1

2Na

Na∑
an∼π

(exp(Q(s, an)− log π(an|s))) +
1

2Na

Na∑
an∼Unif(A)

(exp(Q(s, an)− log ρd)))

 ,

(B.7)

where Na is the number of action sampling, Unif(A) is a Uniform distribution on A, and ρd is the
density of uniform distribution.

B.6 Time comparison with other offline RL methods

In this sectrion, we compare the runtime of EPQ with other baseline algorithms: CQL, Onestep,
IQL, MCQ, and MISA in Table 3 below. For a fair comparison across all algorithms, we conducted
experiments on the Hopper-medium task, which is a popular dataset for comparing computational
costs [48, 55], on a single server equipped with an Intel Xeon Gold 6336Y CPU and one NVIDIA
RTX A5000 GPU. We measured both epoch runtime during 1,000 gradient steps and score runtime
that each algorithm takes to achieve certain normalized scores.

From the epoch runtime results in Table 3, we can observe that EPQ takes approximately 2-30%
more runtime per gradient step compared to the CQL baseline. Note that Onestep RL may seem to
have very short execution time compared to other algorithms, but one must consider the significantly
longer pretraining time required to learn the Q-function of behavior policy accurately. Additionally,
compared to faster offline RL algorithms such as IQL and MISA, EPQ requires more runtime per
step and exhibits a similar runtime to MCQ, another conservative Q-learning algorithm. However,
according to the score runtime results in Table 3, we can observe that only proposed EPQ achieves
a score of 100 points, while all other algorithms fail to reach this score. Particularly, compared to
MCQ, which also considers CQL as a baseline, EPQ achieves the same score with significantly less
runtime. Therefore, while EPQ may consume slightly more runtime per gradient step compared
to other algorithms, we can conclude that proposed EPQ offers substantial advantages in terms of
convergence performance over other algorithms.

Table 3: Runtime comparison: Epoch runtime and Score runtime

epoch runtime(s) CQL Onestep IQL MCQ MISA EPQ
1,000 gradient steps 43.1 12.6 13.8 58.1 23.5 54.8

score runtime(s) CQL Onestep IQL MCQ MISA EPQ
Normalized average return
60 3540.0 252.5 1600.2 31,143.4 4,632.7 3,232.2
80 - 568.4 - 49,359.7 - 21,920.0
100 - - - - - 30,633.2



C Hyperparameter Setup

The implementation of proposed EPQ basically follows the implementation of the CQL algorithm
[21]. First, we provide the details of the shared algorithm hyperparameters in Table 4. In Table 4, we
compare the shared algorithm hyperparameters of CQL, the revised version of CQL (revised), and
proposed EPQ. CQL (revised) considers the same hyperparameter setup with our algorithm for Adroit
tasks since the reproduced performance of CQL (reprod.) using the author-provided hyperparameter
setup significantly underperforms compared to the result of CQL (paper) in Table 1.

For the coefficient of entropy term in the policy update (B.1), CQL automatically controls the entropy
coefficient so that the entropy of π goes to the target entropy, as proposed in Haarnoja et al. [56].
We observe that while the automatic control of policy entropy proves effective for Mujoco tasks,
it adversely affects the performance in Adroit tasks since a policy with low entropy can lead to
significant overestimation errors in Adroit tasks. Thus, we considered fixed entropy coefficient for
Adroit tasks as in Table 4. In addition, CQL controls the penalizing constant α based on Lagrangian
method [21] for Adroit tasks, but we also observe that the automatic control of α destabilizes training,
leading to poor performance. Therefore, we considered fixed penalizing constant for Adroit tasks in
Table 4 for stable learning.

In addition, in Table 5, we provide the details of the task hyperparameters regarding our contributions
in the proposed EPQ: the penalty control threshold τ and the IS clipping factor cmin in the Q-loss
implementation in (B.2), and the cluster radius ϵ and regularizing temperature ζ for the practical
implementation of IS clipping factor wQs,a in Section B.4. Note that ρ in Table 5 represents the log-
density of uniform distribution. For the task hyperparameters, we consider various hyperparameter
setups and provide the best hyperparameter setup for all considered tasks in Table 5. The results are
based on the ablations studies provided in Section 4.3 and Appendix D.

Table 4: Algorithm hyperparameter setup of CQL, CQL (revised), and EPQ (ours) algorithms

Hyperparameters CQL CQL (revised)
(for Adroit) EPQ

Policy learning rate ηϕ 1e-4 1e-4 1e-4

Value function learning rate ηθ 3e-4 3e-4 3e-4

Soft target update coefficient ηθ̄ 0.005 0.005 0.005

Batch size 256 256 256

The number of sampling Na 10 10 10

Initial behavior cloning steps 10000 10000 10000

Gradient steps for training 3m (0.3m for Adroit) 0.3m 3m (0.3m for Adroit)

Entropy coefficient ηθ Auto 0.5 Auto (0.5 for Adroit)

Penalizing constant α Auto (10 for MuJoCo) 5 or 20
20 for MuJoCo

5 or 20 for Adroit
5 or Auto for AntMaze

Discount factor γ 0.99 0.9 or 0.95 0.99 (0.9 or 0.95 for Adroit)



Table 5: Task hyperparameter setup for Mujoco tasks and Adroit tasks

Mujoco Tasks τ/ρ cmin ϵ ζ

halfcheetah-random 10 0.2 2 2
hopper-random 2 0.1 0.5 2
walker2d-random 1 0.2 2 0.5

halfcheetah-medium 10 0.2 0.5 2
hopper-medium 0.2 0.5 2 5
walker2d-medium 1 0.5 2 2

halfcheetah-medium-expert 1.0 0.2 0.5 2
hopper-medium-expert 1 0.2 0.5 2
walker2d-medium-expert 1.0 0.2 0.5 2

halfcheetah-expert 1 0.2 0.5 2
hopper-expert 1 0.2 0.5 2
walker2d-expert 0.5 0.2 2.0 2

halfcheetah-medium-replay 2 0.2 0.5 2
hopper-medium-replay 2 0.2 0.5 2
walker2d-medium-replay 0.2 0.5 1.0 2

halfcheetah-full-replay 1.5 0.2 0.5 2
hopper-full-replay 2.0 0.2 1.0 2
walker2d-full-replay 1.0 0.2 0.5 2

Adroit Tasks τ/ρ cmin ϵ ζ

pen-human 0.05 0.5 1.0 200
door-human 0.05 0.5 0.5 200
hammer-human 0.1 0.2 5 100
relocate-human 0.2 0.2 2 10

pen-cloned 0.2 0.2 5 50
door-cloned 0.2 0.5 1 10
hammer-cloned 0.2 0.2 5 100
relocate-cloned 0.2 0.2 5 10

AntMaze Tasks τ/ρ cmin ϵ ζ

umaze 10 0.2 2 2
umaze-diverse 10 0.2 2 2
medium-play 0.1 0.2 1 2
medium-diverse 0.1 0.2 1 2
large-play 0.1 0.2 1 2
large-diverse 0.1 0.2 1 2



D Additional Ablation Studies Related to wQ
s,a Estimation

In this section, we provide additional ablation studies related to IS weightwQs,a estimation in Appendix
B. For analysis, Fig. 8 shows the performance plot when the IS clipping factor cmin, the cluster
radius ϵ, and the temperature ζ change.

(a) IS clipping factor cmin (b) Cluster radius ϵ (c) Temperature ζ

Figure 8: Additional ablation studies on Hopper-medium task

IS Clipping Factor cmin: In the EPQ implementation, the IS clipping factor cmin is employed to clip
the IS weight wQs,a to prevent the exclusion of data samples with relatively low wQs,a. When cmin = 0,
low-quality samples with low wQs,a are not utilized at all based on the prioritization in Section 3.3.
However, as cmin increases, these low-quality samples are increasingly exploited. Fig. 7(c) illustrates
the performance of EPQ with varying cmin, and EPQ achieves the best performance when cmin = 0.5.
This result suggests that it is more beneficial to use low-quality samples with proper priority rather
than discarding them entirely.

Cluster Radius ϵ: As explained in Appendix B.4, we can control the number of adjacent samples
in the cluster based on the radius ϵ. From the results illustrated in Fig. 8(a), we can observe that
EPQ with d = 2.0 performs best, and a decrease or an increase in ϵ can significantly affect the
performance indicating that ϵ must be chosen properly for each task to find the cluster that contains
adjacent samples appropriately. If ϵ is too small, the cluster will hardly contain adjacent samples, and
if ϵ is too large, samples that should be distinguished will aggregate in the same cluster, adversely
affecting the performance.

Temperature ζ: As proposed in Section 3.3, samples in the dataset are prioritized according to
the definition of wQs,a. Since the samples with higher Q values are more likely to be selected for
the update of the Q-function, temperature ζ controls the amount of prioritization, as explained in
Appendix B.4. Increasing ζ reduces the difference in the Q-function between the samples, putting
less emphasis on prioritization. Fig. 8(b) shows the performance change according to the change in ζ ,
where the results state that the performance does not heavily depend on ζ. From the ablation study,
we can conclude that the radius ϵ has a greater influence on the performance of Hopper-medium task
compared to the temperature ζ.



E Additional Performance Comparison on Adroit Tasks

For adroit tasks, the performance of CQL (reprod.) is too low compared to CQL (paper) in Table 1, so
we additionally provide the performance result of the revised version of CQL provided in Section C.
We also compare the performance of EPQ with the performance of CQL (revised) on various adroit
tasks, and Table 6 shows the corresponding comparison results. From the result, we can see that CQL
(revised) greatly enhances the performance of CQL on adroit tasks, but EPQ still outperforms CQL
(revised), which demonstrates the intact advantage of the proposed exclusive penalty and prioritized
dataset well on the adroit tasks.

Table 6: Performance comparison of CQL (paper), CQL (revised), and EPQ (ours) on Adroit tasks.

Task CQL (paper) CQL (revised) EPQ

pen-human 55.8 82.0±6.2 83.9±6.8
door-human 9.1 7.8±0.5 13.2 ± 2.4
hammer-human 2.1 6.4±5.4 3.9±5.0
relocate-human 0.4 0.1±0.2 0.3±0.2
pen-cloned 40.3 90.7±4.8 91.8±4.7
door-cloned 3.5 1.3±2.2 5.8±2.8
hammer-cloned 5.7 2.0±1.3 22.8±15.3
relocate-cloned -0.1 0.0±0.0 0.1±0.1

Adroit Tasks Total 116.8 190.3 221.8

F Limitations

The proposed EPQ significantly improves performance over the existing CQL baseline on various
D4RL tasks, but there are many hyperparamaters that need to be optimized. We newly consider
the penalty control threshold τ , IS clipping factor cmin, the cluster radius ϵ, and the regularizing
temperature ζ. Therefore, in order for the proposed EPQ to perform well, it is necessary to find
the optimal performance by considering various hyperparameter setup, which may require some
interaction with the environment.

G Broader Impact

Nevertheless, in real-world situations, engaging with the environment can be costly. Particularly
in high-risk contexts such as disaster scenarios, acquiring adequate data for learning can be quite
challenging. Our research is primarily focused on offline settings and we present a novel method,
EPQ, holds the potential for practical applications in real-life situations where the interaction is
not available, and exhibits promise in addressing the challenges posed by offline RL algorithms.
Consequently, our work carries several potential societal implications, although we believe that none
require specific emphasis in this context.



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introductions are well reflected in Section
3 Methodology and Section 4 Experiments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]



Justification: The limitations are addressed in the Appendix F Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each theoretical result, the detailed proofs and assumptions are provided in
Appendix A Proof and Appendix B Implementation Details.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The specific environment descriptions and experimental setups including the
hyperparameters can be found in Section 4 Experiments and Appendix C Hyperparameter
Setup.



Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data and code for reproducing the main experimental results are included
in supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.



• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The specific experimental setups including the hyperparameters can be found
in Section 4 Experiments and Appendix C Hyperparameter Setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The graphs included in the paper such as Figure 6 and Figure 7 in Section 4
Experiments well demonstrate the statistical significance of the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on computation resources are provided in Appendix B Imple-
mentation Details.



Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms the NeurlIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts of the proposed paper is included in appendix G Broader
Impacts section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?



Answer: [NA]

Justification: The proposed paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The baseline code and experimental data are cited both in-text and in the
References section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The proposed paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects



Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The proposed paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.




