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1 ABLATION STUDY

This section supplements the ablation study in the paper. In the ab-
lation study, we conducted experiments to investigate the effective-
ness of various components of the proposed dual-stage condition
injection strategy. We are now designing experiments to validate
another contribution of the paper, the heterogeneous feature align-
ment strategy.

1.1 Comparison with Different Schemes

As shown in Table 1, we test different schemes on the SpeakingFaces
Dataset. Specifically, we have three comparison schemes:

(1) Baseline. We employed a pre-trained Arcface model, origi-
nally trained on visible images, alongside a skin color classification
head also developed from visible images. We froze these pre-trained
parameters for feature extraction purposes when working with ther-
mal images. Table 1 shows that the domain gap between modalities
significantly impacts performance. Despite applying our dual-stage
condition injection strategy to refine the generation process, the
extracted features from thermal images exhibit results that are
comparable to Variant A in the ablation study of the paper, which
solely employs the LDM framework for translation. Given that our
strategy is designed to enhance performance, it’s clear that directly
leveraging feature extractors across modalities does not necessarily
improve results and could potentially reduce model efficacy.

(2) Fine-tune. Fine-tuning the pre-trained Arcface model and
skin-color classification head on thermal images aims to bolster
the model’s ability to extract identity features. This process can
partially alleviate the degradation of feature extraction capability
caused by domain discrepancy compared to the baseline. As shown
in Table 1, all four metrics demonstrate improvement, confirming
the paper’s assertion that reducing the domain gap is both effective
and necessary for feature extraction.

(3) Alignment. Our proposed heterogeneous feature alignment
strategy surpasses the fine-tuning method, as evidenced by the
results in Table 1. Across all metrics, our approach demonstrates
superior performance, enhancing the model’s ability to extract
features from thermal images beyond both the baseline and fine-
tuning techniques.

2 COMPARISON

This section supplements the Comparison subsection in the ex-
perimental section of the paper. Most of the visualizations of the
model performance in the paper are based on the SpeakingFaces
Dataset. To more comprehensively demonstrate the generalization
ability of Diff TV, we provide additional visual comparison results
on the ARL-VTF dataset. Similarly, our comparison methods mainly
include HiFaceGAN [6], Axial GAN [1], DiFaReli [5], DiffuselT [2],
T2V-DDPM [4], and BBDM [3].

2.1 Qualitative Analysis

As depicted in Figure 1, we observe that thermal images in the
ARL-VTF dataset contain fewer facial texture details compared to

Table 1: Ablation study on the SpeakingFaces Dataset. The re-
sults are obtained by the baseline and two designed schemes
including our proposed one. The best result is highlighted
by bold. Arrows indicate the desired direction for each met-
ric, with T meaning higher is better, and | meaning lower is
better.

Variants FID] LPIPS| PSNR SSIM?T
Baseline 3468 0.1681  29.65 0.7143

+ Fine-tune 3338 0.1649 29.79  0.7518

+ Alignment (Ours) 31.67 0.1553 30.42 0.7832

the SpeakingFaces Dataset, making the face translation task more
challenging on this dataset. The facial details in the results of Hi-
FaceGAN [6], DiFaReli [5], and DiffuselT [2] in Figure 1 exhibit
noticeable facial deformations. Additionally, other methods strug-
gle with maintaining skin color consistency and preserving facial
identity, with significant deviations from real faces. In contrast, our
method delivers high-quality, accurate results that closely match
the skin color and identity details of real faces. This not only proves
the effectiveness of Diff TV but also underscores its robust gen-
eralization for thermal-to-visible face translation across varying
scenarios.
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Figure 1: Comparative visualization of thermal-to-visible face translation results across various models, showcasing the
advancements achieved with our Diff TV method against other approaches. The samples source from the ARL-VTF dataset.
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