
A Understanding the Fine-tuning Process of PLMs on Poisoned Datasets493

In this section, we show our empirical observations obtained from fine-tuning PLMs on poisoned494

datasets. Specifically, we demonstrate that the backdoor triggers are easier to learn from the lower495

layers than the features corresponding to the main task. This observation plays a pivotal role in496

designing and understanding our defense algorithm. In our experiment, we focus on the SST-2497

dataset [30] and consider the widely adopted word-level backdoor trigger and the more stealthy498

style-level trigger. For the word-level trigger, we follow the approach in prior work [25] and adopt the499

meaningless word "bb" as the trigger to minimize its impact on the original text’s semantic meaning.500

For the style trigger, we follow previous work [10] and select the "Bible style" as the backdoor style.501

For both attacks, we set a poisoning rate at 5% and conduct experiments on the RoBERTaBASE model502

[31], using a batch size of 32 and a learning rate of 2e-5, in conjunction with the Adam optimizer503

[32]. To understand the information in different layers of PLMs, we draw inspiration from classifier504

probing studies [33, 34] and train a compact classifier (one RoBERTa transformer layer topped with a505

fully connected layer) using representations from various layers of the RoBERTa model. Specifically,506

we freeze the RoBERTa model parameters and train only the probing classifier.507

In Figure 6, we present the training loss curve of the word-level trigger, which utilizes a probing508

classifier constructed using features extracted from twelve different layers of the RoBERTa model. A509

critical observation highlights that in the initial layers (1-4), the probing classifier overfits the poisoned510

samples early in the training phase (around 500 steps). However, it underperforms the original task.511

This can be attributed to the initial layers primarily capturing surface-level features, including phrase-512

level and syntactic-level features, which are insufficient for the primary task. Subsequently, in513

Figure 7, we delve deeper into the visualization of the probing classifier’s CLS token embeddings. A514

notable demarcation can be observed between the embeddings for poisoned and clean samples across515

all layers. However, the distinction between positive and negative sample embeddings becomes less516

discernible in the lower layers. We found a similar trend for the style-level trigger, as we showed the517

learning dynamic in Figure 8 and embedding visualization in Figure 9.518

Figure 6: Learning dynamic for Word-level Trigger

13



Figure 7: Embedding Visualization for Word-level Trigger

Figure 8: Learning dynamic for Style-level Trigger

14



Figure 9: Embedding Visualization for Style-level Trigger

B More on Defense Results519

Table 6: Performance comparison with other defense methods on IMDB dataset
Defence Method AddWord AddSent StyleBKD SynBKD

ACC (") ASR (#) ACC (") ASR (#) ACC (") ASR (#) ACC (") ASR (#)

No defense 93.88 ±0.76 100.00 ±0.00 93.68 ±0.72 100.00 ±0.00 93.92 ±0.68 99.52 ±0.15 93.84 ±0.72 99.53 ±0.20

BKI 93.32 ±0.87 87.27 ±2.90 92.84 ±0.90 98.65 ±1.10 93.10 ±0.85 99.02 ±0.30 93.00 ±0.90 99.35 ±0.25

ONION 88.32 ±0.94 32.32 ±3.02 89.76 ±0.92 89.04 ±3.70 88.32 ±0.96 95.58 ±0.38 88.80 ±0.95 99.65 ±0.10

RAP 93.10 ±0.84 85.62 ±3.58 92.70 ±0.88 91.20 ±3.45 92.96 ±0.86 76.90 ±3.80 92.70 ±0.90 78.80 ±3.70

STRIP 93.74 ±0.78 97.90 ±3.20 93.70 ±0.80 100.00 ±1.20 93.50 ±0.82 78.70 ±1.50 93.60 ±0.78 88.90 ±1.10

MF 92.80 ±0.86 21.30 ±3.50 92.60 ±0.90 36.00 ±2.50 92.80 ±0.85 65.80 ±2.80 92.90 ±0.88 76.50 ±2.20

Our Method 93.72 ±0.84 5.60 ±2.04 92.72 ±0.88 6.56 ±2.23 93.12 ±0.89 19.36 ±2.90 93.20 ±0.93 22.70 ±2.80

Table 7: Performance comparison with other defense methods on OLID dataset
Defence Method AddWord AddSent StyleBKD SynBKD

ACC (") ASR (#) ACC (") ASR (#) ACC (") ASR (#) ACC (") ASR (#)

No defense 85.23 ±0.68 99.83 ±0.25 85.00 ±0.67 100.00 ±0.00 84.88 ±0.71 99.24 ±0.39 85.23 ±0.67 100.00 ±0.00

BKI 84.76 ±0.89 90.23 ±2.67 84.88 ±0.84 100.00 ±0.00 83.23 ±0.98 98.34 ±0.42 83.72 ±0.95 99.61 ±0.25

ONION 84.41 ±0.88 58.10 ±2.34 85.11 ±0.82 100.00 ±0.00 85.11 ±0.86 99.63 ±0.31 84.53 ±0.92 99.39 ±0.30

RAP 83.93 ±0.90 87.18 ±3.11 83.72 ±0.94 99.44 ±0.35 83.54 ±0.97 95.23 ±1.93 83.91 ±0.89 94.45 ±1.95

STRIP 85.00 ±0.76 100.00 ±0.00 83.27 ±0.86 99.25 ±0.30 84.65 ±0.91 88.81 ±0.25 83.98 ±0.93 79.84 ±0.20

MF 81.97 ±0.93 21.24 ±2.92 81.86 ±0.97 68.92 ±2.79 82.09 ±0.98 68.42 ±3.10 82.89 ±0.92 58.52 ±3.00

Our Method 82.79 ±0.85 11.45 ±3.17 83.37 ±0.82 4.83 ±2.04 83.95 ±0.90 29.18 ±2.92 83.02 ±0.93 28.40 ±2.90

In this section, we delve deeper into the comparison between our method and several other backdoor520

defense strategies, maintaining the same conditions as outlined in Section 5. Particularly, Table 6521

shows our honeypot technique against others on the RoBERTaBASE with the IMDB dataset. Addi-522

tionally, results using the OLID dataset are presented in Table 7. In the case of the IMDB dataset,523

our method consistently achieves the lowest ASR across all four attack methods, displaying a robust524

defense technique even under varied adversarial conditions. For example, considerting the AddWord525

and AddSent attacks, our ASR is below 10%, which is a considerable improvement over other526

methods. In StyleBKD and SynBKD, our ASR stays below 23%, still outperforming the competing527

15



(a) No Defense (b) Our Method

Figure 10: Embedding Visualization for Victim Model and Protected Model

methods by a wide margin. Similarly, for the OLID dataset, our method demonstrated excellent528

performance, surpassing all other defense methods in terms of ASR. Furthermore, our method still529

achieves competitive ACC results on the original tasks. In Figure 10, we exhibit the t-SNE visual-530

izations derived from the CLS token embeddings of the final transfer layer of the RoBERTa model.531

As shown in Figure 10 (a), we observe that the no-defense model clearly recognizes the poisoned532

samples. Instead, in Figure 10 (b), the model overlooks the backdoor trigger and successfully predicts533

positive samples with embedded backdoor words as the positive class.534

C Understanding the Honeypot Defense Training Process535

In this section, we further illustrate more details about the honeypot defense training process. Specifi-536

cally, we focus on the dynamic change of the training weight for poisoned and clean samples. As we537

mentioned in Section 4, we propose employing a weighted cross-entropy loss (LWCE):538

LWCE(fT (x), y) = �(W (x)� c) · LCE(fT (x), y), where (5)

539

W (x) =
LCE(fH(x), y)

L̄CE(fT (x), y))
, (6)

fH(x) and fT (x) represent the softmax outputs of the honeypot and task classifiers, respectively.540

The function �(·) serves as a normalization method, effectively mapping the input to a range within541

the interval [0, 1]. The c is a threshold value for the normalization.542

In order to gain a deeper understanding of the re-weighting mechanism, we extend our analysis543

by presenting both the original W (x) and the normalized weight �(W (x)� c). We conducted the544

experiment using the SST2 dataset, with a word-level trigger, a poisoning rate set at 5%, and a batch545

size of 32. Figure 11 illustrates the W (x) value for both the poisoned and clean samples at each546

stage of training. Specifically, we computed the W (x) for each mini-batch and then calculated the547

average W (x) value for both the poisoned and clean samples. As depicted in the figure, during the548

warm-up phase, the W (x) for clean and poisoned samples diverged early in the training process. After549

500 steps, the W (x) for poisoned samples was noticeably lower than for clean samples. After the550

warm-up stage, given that W (x) is higher for clean samples, the Cross-Entropy loss of clean samples551

in fT diminishes more quickly than that of the poisoned samples. This subsequently increase W (x)552

for clean samples as they possess a smaller L̄CE(fT (x), y)). This positive feedback mechanism553

ensures that the W (x) for poisoned samples persistently remains significantly lower than for clean554

samples throughout the complete training process of fT . As demonstrated in Figure 11, the W (x)555

for the clean samples will continue to increase following the warm-up phase.556

16



Figure 11: Visualization of W(x) during defense training process.

D More on Ablation Studies557

D.1 Ablation Study on Honeypot Warm-Up558

In the following section, we explore the influence of the preliminary warm-up steps in the honeypot559

method, which represent the number of optimizations that the honeypot branch requires to capture560

a backdoor attack. We applied our method against word-level attacks on RoBERTaBASE, and the561

obtained results are shown in Table 8. The analysis indicates that with a minimum count of warm-562

up steps, specifically below 200 for the SST-2 dataset, the honeypot is insufficiently prepared to563

capture the poisoned data. However, once the honeypot accrues a sufficient volume of poisoned data,564

surpassing 400 training steps across all datasets, the Attack Success Rate (ASR) can be mitigated to565

an acceptably low level, i.e., less than 10%. The results further prove that our honeypot can effectively566

capture backdoor information with a certain amount of optimization. In our main experiments, we567

set the number of warm-up steps equal to the steps in one epoch, thereby enabling our honeypot to568

reliably catch the poisoned data.569

Table 8: Impact of Warm-Up steps
Dataset SST-2 IMDB

Warm-Up Steps 100 200 400 1000 2000 100 200 400 1000 2000

ACC (") 94.61 94.72 94.50 94.41 94.15 94.71 94.80 94.26 94.33 94.12
ASR (#) 100.00 100.00 8.64 5.37 5.84 100.00 7.62 5.32 5.79 3.60

D.2 Ablation Study on Normalization Method570

Table 9: Impact of Normalization Method

Normalization AddWord
ACC (") ASR (#)

No Defense 94.61±0.60 100.00±0.00

Sign 93.71±0.68 6.56±1.91

Sigmoid 93.22±0.53 6.83±2.01

Cutoff Relu 93.10±0.71 6.77±1.04

In this section, we use the SST2 dataset and571

word-level trigger to understand the impact of572

different normalization functions. As outlined573

in Section 4, our approach employs a normal-574

ization method to map the training loss weight575

W (x) into the [0, 1] interval. Within our exper-576

iments, we opted for the sign function as the577

normalization technique. However, we also ex-578

plored two alternative normalization strategies579

– the sigmoid function and a cutoff ReLU func-580

tion. For the latter, we assigned a value of 1 to any input exceeding 1. As depicted in Table 9, we581

conducted the experiments on RoBERTaBASE using different normalization functions, we can observe582

that all normalization methods demonstrate decent performance in minimizing the ASR. Notably,583

we observe that the sign function yields the highest ACC on the original task while simultaneously584

achieving the lowest ASR.585

17



E Extend Honeypot to Computer Vision Tasks586

While this paper primarily focuses on defending pretrained language models against backdoor attacks,587

we also explored the applicability of our proposed honeypot defense method within the computer588

vision domain [3, 4, 5]. In Section E.1, we illustrate the experimental settings. In Section E.2, we589

show the empirical findings. In Section E.3, we discuss the defense performance.590

E.1 Settings591

Suppose Dtrain = (xi, yi) indicates a benign training dataset where xi 2 {0, ..., 255}C⇥W⇥H592

represents an input image with C channels and W width and H height, and yi corresponds to593

the associated label. To generate a poisoned dataset, the adversary selects a small set of samples594

Dsub from the original dataset Dtrain, typically between 1-10%. The adversary then chooses a595

target misclassification class, yt, and selects a backdoor trigger a and a 2 {0, ..., 255}C⇥W⇥H . For596

each instance (xi, yi) in Dsub, a poisoned example (x0
i
, y

0
i
) is created, with x

0
i

being the embedded597

backdoor trigger of xi and y
0
i
= yt. The trigger embedding process can be formulated as follows,598

x
0
i
= (1� �)⌦ x+ �⌦ a, (7)

where � 2 [0, 1]C⇥W⇥H is a trigger visibility hyper-parameter and ⌦ specifies the element-wise599

product operation. The smaller the �, the more invisible the trigger and the more stealthy. The600

resulting poisoned subset is denoted as D0
sub. Finally, the adversary substitutes the original Dsub601

with D
0
sub

to produce Dpoison = (Dtrain �Dsub) [D
0
sub

. By fine-tuning PLMs with the poisoned602

dataset, the model will learn a backdoor function that establishes a strong correlation between the603

trigger and the target label yt. Consequently, adversaries can manipulate the model’s predictions604

by adding the backdoor trigger to the inputs, causing instances containing the trigger pattern to be605

misclassified into the target class t.606

In our experiment, we employed an ImageNet pretrained VGG-16 model as our base architecture and607

proceed with experiments using a manipulated CIFAR-10 dataset. The experiments involve the use of608

a 3 x 3 white square and a black line with a width of 3 pixels as backdoor triggers. The white square609

trigger is positioned at the bottom-right corner of the image, while the black line trigger is set at the610

bottom. We establish a poison rate of 5% and set � 2 {0, 0.2}C⇥ W⇥H for two attacks. The values611

of � corresponding to pixels situated within the trigger area are 0.2, while all others are set to 0.612

E.2 Lower Layer Representations from VGG Provide Sufficient Backdoor Information613

Drawing on our analysis presented in Section 3, we delve further into understanding the information614

encapsulated within various layers of a pretrained computer vision model. Inspired by previous615

classifier probing studies [33, 34], we train a compact classifier using representations derived from616

different layers of the VGG model. We ensure the VGG model parameters are frozen during this617

process and only train the probing classifier. In this context, we divided the VGG model into five618

sections based on the pooling layer operations (The five pooling layers are located at layers 2, 4, 7, 10,619

and 13). Subsequent to this, we integrate an adaptive pooling layer to reduce the features extracted620

from different layers to 7⇥ 7, ensuring that the flattened dimension does not exceed 8000. A fully621

connected layer with softmax activation is added as the final output. As depicted in Figure 13 and622

Figure 12, it is noticeable that the lower layers of the VGG model hold sufficient information for623

identifying the backdoor triggers. However, they do not contain enough information to effectively624

carry out the main tasks.625

Figure 12: Learning Dynamic for White Square Trigger

18



Figure 13: Learning Dynamic for Black Line Trigger

Table 10: Defense Performance on CIFAR10

Method White Square Black Line
ACC (") ASR (#) ACC (") ASR (#)

No Defense 91.33±0.27 100.00±0.00 91.28±0.13 100.00±0.00

Our Method 92.20±0.43 8.81±1.09 92.23±0.37 10.81±1.83

E.3 Defense Results on CIFAR10626

We implemented the honeypot as mentioned in Section 4 and built the honeypot module with the627

features from the first pooling layer. We followed previous sections and adopted the ASR and ACC628

metrics to measure the model’s performance on the poisoned test set and clean test set, respectively.629

Specifically, we executed a fine-tuning process for a total of 10 epochs, incorporating an initial630

warmup epoch for the honeypot module. The learning rates for both the honeypot and the principal631

task are adjusted to a value of 1⇥ 10�3. Additionally, we established the hyperparameter q for the632

GCE loss at 0.5, the time window size T was set to 100, and the threshold value c was fixed at 0.1.633

Each experimental setting was subjected to three independent runs and randomly chosen one class as634

the target class. These runs were also differentiated by employing distinct seed values. The results635

were then averaged, and the standard deviation was calculated to present a more comprehensive636

understanding of the performance variability. As the results are shown in Table 10, the proposed637

method successfully defends two backdoor attacks and reduces the ASR to lower than 10%. This638

indicates that the proposed method is valid for those simple vision backdoor triggers while having639

minimal impact on the original task. We plan to test the defense performance of more advanced640

backdoor triggers in our future work.641

F Reproducibility642

In an effort to ensure the reproducibility of our results, we have shared our test code along with643

the model checkpoint. This will allow peers in the research community to validate our findings. In644

the interest of complete transparency, we are also committed to releasing our training code in the645

future. This will provide a comprehensive understanding of our methodology and enable fellow646

researchers to extend and build upon our work. Our code can be found at https://anonymous.647

4open.science/r/honeypot-backdoor-600E.648

G Limitations and Discussions649

In this study, we introduce an innovative approach to backdoor defense in the context of fine-tuning650

pretrained language models. Due to the constraints in terms of time and resources, our evaluations651

were conducted using four prevalent backdoor attack methods and on three representative datasets.652

Despite the robustness and consistency demonstrated by our method, it is essential to remain vigilant to653

the emergence of new and potentially threatening attack methods and datasets, especially considering654

the rapid growth of this field. In addition, it’s worth acknowledging that while unintended, some655

malicious users may exploit our method and deploy other strong backdoor attacks that may bypass656

our defense system.657

19

https://anonymous.4open.science/r/honeypot-backdoor-600E
https://anonymous.4open.science/r/honeypot-backdoor-600E
https://anonymous.4open.science/r/honeypot-backdoor-600E

	Introduction
	Preliminaries
	Backdoor Attack in NLP
	Backdoor Defense in NLP
	Information Contained within Different Layers of PLMs.

	Understanding the Fine-tuning Process of PLMs on Poisoned Datasets
	Settings
	Lower Layer Representations Provide Sufficient Backdoor Information

	The Proposed Method
	Experiments
	Experiment Settings
	Defense Results
	The Resistance to Adaptive Attacks
	Ablation Study
	Impact of the Honeypot Position
	Impact of the Poison Ratio
	Effectiveness of the GCE Loss
	Impact of the Threshold Value


	Conclusion
	Understanding the Fine-tuning Process of PLMs on Poisoned Datasets
	More on Defense Results
	 Understanding the Honeypot Defense Training Process
	More on Ablation Studies
	Ablation Study on Honeypot Warm-Up 
	Ablation Study on Normalization Method

	Extend Honeypot to Computer Vision Tasks
	Settings
	Lower Layer Representations from VGG Provide Sufficient Backdoor Information
	Defense Results on CIFAR10

	Reproducibility
	Limitations and Discussions

