
Supplementary Material

Supplementary material is organized as follows. In Appendix A, we provide useful auxiliary facts
and relevant technical results from previous works. Appendix B proves our result for general robust
nonconvex optimization (Theorem 3.1). Appendix C provides omitted computation and proofs for
robust low rank matrix sensing (Section 3.1). Appendix D proves our SQ lower bound (Section 4) for
the sample complexity of efficient algorithms for the outlier-robust low rank matrix sensing problem,
and Appendix E discusses the intuition why some simple algorithms that violate our SQ lower bound
fail.

A Technical Preliminaries

A.1 Notation and Auxiliary Facts

In the appendix, we use eO(·) notation to suppress, for conciseness, logarithmic dependences on all
defined quantities, even if they do not appear inside eO(·). More precise statements can be found in
the corresponding main parts of the paper. For matrix space Rd⇥r and a set X ? ⇢ Rd⇥r, we use
PX?(·) to denote the Frobenius projection onto X ?, i.e., PX?(U) = argminZ2X? kU � Zk2F . We
use dist(U,X ?) to denote kU � PX?(U)kF .
Fact A.1. For matrices A,B with compatible dimensions,

kABkF  kAkop kBkF
kABkF  kAkF kBkop

For two matrices A and B, let A⌦B denote the Kronecker product of A and B.
Fact A.2. For matrices A,B,C with compatible dimensions, vec(ABC) =

�
C> ⌦A

�
vec(B).

Fact A.3. kA⌦Bkop = kAkop kBkop

We will frequently use the following fact about the mean and the variance of the quadratic form for
zero-mean multivariate normal distributions.
Fact A.4. Let X ⇠ N (0,⌃) be a k-dimensional random variable and let G be a k ⇥ k real matrix;
then

E[X>GX] = tr(G⌃) = hG,⌃i
Var[X>GX] = tr(G⌃(G+G>)⌃)

A.2 Simplified Proof for the Optimization Algorithm with Inexact Gradients and Hessians

Algorithm A.1: Nonconvex minimization with inexact gradients and Hessians [LW23]
1 for t = 1, 2, . . . do
2 Obtain egt from the inexact gradient oracle
3 if kegtk> ✏g then
4 xt+1 = xt � 1

Legt
5 else
6 Obtain eHt from the inexact Hessian oracle
7 Compute smallest eigenvalue and its corresponding eigenvector (e�t, ept)
8 if e�t < �✏H then
9 �t = ±1 with probability 1

2

10 xt+1 = xt +
2✏H
LH

�tept
11 else
12 return xt

We stated the following guarantee (Proposition 2.2) in Section 2:

14

Proposition A.5. Suppose a function f is bounded below by f⇤ > �1, has Lg-Lipschitz gra-
dient and LH -Lipschitz Hessian, and its inexact gradient and Hessian computation egt and eHt

satisfy kegt �rf(xt)k  1
3✏g and k eHt � r2f(xt)kop 

2
9✏H . Then there exists an algorithm

(Algorithm A.1) with the following guarantees:

1. (Correctness) If Algorithm A.1 terminates and outputs xn, then xn is a (43✏g,
4
3✏H)-approximate

second-order stationary point.

2. (Runtime) Algorithm A.1 terminates with probability 1. Let C✏ := min
⇣

✏2
g

6Lg

, 2✏3
H

9L2
H

⌘
. With

probability at least 1� �, Algorithm A.1 terminates after k iterations for

k = O
⇣f(x0)� f⇤

C✏
+

L2
HL2

g✏
2
g

✏6H
log

⇣1
�

⌘⌘
.

This section proves the correctness and a slightly weaker runtime guarantee in terms of the dependence
on �. We prove a O(1/�) dependence instead of O(log(1/�)), i.e., with probability at least 1 � �,
Algorithm A.1 terminates after k iterations for

k = O
⇣f(x0)� f⇤

�C✏

⌘
. (8)

Proof of correctness and a weaker runtime [LW23]. We prove the correctness first. From the stop-
ping criteria, we have kegkk  ✏g and e�k � �✏H . Thus,

krf(xk)k  kgkk+
1

3
✏g =

4

3
✏g.

To bound �min(r2f(xk)), write Uk = eHk � r2f(xk). By Hessian inexactness condition,
�min(�Uk) � �k�Ukkop � �

2
9✏H .

We use Weyl’s theorem to conclude that

�min(r2f(xk)) � �min(eHk) + �min(�Uk) � �✏H �
2

9
✏H > �4

3
✏H ,

as required.

Now we analyze the runtime. We proceed by first establishing an expectation bound and then use
Markov’s inequality.

Write vt := egt �rf(xt). When the algorithm takes a gradient step, we have kegtk> ✏g . By gradient
inexactness condition, we have kvtk 1

3kegtk, so that krf(xt)k� 2
3kegtk. From Taylor’s Theorem,

we have

f(xt+1) = f

✓
xt �

1

Lg
egt
◆

 f(xt)�
1

Lg
rf(xt)

>egt +
Lg

2
· 1

L2
g

kegtk2

= f(xt)�
1

2Lg

�
krf(xt)k2�kvtk2

�

 f(xt)�
1

2Lg

✓
4

9
kegtk2�

1

9
kegtk2

◆

 f(xt)�
1

6Lg
kegtk2

 f(xt)�
1

6Lg
✏2g, (9)

15

For the negative curvature step, recall that k eHt � r2f(xt)kop 
2
9✏H . It follows from Taylor’s

theorem that

f(xt+1) = f(xt +
2✏H
LH

�tept)

 f(xt) + 2
✏H
LH
rf(xt)

>�tept +
1

2

4✏2H
L2
H

ep>t r2f(xt)ept +
LH

6

8✏3H
L3
H

= f(xt) +
2✏2H
L2
H

✓
ep>t r2f(xt)ept +

2

3
✏H

◆
+ 2

✏H
LH
rf(xt)

>�tept

When the algorithm takes a negative curvature step, we have e�t < �✏H < 0, so by Hessian
inexactness condition, we have k eHt �r2f(xt)k 2

9✏H 
2
9 |e�t|. It follows from the definition of

operator norm and Cauchy-Schwarz that |ep>t eHtept � ep>t r2f(xt)ept| k eHtept �r2f(xt)eptk 2|e�t|
9 ,

so
ep>t r2f(xt)ept 

2

9
|e�t|+p>t eHtept =

2

9
|e�t|+(�|e�t|) = �

7

9
|e�t|.

We thus have

f(xt+1)  f(xt) +
2✏2H
L2
H

✓
ep>t r2f(xt)ept +

2

3
✏H

◆
+ 2

✏H
LH
rf(xt)

>�tept

 f(xt) +
2✏2H
L2
H

✓
�7

9
|e�t|+

2

3
↵t

◆
+ 2

✏H
LH
rf(xt)

>�tept

 f(xt)�
2✏3H
9L2

H

+ 2
✏H
LH
rf(xt)

>�tept. (10)

We have the following result for expected stopping time of Algorithm A.1. Here the expectation is
taken with respect to the random variables �t used at the negative curvature iterations. For purposes
of this and later results, we define

C✏ := min

✏2g
6Lg

,
2✏3H
9L2

H

!
. (11)

Assuming Lemma A.6, the runtime guarantee in Proposition A.5 follows from Markov inequality.

Lemma A.6. Consider the same setting as in Proposition A.5. Let T denote the iteration at which
Algorithm A.1 terminates. Then T <1 almost surely and

ET  f(x0)� f⇤

C✏
, (12)

where C✏ is defined in (11).

The proof of this result is given below. It constructs a supermartingale1 based on the function value
and uses a supermartingale convergence theorem and optional stopping theorem to obtain the final
result. A similar proof technique is used in [Ber+22] but for a line-search algorithm. We collect
several relevant facts about supermartingales before proving the result.

First, we need to ensure the relevant supermartingale is well defined even after the algorithm
terminates, so that it is possible to let the index t of the supermartingale go to1.
Fact A.7 ([Dur19, Theorem 4.2.9]). If T is a stopping time and Xt is a supermartingale, then
Xmin(T,t) is a supermartingale.

The following supermatingale convergence theorem will be used to ensure the function value con-
verges, so that the algorithm terminates with probability 1.

1A supermartingale with respect to filtration {G1,G2, . . . } is a sequence of random variables {Y1, Y2, . . . }
such that for all k 2 Z+, (i) E |Yt| < 1, (ii) Yt is Gt-measurable, and (iii) E(Yt+1 |Gt)  Yt.

16

Fact A.8 (Supermartingale Convergence Theorem, [Dur19, Theorem 4.2.12]). If Xt � 0 is a
supermartingale, then as t ! 1, there exists a random variable X such that Xt ! X a.s. and
EX  EX0.

Finally, we will use the optional stopping theorem to derive the expected iteration complexity. Note
that we use a version of the optional stopping theorem specific to nonnegative supermartingales that
does not require uniform integrability.
Fact A.9 (Optional Stopping Theorem, [Dur19, Theorem 4.8.4]). If Xn is a nonnegative super-
martingale and N  1 is a stopping time, then EX0 � EXN .

Proof of Lemma A.6. We first construct a supermartingale based on function values. Since E [�t] = 0,
linearity of expectation implies that E

⇥
2↵t

Mrf(xt)>�tept
��xt

⇤
= 0. We therefore have from (10) that

E [f(xt+1)|xt]  f(xt)�
2✏3H
9L2

H

.

By combining with the (deterministic) first-order decrease estimate (9), we have

E [f(xt+1)|xt]  f(xt)�min

✏2g
6Lg

,
2✏3H
9L2

H

!
= f(xt)� C✏.

Consider the stochastic process Mt := f(xt) + tC✏. We have

E [Mt+1|xt] = E [f(xt+1) + (t+ 1)C✏|xt]

 E [f(xt)� C✏ + (t+ 1)C✏|xt]

= E [f(xt) + tC✏|xt] = Mt.

We need to select a filtration to define the supermartingale Mt. We view xt as random variables
defined with respect to �i, i  k. Since Mt is expressed as a function of xt only, we define the
filtration {Gt} to be the filtration generated by xt, and it naturally holds that Mt is Gt-measurable for
all k and E [Mt+1|Gt] = E [Mt+1|xt]. Hence, {Mt} is a supermartingale with respect to filtration
{Gt}.

Let T denote the iteration at which our algorithm stops. Since the decision to stop at iteration t
depends only on xt, we have {T = t} 2 Gt, which implies T is a stopping time.

We will use the supermartingale convergence theorem (Fact A.8) to show that T < +1 almost surely,
since the function value cannot decrease indefinitely as it is bounded by f⇤ from below. To apply
Fact A.8, we need to let t!1, so we need to transform {Mt} to obtain a supermartingale {Yt}that
is well defined even after the algorithm terminates.

It follows from Fact A.7 that Yt := Mmin(t,T) is also a supermartingale. Since Yt � f⇤, it follows
from the supermartingale convergence theorem (Fact A.8) applied to Yt � f⇤ that Yt ! Y1
almost surely for some random variable Y1 with EY1  EY0 = EM0 = f(x0) < 1. Hence
P[Y1 = +1] = 0. On the other hand, as t ! 1, we have tC✏ ! 1, so T = +1 =) Yt =
Mt � f⇤ + tC✏ !1 =) Y1 = +1. Therefore we have P[T < +1] = 1.

We can then apply the optional stopping theorem (Fact A.9) to Yt � f⇤. It follows that

f⇤ + ET · C✏  E f(xT) + ET · C✏ = E [MT] = E [YT]  E[Y0] = E [M0] = f(x0),

where the first equality uses T < +1 almost surely and the last inequality is Fact A.9. By
reorganizing this bound, we obtain ET  f(x0)�f⇤

C✏

, as desired.

A.3 Robust Mean Estimation—Omitted background

A class of algorithms that robustly estimate quantities in the presence of outliers under strong
contamination model (Definition 1.1) are based on the stability of samples:
Definition A.10 (Definition of Stability [Dia+17]). Fix 0 < ✏ < 1/2 and � > ✏. A finite set S ⇢ Rk

is (✏, �)-stable with respect to mean µ 2 Rk and �2 if for every S0 ⇢ S with |S0|� (1� ✏)|S|, the
following conditions hold: (i) kµS0 � µk  ��, and (ii)

��⌃̄S0 � �2I
��
op
 �2�2✏, where µS0 and

⌃̄S0 denote the empirical mean and empirical covariance over the set S0 respectively.

17

Algorithm A.2: RobustMeanEstimation with unknown covariance bound
Data: 0 < ✏ < 1/2 and T is an ✏-corrupted set
Result: bµ with kbµ� µSk = O(

q
k⌃kop ✏)

1 Initialize a weight function w : T ! R�0 with w(x) = 1/|T | for all x 2 T ;
2 while kwk1 � 1� 2✏ do
3 µ(w) := 1

kwk1

P
x2T w(x)x;

4 ⌃(w) := 1
kwk1

P
x2T w(x)(x� µ(w))(x� µ(w))>;

5 Compute the largest eigenvector v of ⌃(w) ;
6 g(x) := |v>(x� µ(w))|2;
7 Find the largest threshold t such that ⌃x2T :g(x)�tw(x) � ✏;
8 f(x) := g(x) {g(x) � t} ;
9 w(x) w(x)

⇣
1� f(x)

maxy2T :w(y) 6=0 f(y)

⌘
;

10 return µ(w)

On input the corrupted version of a stable set, Algorithm A.2 has the following guarantee.

Proposition A.11 (Robust Mean Estimation with Stability [DKP20, Theorem A.3]). Let T ⇢ Rk be
an ✏-corrupted version of a set S, where S is (C✏, �)-stable with respect to µS and �2, and where
C > 0 is a sufficiently large constant. Algorithm A.2 on input ✏ and T (but not � or �) returns
(deterministically) a vector bµ in polynomial time so that kµS � bµk = O(��).

Proposition A.11 requires the uncorrupted samples to be stable. With a large enough sample size,
most independent and identically distributed samples from a bounded covariance distribution are
stable. The remaining samples can be treated as corruptions.

Proposition A.12 (Sample Complexity for Stability [DKP20, Theorem 1.4]). Fix any 0 < ⇠ < 1.
Let S be a multiset of n independent and identically distributed samples from a distribution on Rk

with mean µ and covariance ⌃. Then, with probability at least 1 � ⇠, there exists a sample size
n = O

⇣
k log k+log(1/⇠)

✏

⌘
and a subset S0 ✓ S such that |S0| � (1� ✏)n and S0 is (2✏, �)-stable

with respect to µ and k⌃kop, where � = O(
p
✏).

Proof of Proposition 2.3. Proposition A.12 implies that for i.i.d. samples from a k-dimensional
bounded covariance distribution to contain a stable set of more than (1 � ✏)-fraction of samples
with high probability, we need eO

�
k
✏

�
samples. We refer to the remaining ✏-fraction of samples as

unstable samples. Since the adversary corrupts an ✏-fraction of clean samples S, the input set T can
be considered as a 2✏-corrupted version of a stable set, if we view the unstable samples as corruptions.
Therefore, Proposition A.11 applies and gives the desired error guarantee.

B Omitted Proofs in General Robust Nonconvex Optimization

Sample Size for Successful Robust Mean Estimation For each iteration t in Algorithm A.1
and Algorithm 3.1, we would like to robustly estimate the mean of a set of corrupted points
{vec (rf(xt))}ni=1 and/or {vec (r2f(xt))}ni=1 where the inliers are drawn from a distribution
with bounded covariance ⌃ � �2I . For fixed xt, inliers are drawn independently and identically
distributed (i.i.d.), but the dependence across all iterations t is allowed.

Theorem B.1. Let X ⇢ Rl be a closed and bounded set with radius at most � (i.e., kxk 
�, 8x 2 X). Let p⇤ be a distribution over functions h : X ! Rk. Let ⇠ 2 (0, 1) be the
failure probability. Suppose h is L-Lipschitz and uniformly bounded, i.e., there exists B > 0
such that kh(x)k  B 8x 2 X almost surely. Assume further that for each x 2 X we have
kCovh⇠p⇤(h(x))kop  �2. Let S be a multiset of n i.i.d. samples {hi}ni=1 from p⇤. Then there exists

18

a sample size

n = O

0

@
k log k + l log

⇣
�LB
�✏⇠

⌘

✏

1

A

such that with probability 1 � ⇠, it holds that for each x 2 X , there exists a subset S0 ⇢ S with
|S0|� (1�2✏)n (potentially different subsets S0 for different x) such that {hi(x)}i2S0 is (2✏, �)-stable
with respect to µ and �2, where � = O(

p
✏).

To prove this theorem, we work with an easier version of stability condition specialized to samples
from a bounded covariance distribution.
Claim B.2 (Claim 2.1 in [DKP20]). (Stability for bounded covariance) Let R ⇢ Rk be a finite
multiset such that kµR � µk  ��, and

��⌃̄R � �2I
��
op
 �2�2/✏ for some 0  ✏  �. Then R is

(⇥(✏), �0) stable with respect to µ and �2, where �0 = O(� +
p
✏).

Proof of Theorem B.1. Given Claim B.2, it suffices to show that with probability 1 � ⇠, for each
x 2 X there exists a subset S0 ⇢ S with |S0|� (1� 2✏)n such that

���� E
i2S0

hi(x)� E
h⇠p⇤

h(x)

����  O(��) (13)
���� E
i2S0

(hi(x)� E
h⇠p⇤

h(x))(hi(x)� E
h⇠p⇤

h(x))> � �2I

����
op

 O
�
�2�2/✏

�
(14)

By Proposition A.12, for each x 2 X , with probability 1�
⇣

⇠�BL
�
p
✏

⌘l
� 1� ⇠/

⇣
�BL
�
p
✏

⌘l
, there exists

a subset S0 ⇢ S with |S0|� (1� 2✏)n such that (13) and (14) hold.

We proceed with a net argument. Up to a multiplicative error that can be suppressed by O(·), if
Equation (13) holds for some x 2 X , it also holds for all other x0 in a ball of radius ��/L because
h(·) is L-Lipschitz. Similarly, (14) is equivalent to

| E
i2S0

((hi(x)� E
h⇠p⇤

h(x))>v)2 � �2v>v| O
�
�2�2/✏

�
8v 2 Rk.

Since h(·) is L-Lipschitz and uniformly bounded by B, if (14) holds for some x 2 X , it also holds for
all x0 in a ball of radius �2�2

✏BL . Therefore, it suffices for Equation (13) and (14) to hold for a ⌧ -net of

X , where for � = O(
p
✏) we have ⌧ = min

⇣
��
L , �2�2

✏BL

⌘
= ⌦

⇣
�
p
✏

BL

⌘
. An ⌦

⇣
�
p
✏

BL

⌘
-net of �-radius

ball in Rl has size O
⇣⇣

�BL
�
p
✏

⌘l⌘
. Taking a union bound over this net completes the proof.

Proof of Main Theorem We establish a slightly enhanced version of Theorem 3.1 by including the
last sentence as an additional component to the original theorem.
Theorem B.3. Suppose we are given ✏-corrupted set of functions {fi}ni=1 for sample size n, generated
according to Definition 1.2. Suppose Assumption 1.4 holds in a bounded region B ⇢ RD of radius
� with gradient and Hessian covariance bound �g and �H respectively, and we have an arbitrary
initialization x0 2 B. For some n = eO(D2/✏), Algorithm A.1 initialized at x0 outputs an (✏g, ✏H)-
approximate SOSP in polynomial time with high probability if the following conditions hold:

(I) All iterates xt in Algorithm A.1 stay inside the bounded region B.

(II) For an absolute constant c > 0, it holds that �g
p
✏  c✏g and �H

p
✏  c✏H .

Moreover, there exists an absolute constant Cest such that for each iteration t, the gradient oracle egt
and Hessian oracle eHt satisfy kegt �rf(xt)k  Cest�g

p
✏ and k eHt �r2f(xt)kF  Cest�H

p
✏.

And we recall that the we construct the gradient and Hessian oracles in Algorithm A.1 in the following
way:

egt RobustMeanEstimation({rfi(xt)}ni=1, 4✏)

eHt RobustMeanEstimation({r2fi(xt)}ni=1, 4✏)

19

If we ignore that the dependence between {rfi(xt)} introduced via xt, this theorem follows directly
from Proposition 2.3. Here we fix this technicality via a union bound over all xt with Theorem B.1.

Proof. By Proposition 2.2, it suffices to check that gradient and Hessian inexactness condition is
satisfied. That is, for all iterations t, it holds that

kegt �rf(xt)k 
1

3
✏g, (15)

kvec(eHt)� vec(r2f(xt))k 
2

9
✏H . (16)

Here we use the fact that kvec(eHt)� vec(r2f(xt))k = k eHt �r2f(xt)kF � k eHt �r2f(xt)kop.

We proceed to apply Theorem B.1 and consider the function hg(x,A) = vec(rxf(x,A)) and
hH(x) = vec(r2

xxf(x,A)). We consider hH : RD ! RD2

first. By assumption (I), all iterates
never leave the bounded region B with high probability; we condition on this event in the remaining
analysis and it follows that

��CovA⇠G(vec(r2f(xt, A)))
��
op
 �2

H for all iterations t.

Assumption 1.4 (ii) posits that with high probability hH(·, A) is LDH
-Lipschitz and its `2-

norm is bounded above by BDH
. We further condition on this event. Let ⇠ 2 (0, 1). Since

kCovA2G(hH(x,A))kop  �H by Assumption 1.4 (iii), there exists a sample size

n = O

0

@
D2 logD +D log

⇣
�LDH

BDH

�H✏⇠

⌘

✏

1

A ,

such that with probability 1� ⇠, it holds that for each x 2 X , there exists a (2✏, O(
p
✏))-stable subset

of size at least (1� 2✏)n in the sense of Definition A.10 (potentially different subsets S0 for different
x). Therefore, conditioning on the event that for all x there exists a stable subset, Proposition A.11
implies that there exists an absolute constant Cest such that kvec(eHt)�vec(r2f(xt))k  Cest�H

p
✏

for all t. By assumption (II) with a sufficiently small constant c, we have Cest�H
p
✏  2✏H/9, and

therefore kvec(eHt)� vec(r2f(xt))k  2
9✏H .

Now we established that for Equation (16) to hold for all iterations t with high probability, the sample
complexity is required to be at least n = eO

�
D2/✏

�
. A similar argument implies that eO(D/✏) samples

are needed for Equation (15) to hold for all iterations t with high probability, which is dominated by
eO
�
D2/✏

�
.

C Omitted Proofs in Low Rank Matrix Sensing

This section provides omitted computation and proofs for robust low rank matrix sensing (Section 3.1),
establishing Theorem 1.7. Appendix C.1 computes the gradient and Hessian of fi defined in Equa-
tion (3) and their covariance upper bounds under Definition 1.6 with noiseless measurements (� = 0).
Appendix C.2 proves the global convergence of our general robust nonconvex optimization framework
(Theorem 3.1) applied to the noiseless robust low rank matrix sensing problem, which leads to an
approximate SOSP, and Appendix C.3 proves the local linear convergence to a global minimum from
this approximate SOSP. Finally, Appendix C.4 discusses the case of noisy measurements (� 6= 0)
under Definition 1.6.

C.1 Omitted Computation in Low Rank Matrix Sensing

C.1.1 Sample Gradient and Sample Hessian

Summary of Results Consider the noiseless setting as in Theorem 1.7 with � = 0. We now
compute the gradient and the Hessian of fi : Rd⇥r ! R. We firstly summarize the results. The
gradient of fi at point U , denoted by rfi(U), is a matrix in Rd⇥r given by

rfi(U) = hUU> �M⇤, Aii(Ai +A>
i)U.

20

The Hessian of fi at point U , denoted by (Hi)U , is a linear operator (Hi)U : Rd⇥r ! Rd⇥r. The
operator (Hi)U acting on a matrix Y 2 Rd⇥r gives:

(Hi)U (Y) = hUU> �M⇤, Aii(Ai +A>
i)Y + hY, (Ai +A>

i)Ui(Ai +A>
i)U.

We want to identify this linear map with a matrix Hi(U) of dimension Rdr⇥dr. We vectorize both
the domain and the codomain of (Hi)U so that it can be represented by a matrix.

Let Ir and Id denote the identity matrices of dimension r ⇥ r and d⇥ d respectively.

Hi(U) = hUU> �M⇤, AiiIr ⌦ (Ai +A>
i) + vec

�
(Ai +A>

i)U
�
vec

�
(Ai +A>

i)U
�>

.

In this paper, we sometimes abuse the notation and use r2fi(U) to refer to either Hi(U) or (Hi)U ,
but its precise meaning should be clear from its domain.

Computation of Gradients and Hessians Let (Dkfi)U denote the k-th order derivative of fi at
point U 2 Rd⇥r and L(X,Y) denote the space of all linear mappings from X to Y . We consider
higher-order derivatives as linear maps:

(Dfi)U : Rd⇥r ! R
(D2fi)U : Rd⇥r ! L(Rd⇥r,R)

We identify (Dfi)U with the matrix rfi(U) such that

(Dfi)U (Z) = hrfi(U), Zi

and identify (D2fi)U with a linear operator (Hi)U : Rd⇥r ! Rd⇥r such that

(D2fi)U (Y)(Z) = h(Hi)U (Y), Zi.

Since fi is differentiable, applying its derivative at U to a matrix Z gives the corresponding directional
derivative at U for the direction Z.

(Dfi)U (Z) =
d

dt
fi(U + tZ)

���
t=0

=
d

dt

1

2
(h(U + tZ)(U + tZ)>, Aii � yi)

2
���
t=0

=
�
hUU>, Aii � yi

�✓ d

dt
hUU> + t2ZZ> + t(ZU> + UZ>), Aii

◆���
t=0

=
�
hUU>, Aii � yi

�
h d
dt

�
t2ZZ> + t(ZU> + UZ>)

�
, Aii

���
t=0

(a)
=

�
hUU>, Aii � yi

�
hZU> + UZ>, Aii

=
�
hUU>, Aii � yi

�
hAi, ZU>i+ hAi, UZ>i

=
�
hUU>, Aii � yi

�
hAiU,Zi+ hU>Ai, Z

>i
(b)
=
�
hUU>, Aii � yi

�
h(Ai +A>

i)U,Zi.

From (a) we conclude (Dfi)U is the functional Z 7!
�
hUU>, Aii � yi

�
hZU> + UZ>, Aii; it

would be easier to calculate the second derivative from this form. From (b), using yi = hAi,M⇤i,
we obtain the following closed-form expression for the gradientrfi(U):

rfi(U) = hUU> �M⇤, Aii(Ai +A>
i)U.

To calculate the second derivative of fi at point U , we study the variation of its first derivative
U 7! (Dfi)U at direction Y . Recall that the second derivative lives in the space of linear functionals

21

L(Rd⇥r,R) and we use Z 2 Rd⇥r to denote the input of this linear functional.

(D2fi)U (Y) =
d

dt
(Dfi)U+tY

���
t=0

=
d

dt

�
Z 7!

�
h(U + tY)(U + tY)>, Aii � yi

�
hZ(U + tY)> + (U + tY)Z>, Aii

 ���
t=0

=
�
hUU>, Aii � yi

� d

dt

�
Z 7! hZ(U + tY)> + (U + tY)Z>, Aii

 ���
t=0

+

d

dt

�
h(U + tY)(U + tY)>, Aii � yi

 ���
t=0

�
Z 7! hZU> + UZ>, Aii

=
�
hUU>, Aii � yi

�
{Z 7! hZY > + Y Z>, Aii}+

hUY > + Y U>, Aii
�
Z 7! hZU> + UZ>, Aii

= Z 7!
�
hUU>, Aii � yi

�
hZY > + Y Z>, Aii+ hUY > + Y U>, AiihZU> + UZ>, Aii

= Z 7! (hUU>, Aii � yi)h(Ai +A>
i)Y, Zi+ hY, (Ai +A>

i)Uih(Ai +A>
i)U,Zi.

Recall that we identify (D2fi)U with a linear operator (Hi)U : Rd⇥r ! Rd⇥r such that

(D2fi)U (Y)(Z) = h(Hi)U (Y), Zi.

Note that (Hi)U : Rd⇥r ! Rd⇥r viewed as a fourth-order tensor is difficult to write down in a closed
form, so we vectorize both the domain and the codomain of (Hi)U so that it can be represented by a
matrix.

The operator (Hi)U acting on matrix Y 2 Rd⇥r gives

(Hi)U (Y) = hUU> �M⇤, Aii(Ai +A>
i)Y + hY, (Ai +A>

i)Ui(Ai +A>
i)U.

We identify this linear map with a matrix Hi(U) of dimension Rdr⇥dr, acting on the vectorized
version of Y . As a shorthand, write y = vec(Y) and Bi = Ai +A>

i .

Let Ir and Id denote the identity matrix of dimension r ⇥ r and d⇥ d respectively. Then

Hi(U) y = vec
�
hUU> �M⇤, Aii(Ai +A>

i)Y + hY, (Ai +A>
i)Ui(Ai +A>

i)U
�

= hUU> �M⇤, Aii vec (BiY Ir) + vec (BiU) vec(BiU)> vec(Y)

= hUU> �M⇤, AiiIr ⌦Bi vec (Y) + vec (BiU) vec(BiU)> vec(Y)

= hUU> �M⇤, Aii(Ir ⌦Bi)y + vec (BiU) vec(BiU)>y.

Hence
Hi(U) = hUU> �M⇤, AiiIr ⌦Bi + vec (BiU) vec(BiU)>.

C.1.2 Gradient Covariance Bound

Lemma C.1 (Equation (6)). Consider the noiseless setting as in Theorem 1.7 with � = 0. For all
U 2 Rd⇥r with kUk2op  �, it holds that

kCov(vec(rfi(U)))kop  8
��UU> �M⇤��2

F
kUk2op  32r2�3. (17)

Recall that � � 36�?
1 , so we have the following trivial bound that is used frequently

kM⇤kop = �?
1  �/36 < �.

Proof of Equation (6). Recall that

rfi(U) = hUU> �M⇤, Aii(Ai +A>
i)U.

We frequently encounter the following calculations.

22

Lemma C.2. Let P,Q 2 Rd⇥d be given and let Ai have i.i.d. standard Gaussian entries. Then

E[hP,AiihQ,Aii] = hP,Qi, (18)

Var[hP,AiihQ,Aii]  2 kPk2F kQk
2
F . (19)

Proof. By Definition 1.6, X := vec(Ai) is a standard Gaussian vector with identity covariance
⌃ = Id2 . Let a = vec(P), b = vec(Q), and G = ab>. Fact A.4 implies that

EhP,AiihQ,Aii = hab>, Idri = ha, bi = hP,Qi
Var[hP,AiihQ,Aii] = tr(G⌃(G+G>)⌃) = tr(G(G+G>))

= tr(ab>(ab> + ba>))

= b>a tr(ab>) + b>b tr(aa>)

= ha, bi2 + kak2 kbk2

 2 kak2 kbk2 (Cauchy-Schwarz)

= 2 kPk2F kQk
2
F .

To compute the mean and the variance of the gradientrfi(U), it is more convenient to work with
hrfi(U), Zi for some Z 2 Rd⇥r with kZkF = 1.

hrfi(U), Zi = hUU> �M⇤, Aiih(Ai +A>
i)U,Zi

= hUU> �M⇤, AiihAi +A>
i , ZU>i

= hUU> �M⇤, AiihZU> + UZ>, Aii.

Lemma C.2 implies that the expectation

Ehrfi(U), Zi = hUU> �M⇤, ZU> + UZ>i
= h

�
(UU> �M⇤) + (UU> �M⇤)>

�
U,Zi

= h2
�
UU> �M⇤�U,Zi.

By linearity of expectation, we conclude

Erfi(U) = 2(UU> �M⇤)U. (20)

The variance bound can also be obtained via Lemma C.2

Varhrfi(U), Zi  2
��UU> �M⇤��2

F

��ZU> + UZ>��2
F
 8kUU> �M⇤k2F kUk

2
op kZk

2
F ,

where the last inequality comes from Fact A.1.

Since Varhrfi(U), Zi = Var[vec(rfi(U))> vec(Z)] = vec(Z)> Cov(vec(rfi(U))) vec(Z), we
have

kCov(vec(rfi(U)))kop  8
��UU> �M⇤��2

F
kUk2op

 8�
���UU>��

F
+ kM⇤kF

�2

 8�(r�+ r�?
1)

2 = 32r2�3.

C.1.3 Hessian Covariance Bound

Lemma C.3 (Equation (7)). Consider the noiseless setting as in Theorem 1.7 with � = 0. For all
U 2 Rd⇥r with kUk2op  �, it holds that

kCov(vec(Hi))kop  16r
��UU> �M⇤��2

F
+ 128 kUk4op  192r3�2. (21)

23

Proof. As a shorthand, we write Bi = Ai +A>
i . Recall that

Hi(U) = hUU> �M⇤, AiiIr ⌦Bi + vec (BiU) vec (BiU)> .

Let W be a dr ⇥ dr matrix that has Frobenius norm 1. We work with hHi(U),W i as we did in the
gradient covariance bound calculation.

By Young’s inequality for L2 random variables (i.e., kA+ Bk2L2  2 kAk2L2 + 2 kBk2L2),
VarhHi(U),W i  2Var [hUU> �M⇤, AiihIr ⌦Bi,W i]| {z }

A

+2Var
⇥
hvec (BiU) vec(BiU)>,W i

⇤
| {z }

B

.

We first bound the term A. Note Ir ⌦Bi consists of r copies of Bi in the diagnal

Ir ⌦Bi =

2

64
Bi · · · O
...

. . .
...

O · · · Bi

3

75 .

We partition W into r2 submatrices of dimension d⇥ d.

W =

2

64
W11 · · · W1r

...
. . .

...
Wr1 · · · Wrr

3

75 .

Then
Var[hUU> �M⇤, AiihIr ⌦Bi,W i]

= Var[hUU> �M⇤, AiihBi,
rX

i=1

Wiii]

= Var[hUU> �M⇤, AiihAi,
rX

i=1

(Wii +W>
ii)i]

 2
��UU> �M⇤��2

F

�����

rX

i=1

(Wii +W>
ii)

�����

2

F

,

where the last inequality uses Lemma C.2.

Write ai = vec(Wii) 2 Rd2

, bi = vec(W>
ii), ci = ai + bi. Then kaik = kbik = kWiikF and

�����

rX

i=1

(Wii +W>
ii)

�����

2

F

=

�����

rX

i=1

ci

�����

2

=
d2X

j=1

rX

i=1

cij

!2


d2X

j=1

r
rX

i=1

c2ij (Cauchy-Schwarz)

= r
rX

i=1

kcik2 = r
rX

i=1

kai + bik2

 2r

rX

i=1

(kaik2 + kbik2)
!

= 4r
rX

i=1

kWiik2F  4r kWk2F = 4r.

Therefore,

Var[hUU> �M⇤, AiihIr ⌦Bi,W i]  2
��UU> �M⇤��2

F

�����

rX

i=1

(Wii +W>
ii)

�����

2

F

 8r
��UU> �M⇤��2

F
kWk2F = 8r

��UU> �M⇤��2
F
.

24

To bound the term B, we apply Fact A.4 with ⌃ = Cov(vec(BiU)) 2 Rdr⇥dr:

Var
⇥
hvec (BiU) vec(BiU)>,W i

⇤

= Var
⇥
vec(BiU)>W vec(BiU)

⇤

= tr(W⌃(W +W>)⌃)

= hW⌃,⌃W i+ hW⌃,⌃W>i
 kW⌃kF k⌃WkF + kW⌃kF

��⌃W>��
F

 kWkF k⌃kop k⌃kop kWkF + kWkF k⌃kop k⌃kop kWkF
= 2 kWk2F k⌃k

2
op = 2 k⌃k2op ,

where the last inequality comes from Fact A.1.

To bound k⌃k2op, we use Fact A.2 again. Since vec(BiU) = vec(IdBiU) = (U> ⌦ Id) vec(Bi), we
have

Cov(vec (BiU)) = (U> ⌦ Id) Cov(vec(Bi))(U ⌦ Id). (22)

Let P 2 Rd2⇥d2

be the permutation that maps vec(Ai) to vec(A>
i). Then

Cov(vec(Bi)) = Cov(vec(Ai) + vec(A>
i))

 2Id2 + 2Cov(vec(Ai), vec(A
>
i)) (Young’s inequality)

= 2Id2 + 2Cov(vec(Ai), P vec(Ai))

= 2Id2 + 2P Cov(vec(Ai), vec(Ai))

= 2Id2 + 2P.

Since P is a permutation, we have kCov(vec(Bi))kop  4.

It follows from Equation (22) and Fact A.3 that kCov(vec(BiU))kop  4 kUk2op and therefore

Var
⇥
hvec (BiU) vec(BiU)>,W i

⇤
 64 kUk4op kWk

2
F = 64 kUk4op .

We conclude that for all W 2 Rdr⇥dr,

VarhHi,W i  16r
��UU> �M⇤��2

F
+ 128 kUk4op ,

hence
kCov(vec(Hi))kop  16r

��UU> �M⇤��2
F
+ 128 kUk4op  192r3�2,

where the last inequality uses r � 1 and kUk2op  �.

C.2 Global Convergence in Low Rank Matrix Sensing—Omitted Proofs

We firstly verify Assumption 1.4 (ii). We recall the entire assumption below:
Assumption C.4 (Assumption 1.4). There exists a bounded region B such that the function f satisfies:

(i) There exists a lower bound f⇤ > �1 such that for all x 2 B, f(x,A) � f⇤ with probability 1.

(ii) There exist parameters LDg
, LDH

, BDg
, BDH

such that with high probability over the randomness
in A, f(·, A) is LDg

-gradient Lipschitz and LDH
-Hessian Lipschitz, and the `2-norm of gradient

and the Frobenius norm of Hessian of f(·, A) are upper bounded by BDg
and BDH

respectively.

(iii) There exist parameters �g,�H > 0 such that

kCovA⇠G(rf(x,A))kop  �g and
��CovA⇠G(vec(r2f(x,A)))

��
op
 �H .

Verifying Assumption 1.4(ii). We take the bounded region B to be the region {U : kUk2op  �}.

Let fi(U) = 1
2

�
hUU>, Aii � yi

�2 be the cost function corresponding to clean samples. We need

25

to verify that rfi(U) and r2fi(U) are poly(dr�/✏)-Lipschitz and bounded within B with high
probability so that the violated samples constitute at most an ✏-fraction.

We discuss gradient-Lipschitzness as an example, focusing on the constant LDg
. The rest of conditions

can be checked similarly. We drop the subscript L := LDg
in the following analysis for conciseness

of the notation.

Sincerfi(X)�rfi(Y) = hXX>�M⇤, Aii(Ai+A>
i)(X�Y)+hXX>�Y Y >, Aii(Ai+A>

i)Y ,
it suffices that kAik2F  2d2 + 3/✏ for rfi(·) to be poly(dr�/✏)-Lipschitz. Since kAik2F follows
chi-square distribution with degree of freedom d2, by Laurent-Massart bound, we have

P{kAik2F � d2 � d2 + 3/✏}  exp(�1/✏).

This completes the verification of Assumption 1.4(ii) for LDg
. We proceed to discuss why this high

probability result implies that at most an ✏-fraction of clean samples violates gradient Lipschitzness.
By Chernoff’s inequality, the probability that more than ✏-fraction of uncorrupted Ai’s fail to satisfy
kAik2F  2d2 + 3/✏ is less than

exp

✓
�n

✓
(1� ✏) log

1� ✏

1� exp(�1/✏) + ✏ log
✏

exp(�1/✏)

◆◆
= O

✓
1

✏
exp(�n)

◆
,

which is a small if n = eO
�
1
✏

�
is sufficiently large.

Corollary C.5. Consider the noiseless setting as in Theorem 1.7 with � = 0. There exists a
sample size n = eO

⇣
d2r2

✏

⌘
such that with n samples, all subroutine calls to RobustMeanEstimation

(Algorithm A.2) to estimate population gradientsrf̄(Ut) and population Hessiansr2f̄(Ut) succeed
with high probability. In light of Equations (6) and (7), this means that there exists a large enough
constant Cest such that with high probability, for all iterations t, we have

��egt �rf̄(Ut)
��
F
 2Cest

��UtU
>
t �M⇤��

F
kUtkop (23)

��� eHt �r2f̄(Ut)
���
F
 4r1/2

��UtU
>
t �M⇤��

F
+ 16 kUtk2op . (24)

Proof. This follows directly from the last sentence of Theorem B.3, with D = d2r2 and �g,�H

given by Equations (6) and (7).

We next prove Lemma 3.7, establishing that all iterates stay inside a bounded region in which the
covariance bounds are valid. The analysis utilizes a “dissipativity” property [Hal10]), which says that
the iterate aligns with the direction of the gradient when the iterate’s norm is large. For the gradient
step, the gradient will reduce the norm of the iterate. For the negative curvature step, dissipativity
property provides a lower bound on the gradient when the iterate’s norm is large, but we show that
Algorithm A.1 only takes a negative curvature step when this lower bound is violated, therefore the
iterate’s norm must be small and negative curvature steps with a fixed and small stepsize cannot
increase the iterate’s norm by too much.

Proof of Lemma 3.7. Recall Algorithm A.1 consists of inexact gradient descent steps of size 1/Lg =
1

16� and randomized inexact negative curvature steps of size

2✏H
LH

=
�?
r

36�
 �1/2

36
. (25)

We proceed to use induction to prove the following for Algorithm A.1:

1. Suppose at step ⌧ we run the negative curvature step to update the iterate from U⌧ to U⌧+1,
then kU⌧kop 

1
2�

1/2

2. kUtkop  �1/2 for all t � 0.

26

First we consider the inexact gradient steps. We denote the gradient inexactness by et = rf̄(Ut)�egt.
Recall that

ketkF  4rCest�
?
1 kUtkop

p
✏

according to Equation (23) in Lemma C.5 whenever kUtkop  �1/2, which is true according to the
induction hypothesis. Therefore, we have

kUt+1kop =

����Ut �
1

16�
egt
����
op

=

����Ut �
1

16�
(2(UtUt �M⇤)Ut � et)

����
op


����Ut �

1

8�
UtU

>
t Ut

����
op

+
1

8�

����M
⇤Ut +

1

2
et

����
op

 max
i

{�i(Ut)�
1

8�
�3
i (Ut)}+

1

8�
(�?

1 + 2rCest�
?
1

p
✏) kUtkop

Since the function t 7! t� 1
8� t

3 is increasing in [0,
q

8�
3] and kUtkop  �1/2 

q
8�
3 by induction

hypothesis, the maximum is taken when i = 1, hence

kUt+1kop  kUtkop �
1

8�
kUtk3op +

1

8�
(�?

1 + 2rCest�
?
1

p
✏) kUtkop

 kUtkop �
1

8�
(kUtk2op � �?

1 � 2rCest�
?
1

p
✏) kUtkop

 kUtkop �
1

8�
(kUtk2op � 2�?

1) kUtkop , (26)

where the last inequality uses ✏ = O
�

1
3r3

�
= O

�
1
r2

�
. We split into two cases now:

Case kUtkop > 1
2�

1/2. Recall that � � 36�?
1 , hence

kUt+1kop  kUtkop �
1

8�
(kUtk2op � 2�?

1) kUtkop

 kUtkop �
1

8�
(
�

4
� 2�?

1)
�1/2

2

 kUtkop �
1

8�
(
�

4
� �

18
)
�1/2

2

 kUtkop �
1

96
�1/2,

where the second inequality is because t 7! (t2�2�?
1)t is increasing on

q
2�?

1
3 ,+1

�
and kUkop �

1
2�

1/2 � 3�?
1 . This case captures the dissipativity condition satisfied by the matrix sensing problem,

which says that the iterate aligns with the direction of the gradient when the iterate’s norm is large, so
descending along the gradient decreases the norm of the iterate.

Case kUtkop 
1
2�

1/2. From Equation (26) we know that if kUtk2op � 2 kM⇤kop, it always holds
that kUt+1kop  kUtkop 

1
2�

1/2. For kUtk2op  2 kM⇤kop, we have kUtkop 
p
2�?

1
1/2, and

therefore

kUt+1kop  kUtkop �
1

8�
(kUtk2op � 2�?

1) kUtkop

 kUtkop +
1

8�
(
p
2�?

1
1/2 + kUtkop)((

p
2�?

1
1/2 � kUtkop)) kUtkop

 kUtkop +
2
p
2�?

1
1/2

8�
(
p
2�?

1
1/2 � kUtkop)

p
2�?

1
1/2

= kUtkop +
�?
1

2�
(
p
2�?

1 � kUtkop)


p
2�?

1
1/2 (because the above expression is increasing in kUtkop)


p
2

6
�1/2 < �1/2,

27

where in the second last inequality we use �?
1  �/36.

In summary, for all t 2 N,

kUtkop >
1

2
�1/2 =)

����Ut �
1

16�
egt
����
op

 kUtkop �
1

96
�1/2 (27)

kUtkop 
1

2
�1/2 =)

����Ut �
1

16�
egt
����
op

 1

2
�1/2 (28)

In particular, for gradient step regime Ut+1 := Ut � 1
16�egt, we know the iterate Ut+1 stays inside the

region {U : kUk2op  �} provided that Ut is inside the region.

We proceed to analyze negative curvature steps, which only happen if the inexact gradient is small
kegtkF  ✏g = 1

32�
?
r
3/2. Note that it follows from Equation (27) that

kegtkF 
1

32
�?
r
3/2 =) kegtkop 

1

32
�?
r
3/2  1

32
�3/2

=)
����Ut �

1

16�
egt
����
op

� kUtkop �
1

512
�1/2 > kUtkop �

1

96
�1/2

=) kUtkop 
1

2
�1/2.

Therefore, if at step ⌧ we run the inexact negative curvature step to update the iterate from U⌧ to U⌧+1,
then kU⌧kop 

1
2�

1/2. Recall in Equation (25) the negative curvature stepsize 2✏H
LH

 �1/2

36 < �1/2

2 ,
so for the negative curvature update

U⌧+1 = U⌧ +
2✏H
LH

�⌧ ep⌧

where �⌧ = ±1 with probability 1/2 and p⌧ is a vector with kp⌧kF = 1, we have

kU⌧+1kop  kU⌧kop +

����
2✏H
LH

�⌧ ep⌧
����
op

 kU⌧kop +

����
2✏H
LH

�⌧ ep⌧
����
F

<
1

2
�1/2 +

1

2
�1/2 = �1/2.

Finally, the initialization satisfies kU0k2op  � by assumption, so the induction is complete.

C.3 Local Linear Convergence in Low Rank Matrix Sensing—Omitted Proofs

Recall that Theorem 3.5 gives us a (1
24�

?
r
3/2, 1

3�
?
r)-approximate SOSP as the initialization for

Algorithm 3.1. We now explain why approximate SOSP is useful for the local search in the low rank
matrix sensing problems.
Definition C.6 (Strict Saddle Property). Function f(·) is a (✏g, ✏H , ⇣)-strict saddle function if for
any U 2 Rr⇥d, at least one of following properties holds:

(a) krf(U)k > ✏g .

(b) �min(r2f(U)) < �✏H .

(c) U is ⇣-close to X ? — the set of local minima; namely, dist(U,X ?)  ⇣.

Approximate SOSPs are close to the set of local minima for strict saddle functions:
Proposition C.7. Let f be a (✏g, ✏H , ⇣)-strict saddle function and X ? be the set of its local minima.
If USOSP is a (✏g, ✏H)-approximate SOSP of f , then dist(USOSP ,X ?)  ⇣.

Proof. Since USOSP is a (✏g, ✏H)-approximate SOSP of f , we have krf(U)k  ✏g and
�min(r2f(U)) � �✏H , i.e., (a) and (b) in Definition C.6 fail to hold. Therefore, (c) holds, i.e.,
dist(U,X ?)  ⇣.

28

Some regularity conditions only hold in a local neighborhood of X ?. We focus on the following
definition.
Definition C.8 (Local Regularity Condition). In a ⇣-neighborhood of the set of local minima X ?

(that is, dist(U,X ?)  ⇣), the function f(·) satisfies an (↵,�)-regularity condition if for any U in
this neighborhood:

hrf(U), U � PX?(U)i � ↵

2
kU � PX?(U)k2 + 1

2�
krf(U)k2 . (29)

Local regularity condition is a weaker condition than strong convexity, but both conditions would
allow a first-order algorithm to obtain local linear convergence.

Recall that f̄(U) = 1
2

��UU> �M⇤
��2
F

. The global minima of f̄ solve the so-called symmetric low
rank matrix factorization problem and the corresponding function value is zero. Let TDT> be the
singular value decomposition of the real symmetric matrix M⇤. We observe U⇤ = TD1/2 is a global
optimum of f̄ .

The function f̄ satisfies the local regularity condition and the strict saddle property, and all of its local
minima are global minima [Jin+17].
Fact C.9 ([Jin+17], Lemma 7). For f̄ defined in (4), all local minima are global minima. The set of
global minima is characterized by X ? = {U⇤R|RR> = R>R = I}. Furthermore, f̄(U) satisfies:

1. (1
24 (�

?
r)

3/2, 1
3�

?
r ,

1
3 (�

?
r)

1/2)-strict saddle property, and

2. (23�
?
r , 10�

?
1)-regularity condition in the 1

3 (�
?
r)

1/2-neighborhood of X ? in Frobenius norm.

Similar to Corollary C.5, we need a theorem to say that all calls to RobustMeanEstimation (Algo-
rithm A.2) are successful. For the local search (Algorithm 3.1), only inexact gradient oracles are
required. Since gradients have dimension dr, the sample complexity needed for all robust estimates
of gradient to be accurate with high probability is eO

�
dr
✏

�
.

Corollary C.10. Consider the noiseless setting as in Theorem 1.7 with � = 0. There exists a
sample size n = eO

�
dr
✏

�
such that with n samples, all subroutine calls to RobustMeanEstimation

(Algorithm A.2) to estimate gradients rf̄(Ut) succeed with high probability. In light of Equation (6),
this means that there exists a large enough constant Cest such that with high probability which is
suppresed by eO(·), for all iterations t, we have

��egt �rf̄(Ut)
��
F
 2Cest

��UtU
>
t �M⇤��

F
kUtkop . (30)

Proof. The proof follows exactly the same line of argument as Corollary C.5 and Theorem B.3, which
discusses the sample complexity required for robust mean estimation of both gradients and Hessians
to be successful. Since the Hessian has dimension d2r2, the sample complexity in Corollary C.5
is dominated by e⌦

�
d2r2/✏

�
. Here the gradient has dimension dr, so we have the required sample

complexity e⌦(dr/✏).

Proof of Theorem 3.8. Let et = egt �rf̄(Ut) and we rewrite the inexact gradient descent update as

Ut+1 = Ut � ⌘(rf̄(Ut) + et).

It follows from Corollary C.10 that, with high probability and for some large constant Cest, all calls
to RobustMeanEstimation are successful, i.e., for all iterations t,

ketkF  2Cest�
1/2

��UtU
>
t �M⇤��

F

p
✏. (31)

We condition on this event for the rest of the analysis.

It is straightforward to check that 1
3�

?
r
1/2-neighborhood of X ? in Frobenius norm is inside the region

{U : kUk2op  �}. By strict saddle property in Fact C.9, we know from Proposition C.7 that
U0 = USOSP is 1

3�
?
r
1/2-close to X ? in Frobenius norm. We assume for the sake of induction that Ut

is 1
3�

?
r
1/2-close to X ?.

29

Let PX?(U) be the Frobenius projection of U 2 Rd⇥r onto X ?. By Fact C.9, for a given U 2 Rd⇥r,
there exists a rotation RU so that PX?(U) = U⇤RU . Therefore, M⇤ = U⇤U⇤> = U⇤RUR>

UU
⇤> =

PX?(U)PX?(U)>. We have

UU> �M⇤ = UU> � UPX?(U)> + UPX?(U)> � PX?(U)PX?(U)>

= U(U � PX?(U))> + (U � PX?(U))PX?(U)>.

Since kUtkop  �1/2 and kPX?(U)kop  �1/2, it follows from (31) that

ketkF  2Cest�
1/2p✏

��UtU
>
t �M⇤��

F
 4Cest�

p
✏ kUt � PX?(Ut)kF .

We proceed to derive the exponential decrease of the distance to global minima.

kUt+1 � PX?(Ut+1)k2F
 kUt+1 � PX?(Ut)k2F
=
��Ut � ⌘(rf̄(Ut) + et)� PX?(Ut)

��2
F

= kUt � PX?(Ut)k2F + ⌘2
��rf̄(Ut) + et

��2
F
� 2⌘hrf̄(Ut) + et, Ut � PX?(Ut)i

 (1� ⌘↵) kUt � PX?(Ut)k2F + ⌘2
��rf̄(Ut) + et

��2
F
� ⌘

�

��rf̄(Ut)
��2
F
� 2⌘het, Ut � PX?(Ut)i,

where the last inequality comes from the regularity condition in Fact C.9 with ↵ = 2
3�

?
r ,� = 10�?

1 .

The cross term can be bounded by

�2⌘het, Ut � PX?(Ut)i  2⌘ ketkF kUt � PX?(Ut)kF  8Cest⌘�
p
✏ kUt � PX?(Ut)k2F ,

where the last inequality comes from Equation 31.

By Young’s inequality,

⌘2
��rf̄(Ut) + et

��2
F
 2⌘2

��rf̄(Ut)
��2
F
+ 2⌘2 ketk2F

 2⌘2
��rf̄(Ut)

��2
F
+ 32⌘2C2

est�
2✏ kUt � PX?(Ut)k2F .

Recall that � � 36�?
1 . Choosing ⌘ = 1

� 
1

36�?

1
< 1

20�?

1
= 1

2� , it follows that

kUt+1 � PX?(Ut+1)k2F
 (1� ⌘↵) kUt � PX?(Ut)k2F + ⌘2

��rf̄(Ut) + et
��2
F
� ⌘

�

��rf̄(Ut)
��2
F
� 2⌘het, Ut � PX?(Ut)i

 (1� ⌘↵+ 8Cest⌘�
p
✏+ 32⌘2C2

est�
2✏) kUt � PX?(Ut)k2F + (2⌘2 � ⌘

�
)
��rf̄(Ut)

��2
F


✓
1� �?

r

30�
+

2

5
Cest
p
✏+ 32(Cest/20)

2✏

◆
kUt � PX?(Ut)k2F


✓
1�

✓
O

✓
1



◆
�O(

p
✏)

◆◆
kUt � PX?(Ut)k2F . (32)

One consequence of this calculation is kUt+1 � PX?(Ut+1)kF  kUt � PX?(Ut)kF , so Ut+1 is
also 1

3�
?
r
1/2-close to X ? in Frobenius norm, completing the induction. The other consequence is

local linear convergence of Ut to X ? with rate
�
1�O

�
1


��
, assuming ✏2 is sufficiently small. Since

the initial distance is bounded by O(�?
r
1/2), converging to a point that is ◆-close to X ? in Frobenius

norm requires the following number of iterations:

O

log(◆/�?

r
1/2)

log(1�O(1/))

!
= O

✓
 log

✓
�?
r

◆

◆◆
.

30

C.4 Low Rank Matrix Sensing with Noise

In Section 3.1, we focused on the case that � = 0 as in Theorem 3.2. Now we consider the case that
� 6= 0 and prove Theorem 3.3.

Recall that yi ⇠ N (hAi,M⇤i,�2) in Definition 1.6. Since hAi,M⇤i follows Gaussian distribution
with mean 0 and variance kM⇤k2F , we optionally assume � = O(kM⇤kF) = O(r�) to keep
the signal-to-noise ratio in constant order. For the ease of presentation, we make the following
assumption:
Assumption C.11. Assume �  r�.

We present different algorithms depending on whether Assumption C.11 holds.

As in the noiseless case, we define fi(U) = 1
2

�
hUU>, Aii � yi

�2 and

f̄(U) = E
(Ai,yi)⇠G�

fi(U) =
1

2

��UU> �M⇤��2
F
+

1

2
�2.

Note that the 1
2�

2 term in f̄(U) has no effect on its minimum, gradients, or Hessians, and Fact C.9
and 3.4 still apply in verbatim.

We prove the following result when Assumption C.11 holds:
Theorem C.12. Consider the same setting as in Theorem 1.7 with 0 6= �  r� (Assumption C.11
holds). There exists a sample size n = eO(d2r2/✏) such that with high probability, there exists an
algorithm that outputs a solution cM in eO(r23) calls to robust mean estimation routine A.2, with
error kcM �M⇤kF = O(�

p
✏).

Proof. We compute the gradient and Hessian of fi:

rfi(U) =
�
hUU> �M⇤, Aii � ⇣i

�
(Ai +A>

i)U

Hi(U) =
�
hUU> �M⇤, Aii � ⇣i

�
Ir ⌦Bi + vec (BiU) vec(BiU)>.

We also need to bound the covariance of sample gradients and sample Hessians in the bounded region
{U 2 Rd⇥r : kUk2op  �}, similar to Equations (6) and (7).

kCov(vec(rfi(U)))kop  4
⇣��UU> �M⇤��2

F
+ �2

⌘
kUk2op = O

�
r2�3

�
. (33)

kCov(vec(Hi))kop  16r
⇣��UU> �M⇤��2

F
+ �2

⌘
+ 128 kUk4op = O

�
r3�2

�
. (34)

Since global convergence analysis in Section 3.1.2 only requires kCov(vec(rfi(U)))kop =

O
�
r2�3

�
and kCov(vec(Hi))kop = O

�
r3�2

�
, Theorem 3.5 also holds in the noisy setting (up

to a constant factor). This means that we could obtain a (1
24�

?
r
3/2, 1

3�
?
r)-approximate SOSP of f̄ ,

which is in 1
3�

?
r
1/2-neighborhood of X ? in Frobenius norm.

We now focus on the local convergence analysis. We use the same algorithm (Algorithm 3.1), which
uses RobustMeanEstimation subroutine in each iteration t to obtain an inexact gradient egt for f̄(U).
We rewrite the inexact gradient descent update as

Ut+1 = Ut � ⌘(rf̄(Ut) + et).

We condition the remaining analysis on the event that all calls to RobustMeanEstimation are
successful as in Corollary C.10, which happens with high probability and implies

ketkF  2Cest

���UtU
>
t �M⇤��

F
+ �

�
kUtkop

p
✏

 2Cest

���UtU
>
t �M⇤��

F
+ �

�
�1/2p✏.

It is straightforward to check that 1
3�

?
r
1/2-neighborhood of X ? in Frobenius norm is inside the region

{U : kUk2op  �}. By strict saddle property in Fact C.9, we know U0 = USOSP is 1
3�

?
r
1/2-close

31

to X ? in Frobenius norm. We assume for the sake of induction that Ut is 1
3�

?
r
1/2-close to X ?. We

will show that kUt+1 � PX?(Ut+1)kF either shrinks or is at the order of O
�

�✏
�1/2

�
, which is also

1
3�

?
r
1/2-close to X ? in Frobenius norm for sufficiently small ✏ = O

�
1
r

�
.

As before, we define PX?(·) to be the projection onto X ? and bound the Frobenius distance to X ? as
follows:

kUt+1 � PX?(Ut+1)k2F
 kUt+1 � PX?(Ut)k2F
=
��Ut � ⌘(rf̄(Ut) + et)� PX?(Ut)

��2
F

= kUt � PX?(Ut)k2F + ⌘2
��rf̄(Ut) + et

��2
F
� 2⌘hrf̄(Ut) + et, Ut � PX?(Ut)i

 (1� ⌘↵) kUt � PX?(Ut)k2F + ⌘2
��rf̄(Ut) + et

��2
F
� ⌘

�

��rf̄(Ut)
��2
F
� 2⌘het, Ut � PX?(Ut)i,

where the last inequality comes from the regularity condition in Fact C.9 with ↵ = 2
3�

?
r ,� = 10�?

1 .

Using Cauchy-Schwarz inequality to bound
��rf̄(Ut) + et

��2
F

and het, Ut � PX?(Ut)i and choosing
⌘ = 1

20� 
1

20�?

1
= 1

2� to kill the
��rf̄(Ut)

��2
F

term, we obtain

kUt+1 � PX?(Ut+1)k2F
 (1� ⌘↵) kUt � PX?(Ut)k2F + 2⌘2

��rf̄(Ut)
��2
F
+ 2 ketk2F �

⌘

�

��rf̄(Ut)
��2
F
� 2⌘het, Ut � PX?(Ut)i

 (1� ⌘↵) kUt � PX?(Ut)k2F + 2⌘2 ketk2F � 2⌘het, Ut � PX?(Ut)i+ (2⌘2 � ⌘

�
)
��rf̄(Ut)

��2
F

 (1� ⌘↵) kUt � PX?(Ut)k2F + 2⌘2 ketk2F + 2⌘ ketkF kUt � PX?(Ut)kF .

Now we consider the following two possible cases:

Case 1:
��UtU>

t �M⇤
��
F
> �. Then

ketkF  2Cest

���UtU
>
t �M⇤��

F
+ �

�
�1/2p✏

< 4Cest

��UtU
>
t �M⇤��

F
�1/2p✏.

And it follows similar to (32) that

kUt+1 � PX?(Ut+1)k2F
 (1� ⌘↵+ 8Cest⌘�

p
✏+ 32⌘2C2

est�
2✏) kUt � PX?(Ut)k2F


✓
1� �?

r

30�
+

2

5
Cest
p
✏+ 32(Cest/20)

2✏

◆
kUt � PX?(Ut)k2F


✓
1�

✓
O

✓
1



◆
�O(

p
✏)

◆◆
kUt � PX?(Ut)k2F .

We conclude that the distance to X ? decreases geometrically in this regime until
��UtU>

t �M⇤
��
F


�, which takes a total of O
⇣
 log

⇣
�?

r

�

⌘⌘
iterations, which is very few if � = ⇥ (r�).

Case 2:
��UtU>

t �M⇤
��
F
 �. Then ketkF  4Cest��1/2p✏. It follows that

kUt+1 � PX?(Ut+1)k2F
 (1� ⌘↵) kUt � PX?(Ut)k2F + 2⌘2 ketk2F + 2⌘ ketkF kUt � PX?(Ut)kF
 (1� ⌘↵) kUt � PX?(Ut)k2F + 32⌘2C2

est�
2�✏+ 8⌘Cest��

1/2p✏ kUt � PX?(Ut)kF .

Write C = 4
p
2⌘Cest��1/2p✏, Bt = kUt+1 � PX?(Ut+1)kF /C, we have

Bt+1 
q
(1� ⌘↵)B2

t + Bt + 1.

32

It is straightforward to compute that the function b 7!
p

(1� ⌘↵)b2 + b+ 1 has Lipschitz constant

⇢ =

⇢
1
2 if 0 < 1� ⌘↵  1

4p
1� ⌘↵ if 1

4  1� ⌘↵ < 1.

Since ⇢ < 1, Banach fixed-point theorem implies that Bt converges to some B⇤ with rate

|Bt+1 � B⇤|  ⇢ |Bt � B⇤| .
We can compute an upper bound on the fixed point B⇤ by solving

B⇤ =
q
(1� ⌘↵)B⇤2 + B⇤ + 1,

which gives B⇤ = O
⇣

1
⌘↵

⌘
= O().

Denote the first iteration of Case 2 regime (
��UtU>

t �M⇤
��
F
 �) by t0. By [GJZ17, Lemma 6],

we have kUt0 � PX?Ut0kF  �
q

2
�?
r

and therefore Bt0 =
p

/✏. Therefore, Case 2 takes a total of
O( log 1/✏) iterations to reach the error

kUt � PX?(Ut)kF  O
⇣
��1/2�

p
✏
⌘
.

This translates to the error in the matrix space
��UtU

>
t �M⇤��

F
 �1/2 kUt � PX?(Ut)kF = O

�
�
p
✏
�
.

Assumption C.11 might fail to hold; a notable example is our construction in Section 4, where
kM⇤kF = O

�
✏1/2

�
but � = O(1). In this case, we consider a simple spectral method, relying on the

observation that with clean samples E(Ai,yi)2G�
[yiAi] = M⇤. So we run RobustMeanEstimation

on {yiAi}ni=1 to get fM with its singular decomposition fM =
Pn

i=1 siuiv>i , where singular values
s1 � s2 � . . . � sn are descending. We then form a new matrix cM from the r leading singular
vectors, i.e., cM =

Pr
i=1 siuiv>i .

This simple algorithm has the following guarantee:
Theorem C.13. Consider the same setting as in Theorem 1.7 with � > r�, i.e., Assumption C.11
fails. There exists a sample size n = eO(d2/✏) such that with high probability, there exists an
algorithm that outputs a solution cM in one call to robust mean estimation routine A.2, with error
kcM �M⇤kF = O(�

p
✏).

Proof. We compute the mean and variance of hyiAi, Zi for some unit Frobenius norm Z.

EhyiAi, Zi = EhAi,M
⇤ihAi, Zi+ E ⇣hAi, Zi

= EhAi,M
⇤ihAi, Zi = hM⇤, Zi.

Hence E[yiAi] = M⇤.

Var (hAi,M
⇤ihAi, Zi+ ⇣hAi, Zi)

 2VarhAi,M
⇤ihAi, Zi+ 2Var(⇣hAi, Zi)

 4 kM⇤k2F + 4�2  8�2,

where the last inequality is because kM⇤kF  r�. Hence running robust mean estimation algorithm
on {yiAi} outputs fM with

���fM �M⇤
���
F
= O(�

p
✏).

Since cM is formed by the r leading singular vectors of fM , it is the best rank r approximation to fM
by Eckart–Young–Mirsky’s theorem, i.e.,

���cM � fM
���
F

���M⇤ � fM

���
F
= O(�

p
✏). We conclude

that
���cM �M⇤

���
F

���cM � fM

���
F
+
���fM �M⇤

���
F
= O(�

p
✏) by triangle inequality.

33

D SQ Lower bound—Omitted Proofs

We consider a weaker corruption model, known as Huber’s ✏-contamination model [Hub64], than
Definition 1.1 in the sense that any corruptions in Huber’s contamination model can be emulated by
the adversary in Definition 1.1. We show a lower bound of the sample complexity in the presence of
Huber’s ✏-contamination, and the sample complexity under Definition 1.1 can therefore be no better.
Assumption D.1 (Huber’s Contamination Model). Let Q be the joint distribution of (A, y) with
vec(A) ⇠ N (0, Id2) and y|A ⇠ N (hM⇤, uu>i,�2). The input samples are contaminated according
to Huber’s ✏-contamination model in the following way: we observe samples from a mixture Q0 of
the clean joint distribution Q and an arbitrary noise distribution N , i.e., Q0 = (1� ✏)Q+ ✏N .

The adversary in the ✏-strong contamination model can emulate the Huber’s adversary: on input clean
samples, the ✏-strong contamination adversary removes a randomly chosen ✏-fraction of samples and
replaces them with samples drawn i.i.d. from N .

Recall that SQ algorithms are a class of algorithms that, instead of access to samples, are allowed to
query expectations of bounded functions of the distribution.

Definition D.2 (SQ Algorithms and STAT Oracle [Kea98]). Let G be a distribution on Rd2+1. A
Statistical Query (SQ) is a bounded function q : Rd2+1 ! [�1, 1]. For ⌧ > 0, the STAT(⌧) oracle
responds to the query q with a value v such that |v � EX⇠D[q(X)]|  ⌧ . An SQ algorithm is an
algorithm whose objective is to learn some information about an unknown distribution G by making
adaptive calls to the corresponding STAT(⌧) oracle.

A statistical query with accuracy ⌧ can be implemented with error probability � by taking
O(log(1/�)/⌧2) samples and evaluating the empirical mean of the query function q(·) evaluated at
those samples [DK23, Chapter 8.2.1]. This bound is tight in general for a single query.
Lemma D.3 (Clean marginal and conditional distribution). Let A 2 Rd⇥d with vec(A) ⇠ N (0, Id2)
and y|A ⇠ N (huu>,M⇤i,�2). Then

y ⇠ N (0,�2 + kuk4)

vec(A)|y ⇠ N

vec(uu>)y

�2 + kuk4
, Id2 � vec(uu>) vec(uu>)>

�2 + kuk4

!
.

Proof. Let Q be the joint distribution of (vec(A), y). We can write down the covariance of Q:


Id2 vec(uu>)
vec(uu>)> �2 + kuk4

�
.

The mean and variance of vec(A)|y follow from the conditional Gaussian formula.

We will construct a family of contaminated joint distributions of (A, y) that are hard to learn with SQ
access. We first construct a family of clean distributions and then construct the contaminations.

Lemma D.4 (Defining Clean Distributions). Let v be a unit vector and set u = c1/21 ✏1/4v for some
small constant c1. Let vec(A) ⇠ N (0, Id2), and choose � = 1 � c21✏. Then we have the marginal
distribution y ⇠ N (0, 1) and

vec(A)|y ⇠ N
�
c1
p
✏ vec(vv>)y, Id2 � c21✏ vec(vv

>) vec(vv>)>
�
.

Let Qv denote the joint distribution from the construction in Lemma D.4. The family of contaminated
joint distributions that are hard to learn will be denoted by Q0

v , and we proceed to construct them. The
technique for the construction follows a standard non-Gaussian component analysis argument, which
starts from mixing a one-dimensional distribution to match moments with the standard Gaussian. We
note that the conditional distribution vec(A)|y in all directions perpendicular to vec(vv>) is already
standard Gaussian, so we proceed to consider the one-dimensional distribution along vec(vv>)
direction, which is

N
�
c1
p
✏y, 1� c21✏

�
.

34

Let µ(y) = c1
p
✏y be a shortand for the mean of this one dimensional distribution. We proceed to

mix it with some noise distribution Bµ. It is important to note here that the fraction of the noise
depends on µ and thus on y—the larger µ is, the higher the noise level is needed.
Definition D.5. Let P,Q be two distributions with probability density functions P (x), Q(x); we
obscure the line between a distribution and its density function. The �2-divergence of P and Q is

�2(P,Q) =

Z
(P (x)�Q(x))2

Q(x)
dx =

Z
P 2(x)

Q(x)
dx� 1.

Let N be a distribution whose support contains the supports of P and Q. We define

�N (P,Q) =

Z
P (x)Q(x)

N(x)
dx.

Then |�N (P,Q)� 1| =
R (P (x)�N(x))(Q(x)�N(x))

N(x) dx defines an inner product of P and Q.

Lemma D.6 (One-Dimensional Moment Matching). For any ✏ > 0, µ 2 R, there is a distribution
Dµ such that Dµ agrees with the mean of N (0, 1) and

Dµ = (1� ✏µ)N (µ, 1� c21✏) + ✏µBµ,

for some distribution Bµ and ✏µ satisfying

1. If |µ| < c21
p
✏, then ✏µ = ✏ and �2(Dµ,N (0, 1)) = eO(1/✏).

2. If |µ| � c21
p
✏, then we take ✏µ such that ✏µ/(1� ✏µ) = µ2, which simplies to

✏µ =
µ2

1 + µ2
, (35)

and �2(Dµ,N (0, 1)) = eO(max(1/µ2,µ2)).

Proof. It is straightforward to verify that Dµ = (1� ✏µ)N (µ, 1� c21✏) + ✏µ N (a, b) has mean 0 and
second moment 1, where a and b are defined by

a = �µ(1� ✏µ)

✏µ
, b = 1.

Facts D.11 and D.12 imply that if �1 = O(1),�2 = O(1), then

�2(✏µ N (µ1,�
2
1) + (1� ✏µ)N (µ2,�

2
2), N (0, 1)) = eO(µ

2
1+µ2

2).

• Case 1: |µ| < c21
p
✏. Then taking ✏µ = ✏ implies that |a| µ/✏ < c1/

p
✏, and

�2(Dµ,N (0, 1)) = eO(1/✏).

• Case 2: |µ| � c21
p
✏. Then taking ✏µ/(1 � ✏µ) = µ2 implies that |a| = 1

|µ| , and

�2(Dµ,N (0, 1)) = eO(max(1/µ2,µ2)).

We follow the non-Gaussian component analysis construction and define the conditional distribution
of the corrupted vec(A)|y to have a hidden direction v.
Definition D.7 (High-Dimensional Hidden Direction Distribution [DK23, Definition 8.9]). For a one-
dimensional distribution D that admits density D(x) and a unit vector v 2 Rd2

, the distribution PA
v

is defined to be the product distribution of D(x) in the v-direction and standard normal distribution
in the subspace perpendicular to v, i.e.,

PD
v (a) =

1

(2⇡)
d2�1

2

D(v>a) exp

✓
�1

2

��a� (v>a)v
��2
◆
.

Lemma D.8 (Construction of Corrupted Conditional Distribution). Define Pµ(y),v = P
Dµ(y)

vec(vv>).
Then for all unit vectors v, v0 2 Rd, it holds that

���N (0,I)(Pµ(y),v, Pµ(y),v0)� 1
��  (v>v0)

4
�2(Dµ(y),N (0, 1)). (36)

35

Proof. By Lemma 8.12 in the textbook [DK23], we have
���N (0,I)(Pµ(y),v, Pµ(y),v0)� 1

�� =
����N (0,I)(P

Dµ(y)

vec(vv>),P
Dµ(y)

vec(v0v0>)
)� 1

���

 (vec(vv>)> vec(v0v0
>
))2 �2(Dµ(y),N (0, 1))

= (v>v0)
4
�2(Dµ(y),N (0, 1)),

where the inequality is a direct application of [DK23, Lemma 8.12], and the last equality is because

vec(vv>)> vec(v0v0
>
) = hvv>, v0v0>i = tr(vv>v0v0

>
) = v>v0 tr(vv0

>
) = (v>v0)2.

Now we define Q0
v(A, y) to be a contaminated version of the joint distribution of A and y such that

vec(A)|y ⇠ Pµ(y),v in the following lemma. Recall that, according to Lemma D.6, different level
of noise ✏µ(y) is needed for different y, and the implication of the following lemma is that the total
noise is less than ✏. This is done via integration with respect to y.
Lemma D.9 (Construction of Corrupted Joint Distribution: Controlling Large ✏µ(y)). Recall
µ(y) = c1

p
✏y and Qv is the joint distribution of A and y for clean samples. Define Q0

v(A, y) =
Pµ(y),v(A)R(y), where

R(y) =
G(y)

(1� ✏µ(y))
R
G(y0)/(1� ✏µ(y0))dy0

,

G(y) is the marginal distribution of y under Qv , which is standard Gaussian.

Then Q0
v(A, y) is the contaminated joint distribution of A, y i.e., Q0

v = (1� ✏)Qv + ✏Nv for some
noise distribution Nv . Under Q0

v , it holds that A|y ⇠ Pµ(y),v .

Proof. We proceed to bound
R
G(y0)/(1 � ✏µ(y0))dy

0  1/(1 � ✏). This shows that R(y) is well-
defined, and we will use that to show Q0

v � (1� ✏)Qv (recall that we obscure the line between the
distribution and its probability density function).

Z
G(y0)/(1� ✏µ(y0))dy

0 =

Z
G(y0)

✓
1 +

✏µ(y0)

1� ✏µ(y0)

◆
dy0

 1 +

Z

|y|�c1

G(y0)

✓
✏µ(y0)

1� ✏µ(y0)

◆
dy0 +

Z

|y|<c1

G(y0)
✏

1� ✏
dy0

 1 + 2c1✏+

Z
G(y0)µ(y0)2dy0

 1 + 2c1✏+

Z
G(y0)c21✏y

02dy0

 1 + 2c1✏+ c21✏

 1/(1� ✏),

where the last step holds by choosing c1 to be sufficiently small.

Since for any y and A, Dµ(y) � (1 � ✏µ(y))N (µ(y), 1 � c2✏2) by the construction of Dµ, so
Py,v � (1� ✏µ(y))N (µ(y) vec(vv>), I � c21✏

2 vec(vv>) vec(vv>)>), since Py,v agrees with Gaus-
sian in all directions except vec(vv>). We proved that R(y) � (1� ✏)G(y)/(1� ✏µ(y)), so Q0

v =
Pµ(y),vR(y) � (1� ✏)G(y)N (µ(y) vec(vv>), I � c21✏

2 vec(vv>) vec(vv>)>) = (1� ✏)Qv .

Next we show that Q0
v are near orthogonal to each other for distinct v, if we view �S(·, ·)� 1 as an

inner product on the space of d2 + 1-dimensional distributions.
Lemma D.10 (Near Orthogonality of Corrupted Joint Distributions). Let S be the joint distribution
of A and y when they are independent and entries of A are i.i.d. standard Gaussian and y ⇠ R. Then
we have

�S(Q
0
v, Q

0
v0)� 1 = eO(1/✏3)(v>v0)4.

36

Proof. By the definition of �S(Q0
v, Q

0
v0), we have

�S(Q
0
v, Q

0
v0) =

Z
Q0

v(a, y)Q
0
v0(a, y)/S(x, y)dxdy

=

Z
Pµ(y),v(a)Pµ(y),v0(a)R(y)2/(G(a)R(y))dxdy

=

Z
�N (0,I

d2)
(Pµ(y),v, Pµ(y),v0)R(y)dy

 1 +O
�
(v>v0)4

� Z
�2(Dµ(y),✏,N (0, 1))R(y)dy,

where the last inequality follows from Lemma D.8.

Recall µ(y) = c1
p
✏y. The main technical part is to bound the following quantity:

Z
�2(Dµ(y),✏,N (0, 1))R(y)dy  eO(1/✏) +

Z

|y|�c1

eO(max{1/µ(y)2,µ(y)2})R(y)dy

 eO(1/✏) +

Z

|y|�c1

eO(max{1/(c41✏),µ(y)
2})R(y)dy

 eO(1/✏) + e1/(c
4
1✏)

Z

|y|�c1

ec
2
1✏y

2

R(y)dy

 eO(1/✏) + e1/(c
4
1✏)

Z

|y|�c1

ec
2
1✏y

2

(1� ✏)G(y)/(1� ✏µ(y))dy

 eO(1/✏) + e1/(c
4
1✏)

Z

|y|�c1

ec
2
1✏y

2

c21y
2G(y)dy

= eO(1/✏),

where the first inequality splits into two cases as in Lemma D.6, and the last inequality follows by
choosing c1 to be a sufficiently small constant so that c21✏  1/4 and

R
ec

2
1✏y

2

y2G(y)dy is bounded
above by a constant.

Proof of Theorem 4.2. The proof follows a standard non-Gaussian component analysis argument.
For any 0 < c < 1/2, there is a set S of at least 2d

c

unit vectors in Rd such that for each pair of
distinct v, v0 2 S,

��v>v0
�� = O(dc�1/2). By Lemma D.10, we have

�S(Q
0
v, Q

0
v0)� 1 =

⇢
eO(1/✏)O(d4c�2) =: � if v 6= v0

eO(1/✏) =: � if v = v0
.

Therefore, by Lemma 8.8 in [DK23], any SQ algoritm requires at least 2d
c

�/� = 2d
c

/d2�4c calls to
STAT(e1/

p
✏/d1�2c) to find v and therefore u within better than O

�
✏1/4

�
.

We state the auxiliary facts that we used in the above analysis:
Fact D.11 ([Dia+21, Lemma G.3]). Let k 2 Z+, distributions Pi and �i � 0, for i 2 [k] such that
Pk

i=1 �i = 1. We have that �2
⇣Pk

i=1 �iPi, D
⌘
=
Pk

i=1

Pk
j=1 �i�j�D(Pi, Pj).

Fact D.12 ([DKS19, Lemma F.8]).

�N (0,1)

�
N (µ1,�

2
1),N (µ2,�

2
2)
�
=

exp
⇣
�µ2

1(�
2
2�1)+2µ1µ2+µ2

2(�
2
1�1)

2�2
1(�

2
2�1)�2�2

2

⌘

p
�2
1 + �2

2 � �2
1�

2
2

.

E A Counterexample: Why Simple Algorithms Do Not Work

While Section D formally showed that a broad class of algorithms with sample complexity propor-
tional to the dimension d cannot achieve O(✏1/4) error without an exponential amount of computation,
we informally discuss a concrete construction of adversarial corruptions where some straightforward

37

algorithms fail. This discussion is intended only to provide intuition; the SQ lower bound provides
more rigorous evidence that improving sample complexity beyond quadratic is impossible. The O(·)
notation in this section only displays dependence on the dimension d.

Let (Ai, yi) ⇠ G be sampled according to the noiseless Gaussian design in Definition 1.6, i.e. entries
of Ai are i.i.d. standard Gaussians and yi = hM⇤, Aii.

• The adversary first inspects all n samples and computes M⇤ up to some small error with
out-of-shelf low rank matrix sensing algorithms. In the following discussion, we simply
assume the adversary finds M⇤ exactly.

• The adversary discards a random ✏-fraction of samples and let S denote the set of remaining
samples. The adversary computes P = � 1

n

P
i2S yiAi.

• For j = 1, . . . , ✏n, the adversary independently samples zj uniformly between the spheres
of radius kM⇤kF /2 and 2 kM⇤kF and computes Ej =

P
✏zj

+A0
j , where entries of A0

j are
i.i.d. sampled from standard Gaussian.

• The adversary adds (zj , Ej) as corruptions. Let B denote the points added by the adversary.

Recall that with the objective function fi defined in Equation (3) and Bi = Ai + AT
i , we have the

gradient and Hessian

rfi(U) = (hUU>, Aii � yi)(Ai +A>
i)U

r2fi(U) = (hUU>, Aii � yi)Ir ⌦Bi + vec (BiU) vec(BiU)>.

Prior works on first-order robust stochastic optimization [Pra+20; Dia+19] required O(d) samples,
because they rely on the robust estimation of the gradients. They would accept 0 as the solution,
because when U = 0, rfi(U) = 0 for all i, i.e., all sample gradients are zero at U = 0 whether or
not they are corruptions, so gradient-based filtering does not work. On the other hand, r2f̄(0) =
�E[hM⇤, AiiIr ⌦ Bi] = �Ir ⌦ E[hM⇤, Aii(Ai + AT

i)] = �2Ir ⌦M⇤, where the last equality
follows from Lemma C.2. Hence the error measured by the negative curvature of the solution is
�min(r2f̄(0)) = 2�?

1 , which does not even scale with ✏.

This adversary can also help illustrate why spectral initialization similar to the algorithm discussed
in Theorem C.13 cannot succeed with O(d) samples. Spectral methods rely on the observation that
with clean samples, E(Ai,yi)⇠G [yiAi] = M⇤. The hope is that the matrix formed by the leading r
singular vectors of some robust mean estimation of {yiAi} is close enough to M⇤. If so, it can be a
good initialization to Algorithm 3.1, which only requires robust estimation of sample gradients and
O(d) samples suffice.

However, with O(d) samples, it is unclear how to estimate the mean of {yiAi}. Robust mean
estimation algorithms (e.g. Algorithm A.2) discussed in Proposition 2.3 do not work because they
require O(d2) samples. Here we show that the naive filter based on the norm of {yiAi} does not
work, either.

Observe that P ⇡ �M⇤ by construction. For each j,

kEjkF 
��A0

j

��
F
+ kPkF /(zi✏) ⇡

��A0
j

��
F
+ kM⇤kF /(zi✏) 

��A0
j

��
F
+ 2/✏.

Since
��A0

j

��
F

scales with the dimension d but ✏ is a fixed constant, as we move to a high-dimensional
regime,

��A0
j

��
F

dominates and the effects of the outliers diminish if we only look at the norm of data.

Without an effective filter, the mean of {yiAi} across both clean samples and outliers becomes

1

n

X

i2S
yiAi +

1

n

X

j2B
zjEj = �P +

1

n

X

j2B
P/✏+A0

j =
1

n

X

j2B
A0

j ,

which contains no signals — only noise — and is close to 0.

In summary, we constructed an adversary under which robust first-order methods and spectral methods
with naive filter fail. Note that this construction relies on the ability of the adversary to corrupt the
input matrices Ai; if the adversary could only corrupt yi, then the results in [Li+20b; Li+20a] would
apply and eO(d) samples would suffice.

38

	Introduction
	Our Results and Contributions
	Our Techniques
	Roadmap

	Preliminaries
	General Robust Nonconvex Optimization
	Low Rank Matrix Sensing Problems
	Main results for Robust Low Rank Matrix Sensing
	Global Convergence to an Approximate SOSP
	Local Linear Convergence

	Statistical Query Lower Bound for Low Rank Matrix Sensing
	Technical Preliminaries
	Notation and Auxiliary Facts
	Simplified Proof for the Optimization Algorithm with Inexact Gradients and Hessians
	Robust Mean Estimation—Omitted background

	Omitted Proofs in General Robust Nonconvex Optimization
	Omitted Proofs in Low Rank Matrix Sensing
	Omitted Computation in Low Rank Matrix Sensing
	Sample Gradient and Sample Hessian
	Gradient Covariance Bound
	Hessian Covariance Bound

	Global Convergence in Low Rank Matrix Sensing—Omitted Proofs
	Local Linear Convergence in Low Rank Matrix Sensing—Omitted Proofs
	Low Rank Matrix Sensing with Noise

	SQ Lower bound—Omitted Proofs
	A Counterexample: Why Simple Algorithms Do Not Work

