

Figure 1: **Treatment–Confounder Feedback Example** Sequential excursion effects reveal causal effects obscured in "macro" summaries. Results from new illustrative example, following argument in Appendix 2, taking n = 100, T = 500, $\gamma_1 = \gamma_3 = 1$, $\gamma_2 = \gamma_4 = 0.5$. [A] Each dot is an outcome value, $Y_{i,t}^G$, for subject *i* at timepoint *t* from "control" (G = 0), or from "treatment" (G = 1) groups. Lines are timepoint-specific means (averaged across subjects), estimated using a linear smoother (loess). (B) Same data as (A), but each point in boxplot is a subject's mean outcome value (averaged across timepoints). In (A)-(B), "macro" summaries show no differences due to treatment–confounder feedback: mean outcome values (averaged across subjects or timepoints) are nearly identical in both groups. (C)-(D) Point estimates and 95% CIs (error bars) of sequential excursion effects reveal "local" causal effects (in Treatment group only), obscured in "macro" summaries (shown in (A)-(B)).

	T = 50				T = 500				
Effect	n = 6	n = 10	n = 30	n = 100	n = 6	n = 10	n = 30	n = 100	
Blip	1.91 ± 0.09	1.10 ± 0.05	0.30 ± 0.02	0.03 ± 0.01	0.11 ± 0.01	0.03 ± 0.01	0.00 ± 0.00	0.00 ± 0.00	
Dissip	2.11 ± 0.09	1.23 ± 0.06	0.33 ± 0.02	0.04 ± 0.01	0.11 ± 0.01	0.03 ± 0.01	0.00 ± 0.00	0.00 ± 0.00	
Dose0	0.73 ± 0.04	0.40 ± 0.02	0.08 ± 0.01	0.00 ± 0.00	0.02 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
Dose1	0.90 ± 0.04	0.51 ± 0.03	0.10 ± 0.01	0.00 ± 0.00	0.02 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
Dose2	3.52 ± 0.15	2.05 ± 0.09	0.58 ± 0.03	0.12 ± 0.01	0.25 ± 0.02	0.11 ± 0.01	0.01 ± 0.00	0.00 ± 0.00	
Table 1: Simulation Results: MSE Our estimator's MSE decreases to 0 as T or n grows. Denoting the									
estimated effect j (e.g., $j =$ "Blip") for replicate r as $\hat{\beta}_{j,r}$, we show MSE _j := $\frac{1}{R} \sum_{r=1}^{R} (\hat{\beta}_{j,r} - \beta_j)^2$									
for $R = 1000$ simulation replicates (\pm SE) for a sample size, n, and timepoints, T. Values are scaled									
by 100 for readability (e.g. 0.01 is shown in the table as 1.0). Thus 0 indicates a value $< 1e - 4$									
$(0.5, 0.01)$ is shown in the table as 1.0). Thus 0 indicates a value $< 10^{-11}$									

	T = 50				T = 500				
Effect	n = 6	n = 10	n = 30	n = 100	n = 6	n = 10	n = 30	n = 100	
Blip	0.23 ± 0.55	0.42 ± 0.43	0.42 ± 0.24	0.10 ± 0.13	0.07 ± 0.17	0.05 ± 0.13	0.08 ± 0.08	0.03 ± 0.04	
Dissip	0.82 ± 0.93	1.04 ± 0.71	0.45 ± 0.39	0.26 ± 0.22	0.17 ± 0.27	0.22 ± 0.21	0.10 ± 0.13	0.06 ± 0.07	
Dose0	0.28 ± 1.48	0.15 ± 1.17	0.12 ± 0.68	0.42 ± 0.36	0.28 ± 0.48	0.23 ± 0.35	0.34 ± 0.20	0.13 ± 0.11	
Dose1	0.12 ± 0.42	0.05 ± 0.32	0.28 ± 0.18	0.06 ± 0.10	0.10 ± 0.13	0.08 ± 0.10	0.04 ± 0.06	0.01 ± 0.03	
Dose2	0.41 ± 0.35	0.09 ± 0.27	0.12 ± 0.15	0.10 ± 0.08	0.03 ± 0.11	0.05 ± 0.08	0.03 ± 0.05	0.01 ± 0.03	
Table 2: Simulation Results: Bias Our estimator is unbiased. Moreover, the absolute relative bias									
decreases to 0 as T and/or n grows. Denoting the estimated effect j (e.g., $j =$ "Blip") for replicate r									
as $\hat{\beta}_{j,r}$, we show Absolute Relative Bias $_j := \frac{1}{R} \sum_{r=1}^R (\hat{\beta}_{j,r} - \beta_j) / \beta_j $ for $R = 1000$ replicates (±									
standard error). Values are scaled by 100 for readability (e.g., 0.01 is shown in the table as 1.0).									

		T = 50				T = 500				
Effect	CI	n = 6	n = 10	n = 30	n = 100	n = 6	n = 10	n = 30	n = 100	
Blip	HC	0.94 ± 0.01	0.94 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.99 ± 0.00	0.97 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	
	LS	0.86 ± 0.01	0.88 ± 0.01	0.93 ± 0.01	0.95 ± 0.01	0.86 ± 0.01	0.89 ± 0.01	0.93 ± 0.01	0.94 ± 0.01	
Dissip	HC	0.93 ± 0.01	0.94 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.97 ± 0.01	0.96 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	
	LS	0.85 ± 0.01	0.89 ± 0.01	0.94 ± 0.01	0.95 ± 0.01	0.88 ± 0.01	0.91 ± 0.01	0.93 ± 0.01	0.94 ± 0.01	
Dose0	HC	0.92 ± 0.01	0.92 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	0.96 ± 0.01	0.95 ± 0.01	
	LS	0.86 ± 0.01	0.88 ± 0.01	0.92 ± 0.01	0.94 ± 0.01	0.86 ± 0.01	0.91 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	
Dose1	HC	0.95 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.95 ± 0.01	1.00 ± 0.00	0.97 ± 0.01	0.94 ± 0.01	0.96 ± 0.01	
	LS	0.88 ± 0.01	0.91 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.86 ± 0.01	0.90 ± 0.01	0.92 ± 0.01	0.96 ± 0.01	
Dose2	HC	0.95 ± 0.01	0.94 ± 0.01	0.96 ± 0.01	0.96 ± 0.01	1.00 ± 0.00	0.98 ± 0.00	0.96 ± 0.01	0.96 ± 0.01	
	LS	0.86 ± 0.01	0.89 ± 0.01	0.95 ± 0.01	0.95 ± 0.01	0.87 ± 0.01	0.90 ± 0.01	0.94 ± 0.01	0.96 ± 0.01	

Table 3: **Simulation Results: CI Coverage** We achieve 95% confidence interval (CI) coverage using either small sample size-adjusted *HC3* (shown as *HC*), or our *Large Sample* (shown as *LS*) sandwich variance estimators. Mean of R = 1000 replicates is shown (\pm standard error). We recommend *HC3* when *n* is low. When *n* is high, *LS* achieves nominal coverage, confirming our asymptotic theory.