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Abstract

Dataset distillation aims to learn a small synthetic dataset that preserves most of
the information from the original dataset. Dataset distillation can be formulated
as a bi-level meta-learning problem where the outer loop optimizes the meta-
dataset and the inner loop trains a model on the distilled data. Meta-gradient
computation is one of the key challenges in this formulation, as differentiating
through the inner loop learning procedure introduces significant computation and
memory costs. In this paper, we address these challenges using neural Feature
Regression with Pooling (FRePo), achieving the state-of-the-art performance with
an order of magnitude less memory requirement and two orders of magnitude
faster training than previous methods. The proposed algorithm is analogous to
truncated backpropagation through time with a pool of models to alleviate various
types of overfitting in dataset distillation. FRePo significantly outperforms the
previous methods on CIFAR100, Tiny ImageNet, and ImageNet-1K. Furthermore,
we show that high-quality distilled data can greatly improve various downstream
applications, such as continual learning and membership inference defense. Please
check out our webpage at https://sites.google.com/view/frepo.

1 Introduction

Knowledge distillation [1] is a technique in deep learning to compress knowledge for easy deployment.
Most previous works focus on model distillation [2, 3] where the knowledge acquired by a large
teacher model is transferred to a small student model. In contrast, dataset distillation [4, 5] aims to
learn a small set of synthetic examples preserving most of the information from a large dataset such
that a model trained on it can achieve similar test performance as one trained on the original dataset.
Distilled data can accelerate model training and reduce the cost of storing and sharing a dataset.
Moreover, its highly condensed and synthetic nature can also benefit various applications, such as
continual learning [5–8], neural architecture search [5, 7], and privacy-preserving tasks [9, 10].

Dataset distillation was first studied by Maclaurin et al. [11] in the context of gradient-based hyperpa-
rameter optimization and subsequently Wang et al. [4] formally proposed dataset distillation as a new
task. Dataset distillation can be naturally formulated as a bi-level meta-learning problem. The inner
loop optimizes the model parameters on the distilled data (meta-parameters), while the outer loop
refines the distilled data with meta-gradient updates.

One key challenge in dataset distillation is computing the meta-gradient. Several methods [4, 11–13]
compute it by back-propagating through the unrolled computation graph, but they often suffer from
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Figure 1: Example distilled images from 32x32 CIFAR100, 64x64 Tiny ImageNet, and 128x128
ImageNet Subset. The images look real and transfer well to different architectures. They can be used
for various downstream applications, such as continual learning and membership inference defense.

huge compute and memory requirement [14], training instability [15, 16], and truncation bias [17].
To avoid unrolled optimization, surrogate objectives are used to derive the meta-gradient, such
as gradient matching [5, 7, 18], feature alignment [8, 19], and training trajectory matching [20].
Nevertheless, a surrogate objective may introduce its own bias [19], and thus, may not accurately
reflect the true objective. An alternative is using kernel methods, such as Neural Tangent Kernel
(NTK) [21], to approximate the inner optimization [22, 23]. However, computing analytical NTK for
modern neural network can be extremely expensive [22, 23].

Even with an accurate meta-gradient, dataset distillation still suffers from various types of overfitting.
For instance, the distilled data can easily overfit to a particular learning algorithm [4, 13, 20], a
certain stage of optimization [13, 19], or a certain network architecture [5, 7, 20, 22, 23]. Meanwhile,
the model can also overfit the distilled data during training, which is the most common cause of
overfitting when we train on a small dataset. All these kinds of overfitting impose difficulties on the
training and general-purpose use of the distilled data.

We propose an efficient meta-gradient computation method and a “model pool” to address the
overfitting problems. The bottleneck in meta-gradient computation arises due to the complexity of
inner optimization, as we need to know how the inner parameters vary with the outer parameters [24].
However, the inner optimization can be pretty simple if we only train the last layer of a neural network
to convergence while keeping the feature extractor fixed. In this case, computing the prediction on the
real data using the model trained on the distilled data can be expressed as a kernel ridge regression
(KRR) with respect to the conjugate kernel [25]. Hence, computing the meta-gradient is simply
back-propagating through the kernel and a fixed feature extractor. To alleviate overfitting, we propose
to maintain a diverse pool of models instead of periodically training and resetting a single model as in
prior work [7, 13, 18]. Intuitively, our algorithm targets the following question: what is the best data
to train the linear classifier given the current feature extractor? Due to the diverse feature extractors
we use, the distilled data generalize well to a wide range of model distributions.

Summary of Contributions:

• We propose an effective method for dataset distillation. Our method, named neural Feature
Regression with Pooling (FRePo), achieves state-of-the-art results on various benchmark
datasets with a 100x reduction in training time and a 10x reduction in GPU memory require-
ment. Our distilled data looks real (Figure 1) and transfers well to different architectures.

• We show that FRePo scales well to datasets with high-resolution images or complex label
space. We achieve 7.5% top1 accuracy on ImageNet-1K [26] using only one image per class.
The same classifier obtains only 1.1% accuracy from a random subset of real images. The
previous methods struggle in this task due to large memory and compute requirements.

• We demonstrate that high-quality distilled data can significantly improve various downstream
applications, such as continual learning and membership inference defense.
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Figure 2: Comparison of FRePo and Unrolled Optimization. S, Xs, Ys are the distilled dataset,
images and labels. L is the meta-training loss and θpkq, gpkq are the model parameter and gradient
at step k. fpXq is the feature for input X and Kθ

XtXs
is the Gram matrix of Xt and Xs. FRePo is

analogous to 1-step TBPTT as it computes the meta-gradient at each step while performing the online
model update. However, instead of backpropagating through the inner optimization, FRePo computes
the meta-gradient through a kernel and feature extractor.

2 Method

2.1 Dataset Distillation as Bi-level Optimization

Suppose we have a large labeled dataset T “
␣

px1,y1q , . . . ,
`

x|T |,y|T |

˘(

with |T | image and label
pairs. Dataset distillation aims to learn a small synthetic dataset S “

␣

px1,y1q , . . . ,
`

x|S|,y|S|

˘(

that preserves most of the information in T . We train several neural networks parameterized by
θ on the dataset S and then compute the validation loss LpAlg pθ,Sq , T q on the real dataset T ,
where Alg pθ,Sq is the neural network parameters optimized by a learning algorithm Alg with the
model initialization θ and distilled dataset S as its inputs. The validation loss LpAlg pθ,Sq , T q is a
noisy objective with the stochasticity coming from random model initialization and inner learning
algorithm. Thus, we are interested in minimizing the expected value of this loss, which we denote it
as F pSq. We formulate the dataset distillation as the following bi-level optimization problem.

outer-level
hkkkkkkkkkkkikkkkkkkkkkkj

S˚ :“ argmin
S

F pSq, where F pSq “ Eθ„Pθ

„

L
´

inner-level
hkkkkikkkkj

Alg pθ,Sq , T
¯

ȷ

. (1)

In this bi-level setup, the outer loop optimizes the distilled data to minimize F pSq, while the inner
loop trains a neural network using the learning algorithm, Alg, to minimize the training loss on the
distilled data S. From the meta-learning perspective, the task is defined by the model initialization
θ, and we want to learn a meta-parameter S that generalizes well to different models sampled from
the model distributions Pθ. During learning, we optimize the meta-parameter S by minimizing the
meta-training loss F pSq. In contrast, at meta-test time, we train a new model from scratch on S and
evaluate the trained model on a held-out real dataset. This meta-test performance reflects the quality
of the distilled data.

2.2 Dataset Distillation using Neural Feature Regression with Pooling (FRePo)

The outer-level problem can be solved using gradient-based methods of the form S Ð S´α∇SF pSq,
where α is the learning rate for the distilled data and ∇SF pSq is the meta-gradient [27]. For a
particular model θ, the meta-gradient can be expressed as ∇SL pAlg pθ,Sq , T q. Computing this
meta-gradient requires differentiating through inner optimization. If Alg is an iterative algorithm
like gradient descent, then backpropagating through the unrolled computation graph [14] can be a
solution. However, this type of unrolled optimization introduces significant computation and memory
overhead, as the whole training trajectory needs to be stored in memory (Figure 2(b)).

Traditionally, these issues are alleviated with truncated backpropagation through time (TBPTT)
[28–30]. Instead of backpropagating through an entire unrolled sequence, TBPTT performs backprop-
agation for each subsequence separately. It is efficient because its time and memory complexity scale
linearly with respect to the truncation steps. However, truncation may yield highly biased gradients
that severely impact training. To mitigate this truncation bias [14], we consider training only the top
layer of a network to convergence. The key insight is that the data helpful for training the output
layer can also help train the whole network. Thus, we decompose the neural network into a feature

3



Algorithm 1 Dataset Distillation using Neural Feature Regression with Pooling (FRePo)

Require: T : a labeled dataset; α: the learning rate for the distilled data
Initialization: Initialize a labeled distilled dataset S “ pXs, Ysq.
Initialization: Initialize a model pool M with m models tθiu

m
i“1 randomly initialized from Pθ.

1: while not converged do
2: Ż Sample a model uniformly from the model pool: θi „ M.
3: Ż Sample a target batch uniformly from the labeled dataset: pXt, Ytq „ T .
4: Ż Compute the meta-training loss L using Eq. 2
5: Ż Update the distilled data S: Xs Ð Xs ´ α∇Xs

L, and Ys Ð Ys ´ α∇Ys
L

6: Ż Train the model θi on the current distilled data S for one step.
7: Ż Reinitialize the model θi „ Pθ if θi has been updated more than K steps.
8: end while

Output: Learned distilled dataset S “ pXs, Ysq

extractor and a linear classifier. We fix the feature extractor at each meta-gradient computation and
train the linear classifier to convergence before updating S . After that, we adjust the feature extractor
by training the whole network on the updated distilled data. We note that similar two-phase procedure
has been studied in the context of representation learning [31].

Meta-Gradient Computation: If we consider the mean square error loss, then the optimal weights
for the linear classifier have a closed-form solution. Moreover, since the feature dimension is typically
larger than the number of distilled data, we can use kernel ridge regression (KRR) with a conjugate
kernel [25] rather than solving the weights explicitly [12]. The resulting meta-training loss (Eq. 2) is
similar to that used in KIP [22, 23], but we use a more flexible kernel rather than NTK.

L pAlg pθ,Sq , T q “
1

2
||Yt ´ Kθ

XtXs
pKθ

XsXs
` λIq´1Ys||22, (2)

where pXt, Ytq and pXs, Ysq are the inputs and labels of the real data T and distilled data S respec-
tively. The Gram matrix between real inputs and distilled inputs is denoted as Kθ

XtXs
P R|T |ˆ|S|,

while the Gram matrix between distilled inputs is denoted as Kθ
XsXs

P R|S|ˆ|S|. λ controls the regu-
larization strength for KRR. Let us denote the neural network feature for a given input X and model
parameter θ as fpX, θq P RNˆd, where N is the number of input and d is the feature dimension 1.
The conjugate kernel is defined by the inner product of the neural network features. Thus, the two
Gram matrices are computed as follows:

Kθ
XtXs

“ fpXt, θqfpXs, θqJ, Kθ
XsXs

“ fpXs, θqfpXs, θqJ, (3)

Now, computing the meta-gradient ∇SL pAlg pθ,Sq , T q is just back-propagating through the con-
jugate kernel and a fixed feature extractor, which is very efficient and takes even fewer operations
than computing the gradient for the network’s weights. Moreover, we decouple the meta-gradient
computation from the model online update. Hence, we can train the online model using any optimizer,
and the distilled data will be agnostic to the specific learning algorithm choice. Our proposed method
is similar to 1-step TBPTT in that we compute the meta-gradient at each step while performing the
online model update. Unlike the conventional 1-step TBPTT, we compute the meta-gradient using a
KRR output layer to mitigate truncation bias, illustrated in Figure 2(a).

Model Pool: As discussed in Section 1, there are various types of overfitting in dataset distillation.
Several techniques have been proposed to alleviate such problem, such as random initialization [4],
periodic reset [13, 5, 7], and dynamic bi-level optimization [19]. These techniques share the same
underlying principle: the model diversity matters. Thus, we propose to maintain a “model pool”
filled with diverse set of parameters obtained from different number of training steps and different
random initializations. Unlike the previous methods that periodically training and resetting a single
model, FRePo randomly sample a model from the pool at each meta-gradient computation and update
it using the current distilled data. However, if a model has been updated more than K steps, we
reinitialize it with a new random seed. From the meta-learning perspective, we maintain a diverse

1In practice, we use all the synthetic data and sample a minibatch from the real dataset to compute the
meta-gradient (Algorithm 1).
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set of meta-tasks to sample from and avoid sampling very similar tasks at each consecutive gradient
computation to avoid overfitting to a particular setup.

Pool Diversity: We can increase the regularization strength by increasing the diversity of the model
pool by setting a larger K, using data augmentation when training the model on the distilled data, or
using models with different architectures. To keep our method simple, we use the same architecture
for all models in the pool and do not use any data augmentation when training the model on the
distilled data. Thus, our model pool only contains models with different initialization, at different
optimization stages, and trained at different time-step of the distilled data.

3 Related Work

Unrolling in Bi-Level Optimization: One way to compute the meta-gradient is to differentiate
through the unrolled inner optimization [4, 11–13]. However, this approach inherits several difficulties
of the unrolled optimization, such as: 1) large computation and memory cost [14]; 2) truncation
bias with short unrolls [17]; 3) exploding or vanishing gradients with long unrolls [15]; 4) chaotic
and poorly conditioned loss landscapes with long unrolls [16]. In contrast, our method considers
approximating the inner optimization with kernel ridge regression instead of unrolled optimization.

Surrogate Objective: To avoid unrolled optimization, several works turn to surrogate objectives.
DC [5], DSA [7], and DCC [18] formulate the dataset distillation as a gradient matching problem
between the gradients of neural network weights computed on the real and distilled data. In contrast,
DM [8] and CAFE [19] consider the feature distribution alignment between the real and distilled data.
Moreover, MTT [20] shows that knowledge from many expert training trajectories can be distilled to
a dataset by using a training trajectory matching objective. Nevertheless, surrogate objectives may
introduce new biases and thus, may not accurately reflect the true objective. For example, gradient
matching approaches [5, 7, 18] only focus on short-range behavior and may easily overfit to a biased
set of samples that produce dominant gradients [19, 20].

Closed-form Approximation: An alternative way to circumvent unrolled optimization is to find a
closed-form approximation to the inner optimization. Based on the correspondence between infinitely-
wide neural networks and kernel methods, KIP [22, 23] approximates the inner optimization with
NTK [21]. In this case, the meta-gradient can be computed by back-propagating through the NTK.
However, computing NTK for modern neural networks is extremely expensive. Thus, using NTK
for dataset distillation requires thousands of GPU hours and sophisticated implementation of the
distributed kernel computation framework [23]. Similar to ours, Bohdal et al. [12] also decomposes
the neural network as a feature extractor and a linear classifier. However, they only learn the label
and explicitly solve for the optimal classifier weights rather than perform KRR.

4 Dataset Distillation

4.1 Implementation Details

We compare our method to four state-of-the-art dataset distillation methods [7, 8, 20, 23] on various
benchmark datasets [26, 32–37]. We train the distilled data using Algorithm 1 with the same set of
hyperparameters for all experiments except stated otherwise. Unlike prior work [7, 8, 20], we do not
apply data augmentation during training. However, we apply the same data augmentation [7, 20]
during evaluation for a fair comparison. We preprocess the data in a similar way as in previous works
[20, 23] but use a wider architecture than previous works [7, 8, 20] because the KRR component does
not behave well when the feature dimension is low, resulting in a significant performance drop for our
method. Results on the original architecture are included in Appendix C.6. We evaluate each distilled
data using five random neural networks and report the mean and standard deviation. For the baseline
method, we report the best of the reported value in the original paper and our reproducing results.

For the sake of brevity, we provide implementation details about data preprocessing, distilled
data initialization, and hyperparameters in Appendix A.1 and various ablation studies regarding
the model pool, batch size, distilled data initialization, label learning, and model architectures in
Appendix C. More distilled image visualizations can be found in Appendix E. Our code is available
at https://github.com/yongchao97/FRePo.
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Table 1: Test accuracies of models trained on the distilled data from scratch. : denotes performance
better than the original reported performance. KRR preformance is shown in bracket. FRePo performs
extremely well for one image per class setting on CIFAR100, Tiny ImageNet and CUB-200.

Img/Cls DSA [7] DM [8] KIP [23] MTT [20] FRePo

MNIST
1 88.7 ˘ 0.6 89.9 ˘ 0.8: 90.1 ˘ 0.1 91.4 ˘ 0.9: 93.0 ˘ 0.4 p92.6 ˘ 0.4q

10 97.9 ˘ 0.1: 97.6 ˘ 0.1: 97.5 ˘ 0.0 97.3 ˘ 0.1: 98.6 ˘ 0.1 p98.6 ˘ 0.1q

50 99.2 ˘ 0.1 98.6 ˘ 0.1 98.3 ˘ 0.1 98.5 ˘ 0.1: 99.2 ˘ 0.0 p99.2 ˘ 0.1q

F-MNIST
1 70.6 ˘ 0.6 71.5 ˘ 0.5: 73.5 ˘ 0.5 75.1 ˘ 0.9: 75.6 ˘ 0.3 p77.1 ˘ 0.2q

10 84.8 ˘ 0.3: 83.6 ˘ 0.2: 86.8 ˘ 0.1 87.2 ˘ 0.3: 86.2 ˘ 0.2 p86.8 ˘ 0.1q

50 88.8 ˘ 0.2: 88.2 ˘ 0.1: 88.0 ˘ 0.1 88.3 ˘ 0.1: 89.6 ˘ 0.1 p89.9 ˘ 0.1q

CIFAR10
1 36.7 ˘ 0.8: 31.0 ˘ 0.6: 49.9 ˘ 0.2 46.3 ˘ 0.8 46.8 ˘ 0.7 p47.9 ˘ 0.6q

10 53.2 ˘ 0.8: 49.2 ˘ 0.8: 62.7 ˘ 0.3 65.3 ˘ 0.7 65.5 ˘ 0.4 p68.0 ˘ 0.2q

50 66.8 ˘ 0.4: 63.7 ˘ 0.5: 68.6 ˘ 0.2 71.6 ˘ 0.2 71.7 ˘ 0.2 p74.4 ˘ 0.1q

CIFAR100
1 16.8 ˘ 0.2: 12.2 ˘ 0.4: 15.7 ˘ 0.2 24.3 ˘ 0.3 28.7 ˘ 0.1 p32.3 ˘ 0.1q

10 32.3 ˘ 0.3 29.7 ˘ 0.3 28.3 ˘ 0.1 40.1 ˘ 0.4 42.5 ˘ 0.2 p44.9 ˘ 0.2q

50 42.8 ˘ 0.4 43.6 ˘ 0.4 ´ 47.7 ˘ 0.2 44.3 ˘ 0.2 p43.0 ˘ 0.3q

T-ImageNet 1 6.6 ˘ 0.2: 3.9 ˘ 0.2 ´ 8.8 ˘ 0.3 15.4 ˘ 0.3 p19.1 ˘ 0.3q

10 ´ 12.9 ˘ 0.4 ´ 23.2 ˘ 0.2 25.4 ˘ 0.2 p26.5 ˘ 0.1q

CUB-200 1 1.3 ˘ 0.1: 1.6 ˘ 0.1:
´ 2.2 ˘ 0.1: 12.4 ˘ 0.2 p13.7 ˘ 0.2q

10 4.5 ˘ 0.3: 4.4 ˘ 0.2:
´ ´ 16.8 ˘ 0.1 p16.1 ˘ 0.3q
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Figure 3: (a,b) Training efficiency comparison when learning 1 Img/Cls on CIFAR100. (c,d) Time per
iteration and peak memory usage as we increase the model size. FRePo is significantly more efficient
than the previous methods, almost two orders of magnitude faster than the second-best method (i.e.,
MTT), with only 1/10 of the GPU memory requirement.

4.2 Standard Benchmarks

Distillation Performance: We first evaluate our method on six standard benchmark datasets. We
learn 1, 10, and 50 images per class for datasets with only ten classes, while we learn 1 and 10
images per class for CIFAR100 [34] with 100 classes, Tiny ImageNet [35] with 200 classes, and
CUB-200 [37] with 200 fine-grained classes. As shown in Table in 1, we achieve the state-of-the-art
performance in most settings despite the hyperparameter may be suboptimal. Our method performs
exceptionally well on datasets with a complex label space when learning few images per class. For
example, we improve the CIFAR100, Tiny ImageNet, and CUB-200 in one image per class setting
from 24.3%, 8.8%, and 2.2% to 28.7%, 15.4%, and 12.4%, respectively. Figure 4 shows that our
distilled images look real and natural though we do not directly optimize for this objective. We
observe a strong correlation between the test accuracy and image quality: the better the image quality,
the higher the test accuracy. Our results suggest that a highly condensed dataset does not need to be
very different from the real dataset as it may just reflect the most common pattern in a dataset. We
also report the KRR predictor’s test accuracy using the feature extractor trained on the distilled data.
When the dataset is as simple as MNIST [32], the KRR predictor achieves similar performance as
the neural network predictor. In contrast, for more complex datasets, the KRR predictor consistently
outperforms the neural network predictor, with the most significant gap being 3.7% for Tiny ImageNet
in the one image per class setting.
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Table 2: Cross-architecture transfer performance on CIFAR10 with 10 Img/Cls. Despite being trained
for a specific architecture, our distilled data transfer well to various architectures unseen during
training. Conv is the default evaluation model used for each method. NN, DN, IN, and BN stand for
no normalization, default normalization, Instance Normalization, Batch Normalization respectively.

Train Arch
Evaluation Architecture

Conv Conv-NN ResNet-DN ResNet-BN VGG-BN AlexNet

DSA [7] Conv-IN 53.2 ˘ 0.8 36.4 ˘ 1.5 42.1 ˘ 0.7 34.1 ˘ 1.4 46.3 ˘ 1.3 34.0 ˘ 2.3
DM [8] Conv-IN 49.2 ˘ 0.8 35.2 ˘ 0.5 36.8 ˘ 1.2 35.5 ˘ 1.3 41.2 ˘ 1.8 34.9 ˘ 1.1

MTT [20] Conv-IN 64.4 ˘ 0.9 41.6 ˘ 1.3 49.2 ˘ 1.1 42.9 ˘ 1.5 46.6 ˘ 2.0 34.2 ˘ 2.6
KIP [23] Conv-NTK 62.7 ˘ 0.3 58.2 ˘ 0.4 49.0 ˘ 1.2 45.8 ˘ 1.4 30.1 ˘ 1.5 57.2 ˘ 0.4
FRePo Conv-BN 65.5 ˘ 0.4 65.5 ˘ 0.4 58.1 ˘ 0.6 57.7 ˘ 0.7 59.4 ˘ 0.7 61.9 ˘ 0.7
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Figure 4: (a,b,c) Distilled 1 img/cls from CIFAR100 using FRePo, MTT, and DSA. High quality
images also produce high test accuracy. (d) Three categories of learned labels. (Top) High confidence,
large margin; (Middle) High confidence, small margin; (Bottom) Low confidence, small margin.

Label Learning: A similar trend can also be observed for label learning. When the dataset is simple
and has only a few classes, label learning may not be necessary. However, it becomes crucial for
complex datasets with many labels, such as CIFAR100 and Tiny-ImageNet (See more details in
Appendix C.4). Similar to the teacher label in the knowledge distillation [1], we observe that the
distilled label also encodes the class similarity. We identify three typical cases in Figure 4d. The
first group consists of highly confident labels with a much higher value for one class than other
classes (large margin), such as sunflower, bicycle, and chair. In contrast, the distilled labels in the
second group are confident but may get confused with some closely-related classes (small margin).
For instance, the learned label for "girl" has almost equally high values for the girl, woman, man,
boy, and baby, suggesting that these classes are very similar and may be difficult for the model to
distinguish them apart. The last group contains distilled labels with low values for all classes, such
as bear, beaver, and squirrel. It is often hard for humans to recognize the distilled images in such a
group, suggesting that they may be the challenging classes in a dataset.

Training Cost Analysis: Figure 3a, 3b shows that our method is significantly more time-efficient
than the previous methods. When learning one image per class on CIFAR100, FRePo reaches a
similar test accuracy (23.4%) to the second-best method (24.0%) in 38 seconds, compared to 3805
seconds for MTT, which is roughly two orders of magnitude faster. Moreover, FRePo achieves 92%
of its final test accuracy (26.4% out of 28.7%) in only 385 seconds. As shown in Figure 3c, our
algorithm takes much less time to perform one gradient step on the distilled data. Thus, we can
perform more gradient steps in a fixed time. Furthermore, Figure 3d suggests that our algorithm has
much less GPU memory requirement. Therefore, we can potentially use a much larger and more
complex model to take advantage of the advancement in neural network architecture.

Cross-Architecture Generalization: One desired property of our distilled data is that it generalizes
well to architecture it has not seen during the training. Similar to previous works [5, 20], we evaluate
the distilled data from CIFAR10 on a wide range of architectures which it has not seen during training,
including AlexNet [38], VGG [39], and ResNet [40]. Table 2 shows that our method outperforms
previous methods on all unseen architectures. Instance Normalization (IN) [41], as the vital ingredient
in several methods (DSA, DM, MTT), seems to hurt the cross-architecture transfer. The performance
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Table 3: Distillation performance on higher resolution (128x128) dataset (i.e. ImageNette, Image-
Woof) and medium resolution (64x64) dataset with a complex label space (i.e. ImageNet-1K). FRePo
scales to high-resolution images and learns the discriminate feature of complex datasets.

ImageNette (128x128) ImageWoof (128x128) ImageNet (64x64)

Img/Cls 1 10 1 10 1 2

Random Subset 23.5 ˘ 4.8 47.7 ˘ 2.4 14.2 ˘ 0.9 27.0 ˘ 1.9 1.1 ˘ 0.1 1.4 ˘ 0.1
MTT [20] 47.7 ˘ 0.9 63.0 ˘ 1.3 28.6 ˘ 0.8 35.8 ˘ 1.8 ´ ´

FRePo 48.1 ˘ 0.7 66.5 ˘ 0.8 29.7 ˘ 0.6 42.2 ˘ 0.9 7.5 ˘ 0.3 9.7 ˘ 0.2

degrades a lot when no normalization (NN) is applied (Conv-NN, AlexNet) or using a different
normalization, like Batch Normalization (BN) [42]. It suggests that the distilled data generated by
those methods encode the inductive bias of a particular training architecture. In contrast, our distilled
data generalize well to various architectures, including those without normalization (Conv-NN,
AlexNet). Note that Figure 1, 4 also indicate that our distilled data encode less architectural bias as
the distilled images look natural and authentic. A simple idea to further alleviate the overfitting of a
particular architecture is to include more architectures in the model pool. However, the training may
not be stable as the meta-gradient computed by different architectures can be very different.

4.3 ImageNet

High Resolution ImageNet Subset To understand how well our method performs on high-resolution
images, we evaluate it on ImageNette and ImageWoof datasets [36] with a resolution of 128x128. We
learn 1 and 10 images per class on both datasets and report the performance in Table 3 and visualize
some distilled images in Figure 1. As shown in Table 3, we outperform MTT on all settings and
achieve much better performance when we distill ten images per class on a more difficult dataset
ImageWoof. It suggests that our distilled data is better at capturing the discriminative features for
each class. Figure 1 shows that our distilled images look real and capture the distinguishable feature
of different classes. For the easy dataset (i.e., ImageNette), all images have clear different structures,
while for ImageWoof, the texture of each dog seems to be crucial.

Resized ImageNet-1K: We also evaluate our method on a resized version of ILSVRC2012 [26] with
a resolution of 64x64 to see how it performs on a complex label space. Surprisingly, we can achieve
7.5% and 9.7% Top1 accuracy using only 1k and 2k training examples, compared to 1.1% and 1.4%
using an equally-sized real subset.

5 Application

5.1 Continual Learning

Continual learning (CL) [43] aims to address the catastrophic forgetting problem [43–45] when a
model learns sequentially from a stream of tasks. A commonly used strategy to recall past knowledge
is based on a replay buffer, which stores representative samples from previous tasks [46–49]. Since
sample selection is an important component of constructing an effective buffer [48–51], we believe
distilled data can be a key ingredient for a continual learning algorithm due to its highly condensed
nature. Several works [6–8, 52] have successfully applied the dataset distillation to the continual
learning scenario. Our work shows that we can achieve much better results by using a better dataset
distillation technique.

We follow Zhao and Bilen [8] that sets up the baseline based on GDumb [49] which greedily stores
class-balanced training examples in memory and train model from scratch on the latest memory only.
In that case, the continual learning performance only depends on the quality of the replay buffer. We
perform 5 and 10 step class-incremental learning [53] on CIFAR100 with an increasing buffer size
of 20 images per class. Specifically, we distill 400 and 200 images at each step and put them into
the replay buffer. We follow the same class split as Zhao and Bilen [8] and compare our method to
random [49], herding [54, 55], DSA [7], and DM [8]. We use the default data preprocessing and
default model for each method in this experiment as we find it gives the best performance for each
method. We use the test accuracy on all observed classes as the performance measure [8, 48].
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Table 4: AUC of five attackers on models trained on the real and distilled MNIST data. The model
trained on the real data is vulnerable to MIAs, while the model trained on the distilled data is robust
to MIAs. Training on distilled data allows privacy preservation while retaining model performance.

Test Acc (%)
Attack AUC

Threshold LR MLP RF KNN

Real 99.2 ˘ 0.1 0.99 ˘ 0.01 0.99 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 0.97 ˘ 0.00
Subset 96.8 ˘ 0.2 0.52 ˘ 0.00 0.50 ˘ 0.01 0.53 ˘ 0.01 0.55 ˘ 0.00 0.54 ˘ 0.00
DSA 98.5 ˘ 0.1 0.50 ˘ 0.00 0.51 ˘ 0.00 0.54 ˘ 0.00 0.54 ˘ 0.01 0.54 ˘ 0.01
DM 98.3 ˘ 0.0 0.50 ˘ 0.00 0.51 ˘ 0.01 0.54 ˘ 0.01 0.54 ˘ 0.01 0.53 ˘ 0.01

FRePo 98.5 ˘ 0.1 0.52 ˘ 0.00 0.51 ˘ 0.00 0.53 ˘ 0.01 0.52 ˘ 0.01 0.51 ˘ 0.01
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Figure 5: (a,b) Multi-class accuracies across all classes observed up to a certain time point. We
perform significantly better than other methods in both 5 and 10 step class-incremental continual
learning. (c,d) Test accuracy and attack AUC as we increase the number of training steps. AUC keeps
increasing when training a model on the real data for more steps. In contrast, AUC keeps low when
training on distilled data.

Figure 5 shows that our method performs significantly better than all previous methods. The final
test accuracy for all classes for our method (FRePo) and the second-best method (DM) are 41.6%,
33.9% in 5-step learning, and 38.0%, 34.0% in 10-step learning. However, we notice that for FRePo,
distilling 2000 images in a continual learning setup achieves a similar test accuracy (41.6%) as
distilling only 1000 images from the whole dataset (41.3% from Table 1). In addition, performance
drops as we perform more steps. It suggests that FRePo considers all available classes to derive
the most condensed dataset. Splitting the data into multiple groups and performing independent
distillation may generate redundant information or fail to capture the distinguishable features.

5.2 Membership Inference Defense

Membership inference attacks (MIA) aim to infer whether a given data point has been used to train
the model or not [56–58]. Ideally, we want a model to learn from the data but not memorize it to
preserve privacy. However, deep neural networks are well-known for their ability to memorize all
the training examples, even on large and randomly labeled datasets [59]. Several methods have been
proposed to defend against such attacks by either modifying the training procedure [60] or changing
the inference workflow [61]. This section shows that the distilled data contain little information
regarding sample presence in the original dataset. Thus, instead of training on the original datasets,
training on distilled data allows privacy preservation while retaining model performance.

We consider three distilled data generated by DSA [7], DM [8] and FRePo. We perform five popular
"black box" MIA provided by Tensorflow Privacy [62] on models trained on the real data or the data
distilled from it. The attack methods include a threshold attack and four model-based attacks using
logistic regression (LR), multi-layer perceptron (MLP), random forest (RF) and K-nearest neighbor
(KNN). The inputs to those attack methods are ground-truth labels, model predictions, and losses. To
measure the privacy vulnerability of the trained model, we compute the area under the ROC curve
(AUC) of an attack classifier. Following prior work, [56, 63], we keep a balanced set of training
examples (member) and test examples (non-member) with 10K each to maximize the uncertainty of
MIA. Thus, the random guessing strategy results in a 50% MIA accuracy. We conduct experiments
on MNIST and FashionMNIST with a distillation size of 500. For space reasons, we provide more
implementation details and results in appendix.
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As shown in Table 4, all models trained on the distilled data preserve privacy as their attack AUCs
are closed to random guessing. However, we observe a small drop in test accuracy compared to
the model trained on the full dataset, which is expected as we only distill 500 examples instead of
10,000 examples. Compared to the model trained on an equally sized subset of the original data, the
model trained on distilled data results in much better test performance. Figure 5c, 5d demonstrate the
trade-off between test accuracy and attack effectiveness as measured by ROC AUC. It shows that
early stopping can be an effective technique to preserve privacy. However, we will still be under high
MIA risk if we perform early stopping by monitoring the validation loss. In contrast, training a model
on the distilled data does not have this problem as the attack AUCs keep at a very low level regardless
of training steps.

6 Conclusion

We propose neural Feature Regression with Pooling (FRePo) to overcome two challenges in dataset
distillation: meta-gradient computation and various types of overfitting in dataset distillation. We
obtain state-of-the-art performance on various datasets with a 100x reduction in training time and
a 10x reduction in GPU memory requirement. The distilled data generated by FRePo looks real
and natural and generalizes well to a wide range of architectures. Furthermore, we demonstrate two
applications that take advantage of the high-quality distilled data, namely, continual learning and
membership inference defense.

Broader Impact “Synthetic data”, in the broader sense of artificial data created by generative models,
can help researchers understand how an otherwise opaque learning machine “sees” the world. There
have been concerns regarding the risk of fake data. This paper explores a new research direction
in generating synthetic data only for downstream classification tasks. We believe this work can
provide additional interpretability and potentially address the common concerns in machine learning
regarding training data privacy.
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A Experimental Details

A.1 Implementation Details

Datasets: We evaluate our methods on the following datasets: i) MNIST [32]: A standard image
dataset consists of 10 classes of 28x28 grey-scale images of handwritten digits, including 60,000
training examples and 10,000 test examples. ii) FashionMNIST [33]: A direct drop-in replacement
for MNIST [32] consisting of 10 classes of 28x28 grey-scale images of clothing, including 60,000
training examples and 10,000 test examples. We denote FashionMNIST as F-MNIST for simplicity.
iii) CIFAR [34]: A standard image dataset with two tasks: one coarse-grained over 10 classes
(CIFAR10) and one fine-grained over 100 classes (CIFAR100). Both CIFAR10 and CIFAR100 have
50,000 training examples and 10,000 test examples with a resolution of 32x32. iv) Tiny ImageNet
[35]: A higher resolution (64x64) dataset with 200 classes, including 100,000 training examples
and 10,000 test examples. We denote Tiny ImageNet as T-ImageNet for simplicity. v) ImageNette
and ImageWoof [36]: ImageNette (assorted objects) and ImageWoof (dog breeds) are two 10-class
subsets from ILSVRC2012 [26] designed to be easy and hard to learn, respectively. ImageNette
consists of 9,469 training examples and 3,925 testing examples, while ImageWoof contains 9025
training examples and 3929 testing examples. We resize all examples to a resolution of 128x128.
vi) ImageNet [26]: A standard image benchmark dataset consists of 1000 classes from the Large
Scale Visual Recognition Challenge 2012 [26], including 1,281,167 training examples and 50,000
testing examples. We resize all examples to a resolution of 64x64. vii) CUB-200 [37]: A fine-grained
classification task, consisting of 200 subcategories belonging to birds. It has 5,994 data points for
training and 5,794 data points for testing. We resize all examples to a resolution of 32x32.

Data Preprocessing: We use the standard preprocessing for all datasets but add regularized ZCA
transformation for RGB datasets as described in KIP [22, 23]. However, unlike KIP, we do not apply
layer normalization to all examples. Moreover, for simplicity, we apply the same regularization
strength λ “ 0.1 to all datasets rather than tune each dataset. This regularization strength is tuned
for CIFAR in KIP [23]. Besides, for ImageNette and ImageWoof, performing the full-size ZCA
transformation is extremely expensive due to the high resolution, so we use a checkboard ZCA
instead. It is the reason why our distilled images in Figure 1(c) have checkboard artifacts. As for the
previous method, DSA [7], DM [8] only use standard preprocessing, while MTT [20] and KIP [23]
consider both standard preprocessing and ZCA preprocessing, but they implement ZCA preprocessing
differently. To account for the difference in data preprocessing, we reproduce each method using our
data preprocessing and report the best of the reported value in the original paper and our reproducing
results. As shown in Table 1, it turns out that our data preprocessing can improve DSA [7] and DM
[8] a lot on RGB datasets but achieves a comparable performance for MTT [20]. When visualizing
the distilled images, we directly apply the reverse transformation according to the corresponding data
preprocessing without any other modifications.

Models: We use a simple convolutional neural network for all experiments based on the architecture
used in previous works [7, 20, 23]. It consists of several blocks of 3x3 convolution, normalization,
RELU, and 2×2 average pooling layer with stride 2. We use 3, 4, and 5 blocks for datasets with
resolutions 32x32, 64x64, and 128x128, respectively. Unlike previous works, which use the same
number of filters at every layer, we double the number of filters if the feature map size is halved,
following the modern neural network designs that preserve the time complexity per layer[39, 40].
We observe this to be crucial for our method when we distill thousands of data because we need
the feature dimension to be much larger than the distilled size to make the KRR work properly.
Furthermore, we replace the Instance Normalization [41] with Batch Normalization [42] during
training and do not use any normalization during evaluation. For DSA, DM, and MTT, the default
normalization for both training and evaluation is the Instance Normalization [41]. In contrast, KIP
[23] uses analytical NTK during training and uses a 1024-width network without normalization
for evaluation. Moreover, KIP [23] adds an extra convolution layer at the first layer of the neural
network. We initialize our model using Lecun Initialization, which is the default in Flax library
[64]. In contrast, DSA, DM, and MTT use Kaiming Initialization, which is the default in PyTorch,
while KIP [23] initializes the model using random Gaussian with standard deviations

?
2 and 0.1

for weights and biases, respectively. We denote the default model used in each method as Conv for
simplicity. We reproduce each method using our model and report the best of the reported value in
the original paper and our reproducing results. We find our model achieves comparable or worse
performance than each method’s default methods, so we use their default model in most settings.
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Algorithm 2 Dataset Distillation using Neural Feature Regression with Pooling (FRePo)

Require: T : a labeled dataset; α: the learning rate for the distilled data
Initialization: Initialize a labeled distilled dataset S “ pXs, Ysq.
Initialization: Initialize a model pool M with m models tθiu

m
i“1 randomly initialized from Pθ.

1: while not converged do
2: Ż Sample a model uniformly from the model pool: θi „ M.
3: Ż v1: Train the model θi on the current distilled data S for one step.
4: Ż Sample a target batch uniformly from the labeled dataset: pXt, Ytq „ T .
5: Ż Compute the meta-training loss L using Eq. 2
6: Ż Update the distilled data S: Xs Ð Xs ´ α∇Xs

L, and Ys Ð Ys ´ α∇Ys
L

7: Ż v2: Train the model θi on the current distilled data S for one step.
8: Ż Reinitialize the model θi „ Pθ if θi has been updated more than K steps.
9: end while

Output: Learned distilled dataset S “ pXs, Ysq

Besides, we notice that the distilled data can encode the architecture’s inductive bias, so we provide
an ablation study on how the model architecture affects the distilled data in Section C.6.

Initialization: Staying consistent with previous works, [7, 20, 23], we initialize the distilled image
with randomly sampled real images. We also investigate initializing the distilled image with random
Gaussian noise and observe that initializing does not affect the final performance too much but
affects the convergence speed. We find the real initialization gives a decent convergence speed, so
we choose the real initialization for simplicity rather than fine-tune the scale of random Gaussian
initialization. As for labels, we initialize them using a scaled mean-centered one-hot vector for the
corresponding image, where the scaling factor (i.e., 1{p

a

C{10q) depends on the number of classes
C . We find that this label initialization scheme speeds up the convergence but has little impact on the
final performance. We provide an ablation study regarding the initialization scheme in Section C.3.

Label Learning: Whether to learn the label is a Boolean hyperparameter in our experiments. When
true, we optimize it using Algorithm 1. When false, we stop the gradient so that they remain fixed at
its initialization. We provide an ablation study on label learning in Section C.4.

Training and Evaluation: The proposed algorithm has two versions depending on the order of
meta-gradient computation and online model update. We present the two versions in Algorithm 2
and highlight the difference in red. We denote computing the meta-gradient after the online model
update as v1 and denote computing the meta-gradient before the online model update as v2. The first
implementation (v1) is more similar to the standard back-propagation through time as we first do the
forward pass (online model update) and then the backward pass. However, instead of backpropagating
the gradient through the inner optimization, we backpropagate through the kernel. In contrast, the
insight behind the second implementation (v2) is that we want to find good data to train the last
layer first, then we use it to train the whole network. Empirically, we do not observe any difference
between these two implementations, and we choose v2 as the default for all experiments. Besides, we
use the distilled data and its flipped version in meta-gradient computation to mitigate the mirroring
effect for RGB datasets. For evaluation, we follow the standard protocol [7, 20]: training a randomly
initialized neural network from scratch on distilled data and evaluating on a held-out test dataset. We
apply the same data augmentation as in previous work [7, 20] during evaluation for a fair comparison.

Hyperparameters: We aim to keep our method as simple and efficient as possible. As a result,
our method requires very few hyperparameter tuning efforts than all the previous methods. We use
the same set of hyperparameters for all experiments, except stated otherwise. Specifically, we use
LAMB optimizer [65] with a cosine learning rate schedule starting from 0.0003 for both images
and labels. We use a batch size of 1024 and train the distilled data up to 2 million steps to see its
long-run behavior. In practice, we observe that most of the convergence (more than 95% of its final
test accuracy) is achieved after a few thousand steps with a slow, logarithmic increase with more
iterations, as shown in Figure 3b. The model pool contains ten models trained up to K “ 100 steps.
Each model is trained using Adam optimizer [66] with a constant learning rate of 0.0003, and no
weight decay is applied. We use the same kernel regularizer λ as KIP [23]. Instead of being a fixed
constant, the regularizer is adapted to the scale of Kθ

XsXs
, λ “ λ0TrpKθ

XsXs
q, where λ0 “ 10´6.

We note that our hyperparameter choice may be sub-optimal, but it is a good starting point. We
conduct some ablation study regarding the hyperparameters in Section C. Moreover, we provide a
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hyperparameter tuning guideline for practitioners in Section D accompanied by a list of additional
tricks that we find to improve the performance but do not include in the current algorithm.

Summary: We implement our method in JAX [67] and reproduce previous methods using their
released code. To take into account the differences in data processing and architectures, we try our
best to reproduce previous results by varying different data preprocessing and models. Experiments
show that our data preprocessing can sometimes improve performance, but our model does not give
better performance than previous methods. We report the best of the reported value in the original
paper and our reproducing results. We evaluate each distilled data using five random neural networks
and report the mean and standard deviation.

A.2 Experimental Setups

Figure 1: Selected images from (a) 1 Img/Cls CIFAR100 (ZCA, learn label=True), (b) 1 Img/Cls
Tiny ImageNet (ZCA, learn label=True), (c) 10 Img/Cls ImageNette (Top 2 rows) (Checkboard ZCA,
learn label=True), 10 Img/Cls ImageWoof (Bottom 2 rows) (Checkboard ZCA, learn label=True).

Figure 3a, 3b: We measure the time per step by measuring the average wall clock time ten times on
ten steps. We take the first measurement after 50 steps when the statistics become stable and report
the mean and standard deviation of 10 runs. To generate Figure 3a, 3b, we use the default model and
default hyperparameter for each method. We first record the time per step of each method and run
another program to evaluate the checkpoints at different time steps to get the test accuracy. Thus, the
wall clock time is computed by multiplying the time per step and the number of steps taken at each
checkpoint. All models are trained on Nvidia Quadro RTX 6000 with 22.17GB memory, and 7.5
compute capability.

Figure 3c, 3d, 14a, 14b: Similar to how we generate Figure 3a, 3b, we measure the time per step by
measuring the average wall clock time ten times on ten steps. We take the first measurement after 50
steps when the statistics become stable and report the mean and standard deviation of 10 runs. We use
jax.profiler and torch.profiler for the JAX program and PyTorch program to measure the peak GPU
memory usage. Different from Figure 3a, 3b, we use the same model (i.e., Conv used by DSA [7])
and same batch size=256 in this section. We take an optimistic estimation for the previous methods
(i.e., DSA, MTT) by choosing a smaller inner loop or outer loop number to generate more data points
before encountering out of memory errors. Specifically, we use outer_loop=1, inner_loop=1 for DSA
and use syn_steps=15 for MTT. All models are trained on Nvidia Quadro RTX 6000 with 22.17GB
memory, and 7.5 compute capability.

Figure 4a: Distilled image visualization when distilling 1 Img/Cls from CIFAR100 using FRePo.

Figure 4b: Distilled image visualization when distilling 1 Img/Cls from CIFAR100 using MTT [20].
To give the best image quality, we use the distilled images provided by the original paper. (Url:https:
//georgecazenavette.github.io/mtt-distillation/tensors/index.html#tensors)

Figure 4c: Distilled image visualization when distilling 1 Img/Cls from CIFAR100 using DSA
[7]. To give the best image quality, we use the distilled images provided by the original paper.
(Url: https://drive.google.com/drive/folders/1Dp6V6RvhJQPsB-2uZCwdlHXf1iJ9Wb_
g). Besides, we adjust the contrasts to give the best visualization.

Figure 4d: Distilled label visualization when distilling 1 Img/Cls from CIFAR100 using FRePo. The
distilled images are sunflower, girl, and bear, respectively. All labels are unnormalized logits.

Figure 5a, 5b: Multi-class accuracies across all classes observed up to a specific time point. For
a fair comparison, we follow the same setup in DM [8], including the class split of five different
runs. We use the same set of hyperparameters as other experiments and train the distilled data up to
500K steps. We report the mean and standard deviation of the five different runs. We observe that the
primary source of variance comes from the class split.

Figure 5c, 5d, 6a, 6b: Test accuracies and attack AUCs as we increase the number of training steps.
We use the same set of hyperparameters as other experiments except for data augmentation. We
do not apply any data augmentation when we train models on the distilled data since any type of
regularization can alleviate the MIA risks, making it hard to see the effects of distilled data.

Table 1, 3, 7, 5: We try to reproduce the previous methods based on their official codebase and vary
the data preprocessing and model architecture. We report the best of the reported value in the original
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Table 5: Distillation performance on higher resolution (128x128) dataset (i.e. ImageNette, Image-
Woof) and medium resolution (64x64) dataset with a complex label space (i.e. ImageNet-1K). FRePo
scales well to high-resolution images and learns the discriminate feature of complex datasets well.

ImageNette (128x128) ImageWoof (128x128) ImageNet (64x64)

Img/Cls 1 10 1 10 1 2

Random Subset 23.5 ˘ 4.8 47.7 ˘ 2.4 14.2 ˘ 0.9 27.0 ˘ 1.9 1.1 ˘ 0.1 1.4 ˘ 0.1
MTT [20] 47.7 ˘ 0.9 63.0 ˘ 1.3 28.6 ˘ 0.8 35.8 ˘ 1.8 ´ ´

FRePo 48.1 ˘ 0.7 66.5 ˘ 0.8 29.7 ˘ 0.6 42.2 ˘ 0.9 7.5 ˘ 0.3 9.7 ˘ 0.2

Full Dataset 87.9 ˘ 1.0 74.4 ˘ 1.6 19.8 ˘ 0.6

paper and our reproducing results. As for our method, Table 1, 3 report the best value of learning
label or not learning label with our default architecture and data preprocessing. We use the same set
of hyperparameters for all experiments. The complete results can be found in Table 7. Besides, we
also include the results when training the model on the full dataset using mean square error loss in
Table 5.

Table 2: We generate the distilled data for each method using their default model and default
hyperparameter. For KIP, since the training is too expensive, we use the checkpoint provided by
the original author. We perform a sweep on the checkpoints in “gs://kip-datasets/kip/cifar10/” and
find “ConvNet_ssize100_zca_nol_noaug_ckpt1000.npz” gives the best performance that matches
the reported value in the original paper. We evaluate DSA, DM, and MTT in PyTorch and KIP and
FRePo in JAX. We notice that our reproducing results for KIP are much better than the reproducing
results reported in MTT [20]. It may be due to the differences in initialization or hyperparameter
choices, such as learning rate.

Table 4, 6: Table 4 and Table 6 present the test accuracies and MIA results on MNIST and Fashion-
MNIST, respectively. We random sample 10K data points to generate the distilled data and sample
another 10K non-overlapped data as non-member data. We use the same set of hyperparameters as
other experiments except for data augmentation. We do not apply any data augmentation when we
train models on the distilled data since any regularization can alleviate the MIA risks, making it hard
to see the effects of distilled data.

B Additional Results

Resized ImageNet-1K: We also evaluate our method on a resized version of ILSVRC2012 [26] with
a resolution of 64x64 to see how it performs on a complex label space. As shown in Table 5, we
can achieve 7.5% and 9.7% Top1 accuracy using only 1k and 2k training examples, compared to
1.1% and 1.4% using an equally-sized real subset or 19.8% on the full dataset using 1281167 training
examples. We notice that Mean Square Error (MSE) loss may not be suitable for a complex dataset
like ImageNet as the same model trained with Cross-Entropy loss achieve a Top1 accuracy of 32.2%.
However, since we use MSE loss to evaluate the distilled data, we report the model trained using
MSE loss for a fair comparison.

Membership Inference Defense: We only show MNIST results in Section 5.2 due to space reasons.
We provide the same experimental results on FashionMNIST in Figure 6 and Table 6. We observe
a similar trend on the two different datasets: training a model on the distilled data can preserve the
privacy while achieving a good performance. We notice that there is a gap between training on the
whole data set, which may be closed by distilling more data points and adding more noise when
perform the distillation.

C Ablation Study

We conduct several ablation studies to understand the key components of the proposed method,
including the role of kernel approximation (Section C.1), model pool (Section C.2), initialization
(Section C.3), label learning (Section C.4), scalability (Section C.5), and model architecture C.6.
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Table 6: AUC of attacker classifier trained on real data and distilled data on FashionMNSIT. We
highlight the best attacker performance in bold for each model. The model trained on real data is
vulnerable to membership inference attacks. In contrast, the model trained on distilled data is robust
to membership inference attacks.

Test Acc (%)
Attack AUC

Threshold LR MLP RF KNN

Real 89.7 ˘ 0.2 0.99 ˘ 0.01 0.99 ˘ 0.00 0.99 ˘ 0.00 0.99 ˘ 0.00 0.98 ˘ 0.00
Subset 81.1 ˘ 0.7 0.53 ˘ 0.01 0.51 ˘ 0.01 0.52 ˘ 0.01 0.52 ˘ 0.01 0.53 ˘ 0.00
DSA 87.0 ˘ 0.1 0.51 ˘ 0.00 0.51 ˘ 0.01 0.51 ˘ 0.01 0.52 ˘ 0.01 0.51 ˘ 0.01
DM 87.3 ˘ 0.1 0.52 ˘ 0.00 0.51 ˘ 0.01 0.50 ˘ 0.01 0.52 ˘ 0.01 0.51 ˘ 0.01

FRePo 87.6 ˘ 0.2 0.52 ˘ 0.00 0.53 ˘ 0.01 0.53 ˘ 0.01 0.53 ˘ 0.01 0.52 ˘ 0.00
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Figure 6: (a,b) Test accuracy and attack AUC on Fashion MNIST as we increase the number of
training steps. AUC keeps increasing when training a model on the real data for more steps. In
contrast, AUC keeps low when training on distilled data.

All experiments are conducted on CIFAR100 when learning 1 Img/Cls using Algorithm 1 with the
default hyperparameters except stated otherwise.

C.1 FRePo vs TBPTT

Figure 7 illustrates the computation graph of FRePoand 1-step TBPTT, which is different from
Figure 2 where we compare FRePo with unrolled optimization. FRePo differs from 1-step TBPTT in
meta-gradient computation. As shown in Figure 7, 1-step TBPTT computes the meta-gradient by
backpropagating through the inner optimization, while FRePo uses backpropagating through a kernel
and a feature extractor. Figure 8 compares the training loss, training accuracy, and test accuracy of
FRePo and TBPTT when using the same training and evaluation protocol. Note that FRePo computes
the training loss and accuracy using the KRR head during training, while TBPTT uses the neural
network head. We use the same optimizer to perform the online model update and use the same
optimizer to train the same neural network for the same amount of steps on the distilled data during
evaluation.

Figure 8c shows that the distilled data generated by TBPTT keeps getting worse test accuracy as the
training goes on. It suggests that the meta-gradient computed by TBPTT is highly biased and does
not help learn a generalizable distilled dataset. As a result, the distilled data is overfitted to a k-step
learning setup, where the k is the truncation step. This learning scenario is very similar to the dataset
distillation setup in DD [4] and MTT [20], where a specific optimizer is learned to take advantage
of the distilled data. Though using more truncation steps can alleviate this problem, eliminating the
truncation bias needs an infinite unrolled optimization, making it intractable. In contrast, FRePo
alleviates the truncation bias by training a subset of a neural network to convergence. Moreover,
FRePo decouples the meta-gradient computation and online model update such that the distilled
data will not overfit the inner-level optimization. Conversely, TBPTT needs to fine-tune the inner
optimization to get the best performance, which we do not explore further here.
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Forward Pass

(b) 1-step TBPTT(a) FRePo

Backward Pass 

Distilled Dataset (outer-level opt.)

Model Parameters (inner-level opt.)

Figure 7: Comparison of FRePo and 1-step TBPTT. S, Xs, Ys are the distilled dataset, images and
labels. L is the meta-training loss and θpkq, gpkq are the model parameter and gradient at step k.
fpXq is the feature for input X and Kθ

XtXs
is the Gram matrix of Xt and Xs. FRePo is analogous

to 1-step TBPTT as it computes the meta-gradient at each step while performing the online model
update. However, instead of backpropagating through the inner optimization, FRePo computes the
meta-gradient through a kernel and feature extractor.
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Figure 8: Ablation Study - Truncated Backpropagation through Time (TBPTT). Due to truncation
bias, k-step TBPTT can easily overfit to the k-step training scheme. In contrast, FRePo alleviates the
truncation bias of TBPTT by training a subset of a neural network to convergence.

C.2 Model pool and Batchsize

We investigate how the number of online models, the maximum online updates, and batch size affect
the test accuracy. When one hyperparameter is modified, all the other hyperparameters are unchanged
at their default value. As shown in Figure 9a, using more than one model is better than using only
one model, which is equivalent to the training and resetting strategy used in the previous methods
[5, 7, 13]. Our default choice of using ten models seems not to be the best but gives reasonable
performance. Figure 9b shows that both using too few updates and using too many updates hurt the
performance, and our default choice of 100 gives a good starting point. If we want to squeeze the
performance, it is worth tuning these two hyperparameters. Intuitively, a small regularization strength
is needed when we distill a small number of distilled data. On the contrary, when we distill more
distilled data, we may want to use a stronger regularization. Figure 9c, 9d show that using a large
batch size may give slightly better results and converge faster in terms of number of training steps.
However, time per step is also an increasing function of batch size, so a large batch size may not give
the best test accuracy and efficiency trade-off. Our default choice of 1024 may not be optimal, but it
is a good starting point.

C.3 Initialization

We initialize the distilled image using real images and initialize the distilled label using a mean-
centered one-hot vector scaled by 1{p

a

C{10q as default. Is this real initialization that explains why
our distilled images look real and natural? Does random initialization give a similar result? How
does the label initialization affect the performance? We answer these questions by trying different
initialization schemes. We investigate initializing the distilled image from random Gaussian noise
or a combination of real images and random noises. We also vary the scaling factor of the label
initialization and the noise scale to figure out the best setting for dataset distillation. Figure 10a
shows that initializing from random noise is not a problem and the best initialization scheme is the
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Figure 9: Ablation Study - Model Pool and Batch Size. Our default value for number of online
models, max online updates, and batch size may not yield the best performance for all datasets and
settings. It provides a good starting point for further investigation.
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Figure 10: Ablation Study - Initialization. Initializing the distilled image using real images does not
explain the effectiveness of our algorithm. Indeed, initializing using the combination of real image
and a properly chosen random Gaussian noise gives the best performance. The scale of the label and
random Gaussian noise is very crucial for convergence speed.

(a) Before Optimization (b) After Optimization

Figure 11: Ablation Study - Initialize the distilled image using random Gaussian noise.

combination of real images and random noises. With a properly chosen standard deviation of 0.5, we
can achieve 27.8% test accuracy compared to 27.2% using the default hyperparameter. Figure 10b,
10c,10d show that a right scale of noise or label can significantly improve the convergence speed.
Besides, Figure 10b shows that scaling the mean-centered one-hot vector by 0.3 is a good choice for
CIFAR100, and we also find that 1.0 works well for datasets with ten classes. Therefore, we decide
to use the mean-centered one-hot vector scaled by 1{p

a

C{10q as our default label initialization. As
shown in Figure 11, 12, though the distilled images look very different at initialization, they look
quite similar after optimization. We also provide four videos to visualize the evolution of the distilled
images in the supplementary.
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(a) Before Optimization (b) After Optimization

Figure 12: Ablation Study - Initialize the distilled image using Real images.

(a) Learn Label=True (b) Learn Label=False

Figure 13: Ablation Study - Label Learning. Learning label can generate more natural and real-
looking images.

C.4 Label Learning

As discussed in Section 4.2, label learning is an essential component of our algorithm. We provide
a detailed comparison of learning and not learning labels in Table 7. We observe that when the
label space is simple, such as MNIST, F-MNIST, and CIFAR10, label learning may not be necessary
(Figure 21, 22, 23). However, it becomes crucial for complex datasets with many classes, such as
CIFAR100 (Figure 13), Tiny-ImageNet (Figure 26), and ImageNet (Figure 27, 28). For ImageNet,
we can achieve 7.5% test accuracy when we learn the label, compared to 1.6% when we fix the label.
Besides the fact that the distilled label encodes rich information regarding the class similarity, we
find that learning labels can make the optimization easier and distill more natural and real-looking
images, as shown in Figure 13, 26 and supplementary videos.
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Table 7: Test accuracies of models trained on the distilled data from scratch. We highlight the best
test accuracy using neural network predictor either learn the label or not.

Learn Label = True Learn Label = False

Img/Cls NN Acc KRR Acc NN Acc KRR Acc

MNIST
1 92.5 ˘ 0.2 92.6 ˘ 0.3 93.0 ˘ 0.4 92.6 ˘ 0.4
10 98.6 ˘ 0.1 98.6 ˘ 0.1 98.6 ˘ 0.1 98.6 ˘ 0.1
50 99.2 ˘ 0.0 99.2 ˘ 0.1 99.2 ˘ 0.0 99.2 ˘ 0.0

F-MNIST
1 74.2 ˘ 0.5 76.4 ˘ 0.3 75.6 ˘ 0.2 77.1 ˘ 0.2
10 86.2 ˘ 0.1 86.8 ˘ 0.1 86.0 ˘ 0.1 86.6 ˘ 0.1
50 89.4 ˘ 0.1 89.9 ˘ 0.1 89.6 ˘ 0.1 89.9 ˘ 0.1

CIFAR10
1 45.5 ˘ 0.9 46.3 ˘ 0.7 46.8 ˘ 0.7 47.9 ˘ 0.6
10 65.5 ˘ 0.6 68.0 ˘ 0.2 65.4 ˘ 0.6 66.9 ˘ 0.4
50 71.7 ˘ 0.2 74.4 ˘ 0.1 71.7 ˘ 0.2 73.8 ˘ 0.2

CIFAR100
1 28.7 ˘ 0.1 32.3 ˘ 0.1 25.4 ˘ 0.1 27.3 ˘ 0.1
10 42.5 ˘ 0.2 44.9 ˘ 0.2 39.6 ˘ 0.3 41.5 ˘ 0.1
50 44.3 ˘ 0.2 43.0 ˘ 0.3 40.1 ˘ 0.2 37.0 ˘ 0.2

T-ImageNet 1 15.4 ˘ 0.1 19.1 ˘ 0.3 12.4 ˘ 0.8 15.8 ˘ 0.3
10 25.4 ˘ 0.2 26.5 ˘ 0.1 21.9 ˘ 0.2 22.5 ˘ 0.2

CUB-200 1 12.4 ˘ 0.2 13.7 ˘ 0.2 7.8 ˘ 0.1 9.0 ˘ 0.3
10 16.8 ˘ 0.1 16.1 ˘ 0.3 4.8 ˘ 0.4 1.0 ˘ 0.2

ImageNette 1 48.1 ˘ 0.7 50.6 ˘ 0.6 43.7 ˘ 0.9 46.8 ˘ 0.7
10 66.5 ˘ 0.8 67.1 ˘ 0.7 64.1 ˘ 0.8 65.1 ˘ 0.8

ImageWoof 1 26.7 ˘ 0.6 31.3 ˘ 0.9 29.7 ˘ 0.6 28.2 ˘ 0.9
10 42.2 ˘ 0.9 43.5 ˘ 0.8 41.7 ˘ 0.8 43.3 ˘ 0.7

ImageNet 1 7.5 ˘ 0.3 7.2 ˘ 0.2 1.6 ˘ 0.3 1.1 ˘ 0.3
2 9.7 ˘ 0.2 9.5 ˘ 0.2 2.0 ˘ 0.3 1.7 ˘ 0.2

C.5 Training Cost Analysis

Similar to Figure 3, we also investigate how time per step and GPU memory usage vary when we
increase the number of distilled data. As shown in Figure 14, our method becomes more expensive
as we increase the number of distilled data. It is because 1) we always use all the distilled data for
gradient computation rather than sample a batch as in other methods; 2) Matrix inversion with time
complexity of OpN3q in KRR becomes more and more expensive as we distill more data. Similar to
other kernel methods, distilling tens of thousands of data can be difficult for our method. We can
circumvent this problem by 1) sampling a batch at each gradient computation, 2) performing subset
distillation, or 3) distillation by class as in Section 5.1. However, the performance is expected to drop
because the redundant information can be generated in different groups, and the distilled data may
not be able to capture all the distinguishable features when learning from a subset. We leave it for
future work to address this scaling challenge. We provide the numerical values for Figure 3c, 3d, 14a,
and 14b in Table 8, 9, 10, and 11.

Table 8: Time per step measure in milliseconds (ms). Corresponds to Figure 3c.
Width DSA DM MTT FRePo

16 1764.3 ˘ 71.2 569.1 ˘ 13.2 206.2 ˘ 2.5 7.7 ˘ 0.3
32 1742.2 ˘ 17.1 573.5 ˘ 11.2 268.6 ˘ 2.0 6.9 ˘ 0.2
64 2014.6 ˘ 15.0 669.8 ˘ 10.1 299.9 ˘ 2.1 8.5 ˘ 0.2

128 2583.5 ˘ 14.7 950.6 ˘ 13.7 485.6 ˘ 3.0 10.9 ˘ 0.1
256 4909.8 ˘ 16.9 1569.2 ˘ 8.5 939.6 ˘ 10.5 20.8 ˘ 0.1
512 8764.6 ˘ 13.7 3209.5 ˘ 8.6 2153.6 ˘ 9.0 52.5 ˘ 0.1
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Table 9: Peak GPU memory usage measured in gigabytes (GB). Corresponds to Figure 3d.
Width DSA DM MTT FRePo

16 0.800 0.678 0.650 0.036
32 0.986 0.714 1.260 0.086
64 1.488 0.888 2.462 0.178
128 2.014 1.164 4.858 0.387
256 4.594 1.718 9.790 0.814
512 10.768 2.970 19.110 2.080

Table 10: Time per step measure in millisecond (ms). Corresponds to Figure 14a.
Number of Distilled Data DSA DM MTT FRePo

100 2051.8 ˘ 52.2 649.4 ˘ 11.7 302.8 ˘ 1.8 10.9 ˘ 0.1
200 2073.4 ˘ 55.4 662.9 ˘ 15.7 575.0 ˘ 7.3 9.6 ˘ 0.1
400 1928.6 ˘ 13.6 681.4 ˘ 10.7 1077.5 ˘ 8.8 16.2 ˘ 0.2
800 1952.5 ˘ 12.3 722.7 ˘ 18.2 2169.1 ˘ 12.5 23.4 ˘ 0.2
1600 1977.4 ˘ 16.4 747.2 ˘ 13.7 - 35.3 ˘ 0.2
3200 2233.8 ˘ 8.8 727.3 ˘ 18.8 - 59.6 ˘ 0.1
6400 2467.8 ˘ 8.8 874.2 ˘ 25.7 - 123.2 ˘ 0.1

Table 11: Peak GPU memory usage measured in gigabytes (GB). Corresponds to Figure 14b.
Number of Distilled Data DSA DM MTT FRePo

100 1.488 0.888 2.464 0.178
200 1.644 0.964 4.848 0.308
400 1.916 1.116 9.662 0.563
800 2.558 1.464 19.700 0.721

1600 3.776 2.076 - 1.210
3200 6.056 3.412 - 2.380
6400 10.482 6.060 - 4.740
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Figure 14: Time per iteration and peak memory usage as we increase the number of distilled data.
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C.6 Model Architectures

From the Cross-Architecture Generalization experiments in Section 4.2, we observe that the distilled
data can encode the architecture’s inductive bias. Thus, we perform a qualitative and quantitative
comparison of the distilled data generated by different architectures to understand how architecture
affects the distilled data. We evaluate across various architectures, including Conv (Our default
model), DCConv (the default model of DSA [7], DM [8], MTT [20]), AlexNet [38], VGG [39], and
ResNet [40]. We also consider a wide range range of normalization layers, such as no normalization
(NN), Instance Normalization (IN) [41], Batch Normalization (BN) [42], Layer Normalization (LN)
[68], and Group Normalization (GN) [69]. Besides, we also vary the depth of Conv and denote two-
layer, three-layer, and four-layer Conv as Conv-BN-D2, Conv-BN-D3, and Conv-BN-D4, respectively.
We do not rescale any image for better visualization, so the over-saturated images indicate that the
images have different statistics from the real images.

Qualitative Results: Figure 15, 16, 17, 18, and 19 show that 1) the simplest architecture (i.e., Conv)
gives the images that look almost like real images; 2) Different normalization layers have different
effects on the distilled images, resulting in images with very different brightness and contrasts. No
Normalization or Batch Normalization seems to generate the most natural-looking images; 3) The
distilled images generated by modern architectures like ResNet and VGG are very different from
the natural images. Thus additional attention is needed to transfer the distilled images to a different
architecture. On the other hand, additional tricks such as image regularization or projection may help
make the distilled images more similar to natural ones. 4) Number of average pooling layers (or
size of the final activation map) can affect the distilled image quality. Using a fewer pooling (i.e.,
Conv-BN-D2) will generate blur images or repeated objects in the images, and we find it is more
obvious in high resolution such as Tiny-ImageNet. 5) Distilled images may reflect the similarity of
the architecture. For instance, the images generated by Conv and DCConv are almost identical since
the only architectural difference is the filter width. Besides, we observe that the images generated by
AlexNet are very similar to those generated by Conv, which suggests that the inductive bias of those
two architectures is very similar. It may be one reason why Conv’s distilled images work extremely
well for AlexNet (Table 2).

(a) Conv-NN (b) Conv-BN (c) Conv-LN

(d) Conv-IN (e) Conv-GN (GroupNum=32) (f) Conv-GN (GroupNum=1)

Figure 15: Ablation Study - Default Model with different Normalization Layer
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(a) DCConv-NN (b) DCConv-BN (c) DCConv-LN

(d) DCConv-IN (e) DCConv-GN (GroupNum=32) (f) DCConv-GN (GroupNum=1)

Figure 16: Ablation Study - DCConv with different Normalization Layer

(a) ResNet-NN (b) ResNet-BN (c) ResNet-LN

(d) ResNet-IN (e) ResNet-GN (GroupNum=32) (f) ResNet-GN (GroupNum=1)

Figure 17: Ablation Study - ResNet with different Normalization Layer
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(a) VGG-NN (b) VGG-BN (c) VGG-LN

(d) VGG-IN (e) VGG-GN (GroupNum=32) (f) VGG-GN (GroupNum=1)

Figure 18: Ablation Study - VGG with different Normalization Layer.

(a) Conv-BN-D2 (b) Conv-BN-D3 (c) Conv-BN-D4

Figure 19: Ablation Study - Conv with different Depth.

Figure 20: Ablation Study - AlexNet.
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Quantitative Results: We evaluate the distilled data trained using different architectures (Figure 15
and 16) to study the role of normalization and width in training and evaluation. Table 12, 13, and 14
show that 1) Training with Conv-BN and evaluating using Conv-NN yields the best performance,
which is our default choice; 2) Training with Conv-BN yields most generalizable and transferable
images as it performs well for other architectures; 3) Evaluating using Conv-GN seems to be the best
choice if the training architecture is unknown. 4) Evaluating using Conv-NN is a good way to see
whether the inductive bias of architecture has been distilled to the dataset since it is very sensitive
to the training architecture. There, it is not a good idea to use this architecture when the training
architecture is unknown; 5) Training the distilled data using a wider network Conv achieves slightly
better performance than a narrower network DCConv.

We also perform the same experiments in Table 1 using Conv-IN, and DCConv-IN and summarize
the results in Table 16 and 17. Moreover, we also evaluate the cross-architecture transfer performance
of Conv-IN in Table 15. We observe that DCConv-IN works reasonably well when we distill a
small number of images ( 100). The performance degrades a lot when distilling 1000 images
from CIFAR100 because the KRR component needs a larger feature dimension to perform well.
Besides, Conv-IN performs slightly worse than the default Conv-BN. However, Table 15 suggests
that the drawback of the instance norm is the transferability. The distilled data trained using instance
normalization transfer less well to other architecture, especially those without normalization.

Table 12: Test accuracies of models trained on the distilled data from scratch. Each row has the same
training architecture, while each column has the same evaluation architecture. We report the average
performance of four random seeds. C denotes Conv and D denotes DCConv. The standard deviation
are shown in Table 13, and 14. We visualize the distilled images in Figure 15 and 16.

T\E C-NN C-BN C-GN C-GN1 C-LN C-IN D-NN D-BN D-GN D-GN1 D-LN D-IN

C-NN 25.7 22.5 26.5 26.2 25.3 23.6 19.1 21.5 23.8 24.3 22.0 22.2
C-BN 28.8 26.0 28.1 27.6 27.4 27.0 22.7 24.6 24.3 25.4 23.4 24.1
C-GN 26.1 24.1 28.4 27.4 26.0 25.6 20.0 23.8 25.9 26.3 24.1 24.7
C-GN1 25.9 23.3 27.3 26.8 25.8 24.6 19.8 23.5 25.3 25.8 23.4 24.1
C-LN 21.7 20.6 23.1 23.2 23.8 21.0 14.8 20.4 22.0 22.8 23.5 20.4
C-IN 25.1 22.8 26.1 25.7 25.2 27.0 20.6 21.5 24.6 24.2 23.1 25.7
D-NN 25.1 22.4 27.3 27.3 26.3 22.0 17.2 21.7 25.6 26.3 24.1 23.8
D-BN 27.4 23.9 27.8 27.4 26.7 25.9 19.8 22.1 24.9 25.4 23.2 24.0
D-GN 24.8 21.1 26.4 27.0 25.3 22.1 15.7 21.1 25.5 25.6 22.3 23.1

D-GN1 24.8 21.5 26.4 27.2 25.7 21.5 16.3 21.4 24.4 25.7 22.9 22.0
D-LN 24.0 21.7 24.6 25.1 25.5 20.7 13.4 21.3 21.6 23.1 25.3 19.8
D-IN 23.3 20.2 24.2 24.0 23.0 23.4 16.9 20.1 22.8 22.5 21.0 24.8

Table 13: Test accuracies of Conv with different normalizations evaluated on the distilled data trained
using Conv and DCConv with different normalizations. We report the mean and standard deviation
of four random seeds. The distilled images are shown in Figure 15 and 16.

T\E Conv-NN Conv-BN Conv-GN Conv-GN1 Conv-LN Conv-IN

Conv-NN 25.7 ˘ 0.3 22.5 ˘ 0.4 26.5 ˘ 0.2 26.2 ˘ 0.1 25.3 ˘ 0.2 23.6 ˘ 0.2
Conv-BN 28.8 ˘ 0.2 26.0 ˘ 0.3 28.1 ˘ 0.5 27.6 ˘ 0.3 27.4 ˘ 0.1 27.0 ˘ 0.3
Conv-GN 26.1 ˘ 0.3 24.1 ˘ 0.1 28.4 ˘ 0.3 27.4 ˘ 0.1 26.0 ˘ 0.1 25.6 ˘ 0.3

Conv-GN1 25.9 ˘ 0.1 23.3 ˘ 0.1 27.3 ˘ 0.3 26.8 ˘ 0.3 25.8 ˘ 0.1 24.6 ˘ 0.2
Conv-LN 21.7 ˘ 0.2 20.6 ˘ 0.1 23.1 ˘ 0.1 23.2 ˘ 0.3 23.8 ˘ 0.3 21.0 ˘ 0.1
Conv-IN 25.1 ˘ 0.3 22.8 ˘ 0.4 26.1 ˘ 0.4 25.7 ˘ 0.2 25.2 ˘ 0.3 27.0 ˘ 0.3

DCConv-NN 25.1 ˘ 0.2 22.4 ˘ 0.2 27.3 ˘ 0.3 27.3 ˘ 0.5 26.3 ˘ 0.2 22.0 ˘ 0.2
DCConv-BN 27.4 ` 0.2 23.9 ˘ 0.1 27.8 ˘ 0.4 27.4 ˘ 0.3 26.7 ˘ 0.2 25.9 ˘ 0.3
DCConv-GN 24.8 ˘ 0.2 21.1 ˘ 0.1 26.4 ˘ 0.3 27.0 ˘ 0.3 25.3 ˘ 0.2 22.1 ˘ 0.3
DCConv-GN1 24.8 ˘ 0.4 21.5 ˘ 0.2 26.4 ˘ 0.1 27.2 ˘ 0.1 25.7 ˘ 0.4 21.5 ˘ 0.3
DCConv-LN 24.0 ˘ 0.1 21.7 ˘ 0.3 24.6 ˘ 0.4 25.1 ˘ 0.1 25.5 ˘ 0.2 20.7 ˘ 0.2
DCConv-IN 23.3 ˘ 0.2 20.2 ˘ 0.3 24.2 ˘ 0.3 24.0 ˘ 0.2 23.0 ˘ 0.4 23.4 ˘ 0.3
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Table 14: Test accuracies of DCConv with different normalizations evaluated on the distilled data
trained using Conv and DCConv with different normalizations. We report the mean and standard
deviation of four random seeds. The distilled images are shown in Figure 15 and 16.

T\E DCConv-NN DCConv-BN DCConv-GN DCConv-GN1 DCConv-LN DCConv-IN

Conv-NN 19.1 ˘ 0.1 21.5 ˘ 0.2 23.8 ˘ 0.1 24.3 ˘ 0.3 22.0 ˘ 0.2 22.2 ˘ 0.1
Conv-BN 22.7 ˘ 0.1 24.6 ˘ 0.1 24.3 ˘ 0.2 25.4 ˘ 0.2 23.4 ˘ 0.1 24.1 ˘ 0.2
Conv-GN 20.0 ˘ 0.7 23.8 ˘ 0.3 25.9 ˘ 0.1 26.3 ˘ 0.1 24.1 ˘ 0.2 24.7 ˘ 0.2
Conv-GN1 19.8 ˘ 0.7 23.5 ˘ 0.4 25.3 ˘ 0.1 25.8 ˘ 0.2 23.4 ˘ 0.1 24.1 ˘ 0.1
Conv-LN 14.8 ˘ 0.8 20.4 ˘ 0.3 22.0 ˘ 0.3 22.8 ˘ 0.3 23.5 ˘ 0.4 20.4 ˘ 0.2
Conv-IN 20.6 ˘ 0.4 21.5 ˘ 0.2 24.6 ˘ 0.1 24.2 ˘ 0.2 23.1 ˘ 0.2 25.7 ˘ 0.2

DCConv-NN 17.2 ˘ 0.9 21.7 ˘ 0.1 25.6 ˘ 0.2 26.3 ˘ 0.3 24.1 ˘ 0.1 23.8 ˘ 0.2
DCConv-BN 19.8 ˘ 0.5 22.1 ˘ 0.3 24.9 ˘ 0.3 25.4 ˘ 0.2 23.2 ˘ 0.2 24.0 ˘ 0.3
DCConv-GN 15.7 ˘ 0.7 21.1 ˘ 0.2 25.5 ˘ 0.3 25.6 ˘ 0.3 22.3 ˘ 0.2 23.1 ˘ 0.1

DCConv-GN1 16.3 ˘ 0.8 21.4 ˘ 0.2 24.4 ˘ 0.2 25.7 ˘ 0.4 22.9 ˘ 0.3 22.0 ˘ 0.2
DCConv-LN 13.4 ˘ 1.1 21.3 ˘ 0.4 21.6 ˘ 0.5 23.1 ˘ 0.3 25.3 ˘ 0.3 19.8 ˘ 0.3
DCConv-IN 16.9 ˘ 0.8 20.1 ˘ 0.3 22.8 ˘ 0.1 22.5 ˘ 0.2 21.0 ˘ 0.4 24.8 ˘ 0.3

Table 15: Cross-architecture transfer performance on CIFAR10 with 10 Img/Cls. Despite being
trained for a specific architecture, our distilled data transfer well to various architectures unseen
during training. Conv is the default evaluation model used for each method. NN, DN, IN, and BN
stand for no normalization, default normalization, Instance Normalization, Batch Normalization,
respectively.

Train Arch
Evaluation Architecture

Conv Conv-NN ResNet-DN ResNet-BN VGG-DN VGG-BN AlexNet

DSA [7] Conv-IN 53.2 ˘ 0.8 36.4 ˘ 1.5 42.1 ˘ 0.7 34.1 ˘ 1.4 48.3 ˘ 0.7 46.3 ˘ 1.3 34.0 ˘ 2.3
DM [8] Conv-IN 49.2 ˘ 0.8 35.2 ˘ 0.5 36.8 ˘ 1.2 35.5 ˘ 1.3 45.5 ˘ 1.0 41.2 ˘ 1.8 34.9 ˘ 1.1

MTT [20] Conv-IN 64.4 ˘ 0.9 41.6 ˘ 1.3 49.2 ˘ 1.1 42.9 ˘ 1.5 35.7 ˘ 3.35 46.6 ˘ 2.0 34.2 ˘ 2.6
KIP [23] Conv-NTK 62.7 ˘ 0.3 58.2 ˘ 0.4 49.0 ˘ 1.2 45.8 ˘ 1.4 32.0 ˘ 0.4 30.1 ˘ 1.5 57.2 ˘ 0.4

FRePo Conv-IN 59.2 ˘ 0.3 56.2 ˘ 0.2 51.1 ˘ 0.8 50.8 ˘ 0.2 57.5 ˘ 0.7 51.8 ˘ 0.3 55.3 ˘ 0.8
FRePo Conv-BN 65.5 ˘ 0.4 65.5 ˘ 0.4 58.1 ˘ 0.6 57.7 ˘ 0.7 49.1 ˘ 0.5 59.4 ˘ 0.7 61.9 ˘ 0.7

Table 16: NN test accuracies of models trained on the distilled data from scratch using Conv, Conv-IN,
and DCConv-IN. : denotes performance better than the original reported performance.

Img/Cls
Previous SOTA FRePo

DSA [7] DM [8] KIP [23] MTT [20] Conv-BN Conv-IN DCConv-IN

MNIST
1 88.7 ˘ 0.6 89.9 ˘ 0.8: 90.1 ˘ 0.1 91.4 ˘ 0.9: 93.0 ˘ 0.4 92.9 ˘ 0.5 92.4 ˘ 0.5

10 97.9 ˘ 0.1: 97.6 ˘ 0.1: 97.5 ˘ 0.0 97.3 ˘ 0.1: 98.6 ˘ 0.1 98.9 ˘ 0.1 98.4 ˘ 0.1

50 99.2 ˘ 0.1 98.6 ˘ 0.1 98.3 ˘ 0.1 98.5 ˘ 0.1: 99.2 ˘ 0.0 99.4 ˘ 0.1 98.8 ˘ 0.1

F-MNIST
1 70.6 ˘ 0.6 71.5 ˘ 0.5: 73.5 ˘ 0.5 75.1 ˘ 0.9: 75.6 ˘ 0.3 75.3 ˘ 0.8 76.4 ˘ 1.2

10 84.8 ˘ 0.3: 83.6 ˘ 0.2: 86.8 ˘ 0.1 87.2 ˘ 0.3: 86.2 ˘ 0.2 86.0 ˘ 0.3 85.7 ˘ 0.2

50 88.8 ˘ 0.2: 88.2 ˘ 0.1: 88.0 ˘ 0.1 88.3 ˘ 0.1: 89.6 ˘ 0.1 89.4 ˘ 0.1 87.2 ˘ 0.2

CIFAR10
1 36.7 ˘ 0.8: 31.0 ˘ 0.6: 49.9 ˘ 0.2 46.3 ˘ 0.8 46.8 ˘ 0.7 45.1 ˘ 0.5 41.3 ˘ 0.5

10 53.2 ˘ 0.8: 49.2 ˘ 0.8: 62.7 ˘ 0.3 65.3 ˘ 0.7 65.5 ˘ 0.4 59.1 ˘ 0.3 59.6 ˘ 0.3

50 66.8 ˘ 0.4: 63.7 ˘ 0.5: 68.6 ˘ 0.2 71.6 ˘ 0.2 71.7 ˘ 0.2 69.6 ˘ 0.4 63.6 ˘ 0.2

CIFAR100
1 16.8 ˘ 0.2: 12.2 ˘ 0.4: 15.7 ˘ 0.2 24.3 ˘ 0.3 28.7 ˘ 0.1 25.9 ˘ 0.1 24.8 ˘ 0.2

10 32.3 ˘ 0.3 29.7 ˘ 0.3 28.3 ˘ 0.1 40.1 ˘ 0.4 42.5 ˘ 0.2 40.9 ˘ 0.1 31.2 ˘ 0.1
50 42.8 ˘ 0.4 43.6 ˘ 0.4 ´ 47.7 ˘ 0.2 44.3 ˘ 0.2 ´ ´

T-ImageNet 1 6.6 ˘ 0.2: 3.9 ˘ 0.2 ´ 8.8 ˘ 0.3 15.4 ˘ 0.1 13.5 ˘ 0.1 ´

10 ´ 12.9 ˘ 0.4 ´ 23.2 ˘ 0.2 25.4 ˘ 0.2 20.4 ˘ 0.1 ´
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Table 17: KRR test accuracies of FRePo trained on the distilled data from scratch using Conv,
Conv-IN, and DCConv-IN. : denotes performance better than the original reported performance.

Img/Cls
Previous SOTA FRePo

DSA [7] DM [8] KIP [23] MTT [20] Conv-BN Conv-IN DCConv-IN

MNIST
1 88.7 ˘ 0.6 89.9 ˘ 0.8: 90.1 ˘ 0.1 91.4 ˘ 0.9: 92.6 ˘ 0.4 92.7 ˘ 0.3 91.1 ˘ 0.5

10 97.9 ˘ 0.1: 97.6 ˘ 0.1: 97.5 ˘ 0.0 97.3 ˘ 0.1: 98.6 ˘ 0.1 98.8 ˘ 0.1 98.4 ˘ 0.1

50 99.2 ˘ 0.1 98.6 ˘ 0.1 98.3 ˘ 0.1 98.5 ˘ 0.1: 99.2 ˘ 0.1 99.3 ˘ 0.1 98.9 ˘ 0.1

F-MNIST
1 70.6 ˘ 0.6 71.5 ˘ 0.5: 73.5 ˘ 0.5 75.1 ˘ 0.9: 77.1 ˘ 0.2 71.7 ˘ 1.2 78.5 ˘ 0.2

10 84.8 ˘ 0.3: 83.6 ˘ 0.2: 86.8 ˘ 0.1 87.2 ˘ 0.3: 86.8 ˘ 0.1 86.9 ˘ 0.2 86.2 ˘ 0.1

50 88.8 ˘ 0.2: 88.2 ˘ 0.1: 88.0 ˘ 0.1 88.3 ˘ 0.1: 89.9 ˘ 0.1 89.9 ˘ 0.1 87.4 ˘ 0.2

CIFAR10
1 36.7 ˘ 0.8: 31.0 ˘ 0.6: 49.9 ˘ 0.2 46.3 ˘ 0.8 47.9 ˘ 0.6 46.8 ˘ 0.3 43.3 ˘ 0.5

10 53.2 ˘ 0.8: 49.2 ˘ 0.8: 62.7 ˘ 0.3 65.3 ˘ 0.7 68.0 ˘ 0.2 61.9 ˘ 0.4 61.8 ˘ 0.3

50 66.8 ˘ 0.4: 63.7 ˘ 0.5: 68.6 ˘ 0.2 71.6 ˘ 0.2 74.4 ˘ 0.1 71.4 ˘ 0.3 64.3 ˘ 0.1

CIFAR100
1 16.8 ˘ 0.2: 12.2 ˘ 0.4: 15.7 ˘ 0.2 24.3 ˘ 0.3 32.3 ˘ 0.1 25.7 ˘ 0.2 26.9 ˘ 0.1

10 32.3 ˘ 0.3 29.7 ˘ 0.3 28.3 ˘ 0.1 40.1 ˘ 0.4 44.9 ˘ 0.2 42.0 ˘ 0.3 30.9 ˘ 0.1
50 42.8 ˘ 0.4 43.6 ˘ 0.4 ´ 47.7 ˘ 0.2 43.0 ˘ 0.3 ´ ´

T-ImageNet 1 6.6 ˘ 0.2: 3.9 ˘ 0.2 ´ 8.8 ˘ 0.3 19.1 ˘ 0.3 15.8 ˘ 0.3 ´

10 ´ 12.9 ˘ 0.4 ´ 23.2 ˘ 0.2 26.5 ˘ 0.1 20.8 ˘ 0.1 ´
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D Hyperparameter Tuning Guideline

We find that several modifications to the current method can improve the test accuracy of the model
trained on the distilled data. We do not include them in our current algorithm for simplicity or fair
comparison, and we guess it may be helpful for practitioners.

• Dropout: We find dropout is very effective at alleviating the overfitting when training on a
small set of examples.

• Learning Rate Schedule for the online model: Though we use a constant schedule in our
experiments, we find that the learning rate schedule, especially the warm-up phase, may be
crucial for some architectures. When NAN is in gradient, adding a learning rate schedule to
the online model may solve the problem.

• Data Augmentation during Training: There are two ways to add data augmentation during
training. One is to add to Xs during the online model update. The other is to add to Xt,
which can be thought of as distilling data augmentation to the data.

• Tune Max Online Update: We train the online model up to 100 steps in our experiments.
When the distillation size is tiny (e.g., ten examples in total), 100 may be too large. Setting
to a lower value (less regularization) turns out to be better. On the contrary, if the distillation
size is large, setting it to a higher value (more regularization) can give better results.

• Exponential Moving Average (EMA): We find that evaluating on the EMA version of
the distilled data or using the EMA version of the model parameters can improve the test
accuracy.

• Soft Cross Entropy Loss: We train models on the distilled dataset using MSE loss in all
our experiments to take advantage of the distilled label. An alternative way is to use the soft
cross-entropy loss with a fine-tuned temperature, which usually outperforms the MSE loss.

• Image Regularization: Though our method does not have any image regularization, we find
a regularization term on the image norm is necessary for some architectures. Otherwise, the
image norm will keep increasing or decreasing. We find that using an L2 penalty between
the distilled image norm and the real image norm is enough in some cases. An alternative
way is to project the distilled image to a norm ball every few iterations.

• Label Regularization: Our method has a small regularization to ensure the class-balanced
distillation where we force the margin between the target label and any other label is greater
than 1/C. We believe a better label regularization incorporating prior knowledge of class
similarity can improve the performance.

• Maximal Update Parametrization (µP ) [70]: We observe that using a model parameteri-
zation proposed by Yang et al. [70] can give additional test accuracy improvement.

Based on our experience, we provide the following hyperparameter tuning guideline for those who
want to squeeze the performance of our method or apply our method to a different dataset or use a
different model. Besides validation loss and accuracy, we suggest monitoring the norm and gradient
norm of the distilled images and labels, which can be good indicators for the final performance.

• Step1 - Online Model: Choose an online model architecture and tune its hyperparameter
(e.g., optimizer, weight decay) in the standard way on the whole real dataset or a subset
of real data. The same hyperparameters can be used for the online model update and final
evaluation.

• Step2 - Distilled Data Optimization and Initialization: Use the default setting for the
model pool (i.e., ten models with max online update K “ 100) and tune the learning rate
and batch size for distilled data optimization and the scale of initialization.

• Step3 - Pool Diversity: Tune the model pool diversity by adjusting the max online update,
adding models with different architectures, or applying data augmentation.
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E Additional Visualization

E.1 Distilled Image Visualization

We provide some additional distilled images visualization for MNIST (Figure 21), FashionMNIST
(Figure 22), CIFAR10 (Figure 23), CIFAR100 (Figure 24), CUB-200 (Figure 25), Tiny ImageNet
(Figure 26), ImageNet (Figure 27, 28), ImageNette (Figure 29), and ImageWoof (Figure 30).

(a) 1 Img/Cls, Learn Label=True (b) 1 Img/Cls, Learn Label=False

(c) 10 Img/Cls, Learn Label=True (d) 10 Img/Cls, Learn Label=False

Figure 21: Distilled Image Visualization - MNIST.

(a) 1 Img/Cls, Learn Label=True (b) 1 Img/Cls, Learn Label=False

(c) 10 Img/Cls, Learn Label=True (d) 10 Img/Cls, Learn Label=False

Figure 22: Distilled Image Visualization - Fashion MNIST.
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(a) 1 Img/Cls, Learn Label=True (b) 1 Img/Cls, Learn Label=False

(c) 10 Img/Cls, Learn Label=True (d) 10 Img/Cls, Learn Label=False

Figure 23: Distilled Image Visualization - CIFAR10

(a) 1 Img/Cls, Learn Label=True (b) 1 Img/Cls, Learn Label=False

Figure 24: Distilled Image Visualization - CIFAR100
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(a) Learn Label=True, Class ID = [0-99] (b) Learn Label=True, Class ID = [100-199]

(c) Learn Label=False, Class ID = [0-99] (d) Learn Label=False, Class ID = [100-199]

Figure 25: Distilled Image Visualization - CUB-200 (1 Img/Cls)
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(a) Learn Label=True, Class ID = [0-99] (b) Learn Label=True, Class ID = [100-199]

(c) Learn Label=False, Class ID = [0-99] (d) Learn Label=False, Class ID = [100-199]

Figure 26: Distilled Image Visualization - Tiny ImageNet (1 Img/Cls)
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(a) Class ID = [0-99] (b) Class ID = [100-199]

(c) Class ID = [200-299] (d) Class ID = [300-399]

(e) Class ID = [400-499] (f) Class ID = [500-599]

Figure 27: Distilled Image Visualization - ImageNet (1 Img/Cls), Learn Label=True
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(a) Class ID = [600-699] (b) Class ID = [700-799]

(c) Class ID = [800-899] (d) Class ID = [900-999]

Figure 28: Distilled Image Visualization - ImageNet (1 Img/Cls), Learn Label=True
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(a) 1 Img/Cls, Learn Label=True (b) 1 Img/Cls, Learn Label=False

(c) 10 Img/Cls, Learn Label=True (d) 10 Img/Cls, Learn Label=False

Figure 29: Distilled Image Visualization - ImageNette.

(a) 1 Img/Cls, Learn Label=True (b) 1 Img/Cls, Learn Label=False

(c) 10 Img/Cls, Learn Label=True (d) 10 Img/Cls, Learn Label=False

Figure 30: Distilled Image Visualization - ImageWoof.
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