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6 APPENDIX

The supplementary materials consist of:

¢ Details of the rooms used in the dataset.

« Statistical attributes of the dataset.

¢ Procedures for data collection and preprocessing.
¢ Details of the baseline implementations.

* Limitations, discussions, and potential impact.

* Analysis on variation of speed.

e URL to data and miscellaneous information.
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Figure 6: (a) Empty wooden floor room, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P14 walking, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P14 walking signal, highlighting the transformed features.

6.1 LOCATION DETAILS
6.1.1 WOODEN FLOOR

The data collection environment is a ground-floor classroom with wooden flooring. The walking area
measured 50 -100 m?2. Raspberry Pi 3B+ was placed in the podium, while a geophone sensor was
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placed on the floor. This room is used for data collection of dataset VIBeID Al, and A3.1. Figure 6
shows a photo of the room, a sample of noise distribution within the room, and a visualization of data
collected from a walking person.
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Figure 7: (a) Empty carpet floor room, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P15 walking, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P15 walking signal, highlighting the transformed features

6.1.2 CARPET FLOOR

The room is a ground-floor conference room with carpeted flooring overlying concrete. The thickness
of the carpet is 9mm. The room is furnished with chairs and a table. Participants are asked to walk
within a radius of 50-100 m?2. This room is used for data collection of dataset VIBeID A3.2, where 40
person walked for 15 minutes each. The figure 7 illustrates the data collection setup for VIBeID A3.2,
including a room photo, noise distribution sample, and walking person data visualization.

6.1.3 CEMENT FLOOR

The room is a research lab on the third floor, covered in tiles. The room measures 50-100 m?2 as
walking area. It is an active research lab with regular activities occurring in the background. This
room is used for data collection of dataset VIBeID A3.3, and VIBeID A2 (1.5 m, 2.5 m, and 4.0 m),
to study the effect of sensing distance and how effective our system can be when people walk far
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Figure 8: (a) Empty cement floor room, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P15 walking, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P14 walking signal, highlighting the transformed features.

away from the sensors. Figure 8 shows a photo of the room, a sample of noise distribution within the
room, and a visualization of data collected from a walking person.

6.1.4 OUTDOOR GROUND

The data collection environment is an open outdoor playground where the vibration signals of 15
individuals were recorded. Due to the open nature of the space, extraneous noise from activities
such as people walking, running, and playing cricket was unavoidable. While we tried to minimize
background movement within the 50-100 m? sensing area, the camera’s wide field of view did
capture some additional human activity in the video data. While this presented an initial challenge
for extracting clean human figures (due to residual background noise), it also offered a valuable
opportunity to test the robustness of the GEI formation process under slightly non-uniform conditions.
We opted for outdoor data collection for two primary reasons. First, to establish a control group as all
previous data recordings were conducted indoors. Secondly, the outdoor data collection served as
a foundation for comparative analysis of our method against established soft biometric techniques,
such as gait recognition, in a more realistic setting. Open ground is used for data collection of
two modalities, structural and vision based; the structural based vibration collected data named as
VIBeID A4.1 and vision based collected data is used to formulate VIBeID A4.2. Figure 9 shows the
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Figure 9: (a) Empty outdoor ground, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P9 walking, (¢) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P9 walking signal, highlighting the transformed features.

location setup, a sample of noise distribution and a visualization of data collected from a walking
person.

6.1.5 OTHER COMMENTS

Figure 4-7(c), clearly demonstrates the variation in noise distribution across different rooms and
outdoor environment. Notably, the signal-to-noise ratio (SNR) exhibits significant dependence on
the floor level, with ground floor locations typically having high SNR compared to the third floor.
Additionally, we observed that the amplitude of the source signal exhibits an inverse relationship
with distance from the sensor. To achieve effective event extraction from the signal, scenario-specific
training data is used.

6.2 EXPERIMENTAL SETUP AND DATA COLLECTION PROTOCOL

6.2.1 HARDWARE DETAILS

We collected structural vibration data, with a single geophone for Multiple Indoor (VIBeID Al, A2,
A3) and outdoor (VIBelD A4) environment, along with two cameras.
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* Geophone : Geophone is a sensor that converts the ground movement into voltage, which
can be recorded by using any microcontroller or microprocessor having an analog-to-
digital converter (ADC). The used geophone has a sensitivity of 2.88 V/m/sec and a pre-
amplification gain of 10.

* Raspberry Pi 3B+ : For indoor experiments (VIBelD Al, A2, and A3), we have used
raspberry Pi 3B+ featuring BCM2837B0 64-bit ARM-based Cortex-AS53 processor running
at 1.4 GHz with 1 GB of RAM and 16 GB of storage. The geophone sensor was interfaced
with raspberry Pi 3B+ using a logic sound card hat equipped with a 16-bit analog-to digital
converter (ADC) at a sampling rate of 8 KHz.

* Sony spresense Board : In our outdoor experiments (VIBeID A4.1), we used the Sony
CXD5602 Spresense board. This board features an ARM Cortex-M4F processor with six
cores running at 156 MHz and a 16-bit A/D conversion output. We opted for the Sony
Spresense board due to its low power consumption—only 1 W (5 V @ 200 mA)—compared
to the Raspberry Pi 3B+, which requires approximately 7.5 W (5 V @ 1.5 A). This energy ef-
ficiency makes the Sony Spresense board well-suited for outdoor data collection experiments.
However, it has a limitation: it can only record signals at 16 KHz and 32 KHz. Therefore,
we initially recorded vibrational signals at 16 KHz and subsequently downsampled the data
to 8 KHz to maintain consistency with the indoor datasets (VIBeID Al, A2, and A3).

¢ Camera : For (VIBelD A4.2) dataset, we have used 2 cameras that have a CMOS sensor
(0.84667 cm) with 3 MP, 95° viewing angle, with frame rate of 20 fps. It supports Wi-fi
protocol to remotely view the recorded video and save it to smartphone or cloud services.

Figure 10 shows the images of geophone sensor, raspberry pi 3B+, and camera.

(a) Geophone (b) Raspberry Pi 3B+ (c) Camera

Figure 10: Hardware Components: (a) Geophone sensor for capturing structural vibrations, (b)
Raspberry Pi 3B+ board for data acquisition, and (c) Camera for outdoor data collection.

6.2.2 DATA COLLECTION PROTOCOL

Prior to data collection, participants were briefed for 5 minutes, about the task to ensure clear
understanding. We instructed the participants to complete a repetitive walking task. They were
asked to walk from a designated starting point (Point A) to another designated endpoint (Point
B) at a natural pace, turn around at Point B, and then repeat the walk back to Point A. Each
session lasted for five minutes. Multiple such sessions were conducted, depending on the sub-task.
Participants were informed that they could stop and rest at any point during the session (if they feel
uncomfortable); the recording would be paused and restarted upon resuming the walk. Apart from
intended walking activity any additional human activities were strictly prohibited. This controlled
environment minimized background noise and ensured the capture of pure walking patterns. It
is important to note that while we focused on minimizing human activity-related noise, structural
vibrations from non-human activities were not controlled.

6.3 DATA PRE-PROCESSING TOOLKIT

The raw vibration signal undergoes data pre-processing (Figure 11), where we extract events from
the raw signal. This events are further converted to CWT images. We have used the toolkit provided
by (Anchal et al., 2020) to extract footstep events. It uses Gaussian Mixture Model (GMM), as an
unsupervised clustering technique to extract footstep events from noise. Each recording is divided
into equal parts using a sliding window approach (375 ms), and we extract features from this window
(see Table 8). The steps are as follows:
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Figure 11: Data Processing Steps: (a) Raw vibration signal acquired from the geophone sensor. (b)
Pre-processed signal after noise reduction and event segmentation. (c) Extracted events converted
into a CWT image for further analysis.

¢ Modeling Footstep Events : Each feature vector, f;, is modeled as:

Z¢m' (fil bt Sm) (1

where,

— C (number of clusters) is set to 2

— N is the number of training samples

— ¢, is the weight of the m*" cluster (represents its probability)
— [y, is the mean vector of the m*® cluster

— X, is the covariance matrix of the m!" cluster

¢ Training the GMM : We train the GMM by maximizing the log-likelihood of the training

data:
Inp(F|©) = Zln (Z SmN (filpim, m)> )
m=1
where,
- F=[fF £]F,... £%]7 is the feature matrix
- © ={¢1, b2, 1, 12, X1, X2} [O is maximised by log-likelihood using the EM algo-
rithm]

¢ Classifying Footsteps: The GMM generates two clusters, C; and C. We assign labels
based on the determinants value (absolute value of the determinant) of the covariance
matrices:

g—>01,(€‘—>02 Z|21‘>|22|

Cluster = - 3

e {8%02,5%01 [ Sa] > |24 )
where,

— where the event and noise class are represented by £ and g, respectively,
— >, is the determinant of the covariance matrix of the m-th cluster
— & are parameterized by sets (¢, p11, X1) and (¢o, f12, Xo) when | L] > | 2o

Table 8: Features used for event detection

Statistical Features Spectral Features (Energy bins)
fi 17 7 fi f
Std. Kurtosis 40-80 Hz  80-120 Hz  120-160 Hz

After training the GMM model, we extract footsteps events from each recordings. We train the GMM
model using recording of a single person (i.e. person 14’s data is used for training model VIBelID Al).
Note that changing the training data will affect the GMM model and the number of events extracted.
The resulting datasets (pre-processed signal dataset) each has row representing a single footstep event,
containing 1500 data points. This pre-processed dataset has been shared for replication of results.
The pre-processed event data is simply a denoised signal which exhibits a clearer representation of
the underlying events compared to the raw signal.
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Figure 12: Clustering results using a Gaussian Mixture Model (GMM): (a) clustering for concurrent
non-human activities, and (b) clustering for concurrent human activities. Data points are partitioned
into three clusters—Cluster 1 (blue), Cluster 2 (orange), and Cluster 3 (green). Cluster centroids are
represented by red ‘X’ markers.

6.4 WILD SET EVALUATION INVOLVING CONCURRENT HUMAN AND NON-HUMAN ACTIVITY

To evaluate scenarios involving concurrent human and non-human activities, we conducted additional
experiments that yielded an additional 30 minutes of data. We named it “Wild set”. For such
mixed-activity data, we modified the Gaussian Mixture Model (GMM) to three clusters, denoted as
C; where i € {1,2,3}. Each cluster C; is parameterized by its mixing coefficient 7;, mean vector ji;,
and covariance matrix X;. The decision process relies on the determinant of the covariance matrices,
|3;], which provides a measure of the spread or variance of the cluster in the feature space. The
following procedure is adopted:

1. For each cluster C; (¢ € {1,2,...,k}), compute the determinant of its covariance matrix,
denoted as |%;|, where:

3] = det (%),
and T; € R%*4 ig the covariance matrix of cluster C; in d-dimensional feature space.

2. Identify the two clusters, Cpax1 and Ciax2, corresponding to the largest and second-largest
covariance determinants:

|Zmaxl| - maX(|ZiD7 |Zmax2| == maX(|ZL| \ |2maxl Dv

where | X a1 | and |Eiaxz| are associated with complex noise or human activities due to their
higher variability in the feature space.

3. Extract the signal segments corresponding to the clusters,Ciax1 and Cpaxa, Where j £
{max1, max2}. Convert the footstep events into spectrogram representations.

This iterative comparison ensures that clusters with higher variance are robustly separated from
those with lower variance, enabling segmentation of human and non-human activities. As shown
in Figure 12, the data points are grouped into three distinct clusters within the feature space. The
horizontal axis (Feature I) and vertical axis (Feature 2) represent extracted features derived from
statistical and spectral analysis of the input signal. The centroids of each cluster, indicated as red
crosses, demonstrate the separation between noise, human activities, and non-human activities,
ensuring dynamic adaptability to mixed data scenarios.

6.4.1 EVALUATION SETUP

Model Configuration : A pretrained ResNet-18 (IMAGENET1K_V1) (S) was modified by replac-
ing the final fully connected layer with a custom embedding layer of size 512. This enabled the model
to extract latent features of spectrogram data.
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Data Preparation : We considered data from two individuals. Spectrogram data was organized
into two categories:

* Pure Data: Spectrograms collected from VIBeIDA1, representing a clean dataset, with
normal background noise.

* Activity Data: Spectrograms extracted using an unsupervised event detection method based
on Gaussian Mixture Models (GMM) with & = 3, incorporating either non-human or human
noise.

* Group Activity Data: Spectrograms obtained through an unsupervised event detection
strategy employing Gaussian Mixture Models (GMM) with k£ = 3, capturing ambient noise
from two individuals and person-of-interest walking in the vicinity.

Statistical Testing : A two-sample t-test was performed to quantify the difference between the
embeddings of pure and noisy clusters. The embeddings were flattened into 1D arrays, and the
t-statistic and p-value were computed to evaluate statistical significance.

Table 9: Statistical Test Results for Pure vs. Activity Data

Comparison T-Statistic P-Value
Pure & Non-Human Activity Data  —0.772 0.440
Pure & Human Activity Data —1.750 0.080
Pure & Group Activity Data —1.329 0.183
Pure & Random Noise —237.97 0.0

The statistical test results, as shown in Table 9 indicate that embeddings generated from noisy data
using our GMM-based event extraction approach closely align with embeddings derived from cleaner
distributions. Specifically, the two-sample t-test demonstrated no significant difference (p > 0.05)
difference between embeddings from pure data and those obtained from activity data processed
with our method. This finding suggests that the GMM-based event extraction effectively isolates
meaningful features, ensuring that the embeddings remain robust and consistent with the underlying
characteristics of the cleaner dataset. Additionally, we have compared the p-value and t-test with a
random noise data, to show how it impacts the statistical measurements.

Table 10: Classification Accuracy (%) of datasets on machine learning methods. Accuracy is in
“mean (std.)” format.

Classifier Dataset/Events 2 5 7 10

Random Forest Al 81.77(4.52) 88.10(4.69) 87.35(4.61) 90.45(4.25)
A2.1 80.86(5.27) 88.24(4.20) 90.92(3.46) 92.75(3.42)
A2.2 83.85(5.33) 89.85(4.45) 92.17(3.36) 93.79(3.36)
A2.3 85.43(2.65) 93.55(1.83) 95.42(1.99) 97.02(1.47)
A3.1 80.41(3.50) 87.31(3.57) 89.81(3.44) 92.46(3.38)
A3.2 84.54(2.91) 91.55(2.67) 93.98(2.54) 95.54(2.39)
A3.3 80.34(4.54) 88.06(4.54) 91.48(3.18) 93.70(3.35)
Ad.l 74.63(2.70) 79.48(3.07) 80.58(2.73) 82.45(6.35)

SVM Al 74.06(3.26) 85.52(3.33) 89.44(3.59) 92.25(3.77)
A2.1 48.74(1.58) 58.55(2.21) 61.88(3.21) 67.04(3.70)
A2.2 58.29(3.31) 70.70(4.99) 73.22(5.13) 76.43(5.19)
A2.3 56.82(1.71) 68.74(2.53) 72.16(2.99) 75.61(2.54)
A3.1 22.06(1.24) 86.42(3.13) 89.12(2.78) 92.26(2.55)
A3.2 59.03(1.88) 87.91(2.62) 90.01(2.44) 91.96(2.07)
A3.3 81.19(0.25) 88.08(0.29) 89.53(0.21) 91.60(0.23)
Ad.l 40.37(1.88) 46.85(1.25) 44.40(2.67) 45.49(2.65)
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6.5 BASELINE DETAILS AND ADDITIONAL RESULTS
6.5.1 MACHINE LEARNING APPROACH

We have conducted experiments with machine learning approach for person identification using two
feature sets. The first set contains 134 features described in section 4.1 (main paper), while the second
set contains 104 features from (Pan et al., 2017) (see Table 10). We extract additional 104 features for
classifying sequences of 2, 5, 7 and 10 footstep events. These features are calculated by averaging the
data points across consecutive features in the original dataset. We normalise the feature sets and then
implement machine learning algorithms SVM and RF. We have used the same hyper-parameters as in
section 4.1 (main paper). A key finding is that the model performs worse on outdoor data compared
to indoor data. This is likely because the features in both sets were designed for indoor environments.
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Figure 13: Vibration event and corresponding Continuous Wavelet Transform (CWT) images using
different wavelet functions. Data is of P29 participant walking on a cement floor. The CWT with the
“morlet” wavelet (morl) function yields the clearest representation of the event.

6.5.2 DEEP LEARNING APPROACH

We converted the vibration signal into a time-frequency representation using the Continuous Wavelet
Transform (CWT) 0-256 scales. This allows us to analyze the signal’s frequency content over time. As
shown in the figure 13, we experimented with different wavelet functions to find the best visualization.
The “ Morlet” wavelet gives the clearest representation of the vibration signal compared to other
options.

To evaluate the impact of multi-channel inputs on M models (Table 11), we performed additional
experiments using configurations with 2, 7, and 10 events as input, each with an additional Conv2d
layer with input channel sizes of 6, 21, and 30, respectively. All input images are in RGB (3-channel)
format. While ResNet-18 achieves superior performance in most configurations, this analysis revealed
a key trend: M models performs better when large samples are available. Acquiring large datasets and
training on it often presents challenges in real-world applications. Therefore, transfer learning can be
a promising alternative. To facilitate this approach, we have shared our pre-trained models weights in
our GitHub repository. We have used approximately 800 hours of compute power for entire analysis.
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Table 11: Classification Accuracy (%) of datasets using deep learning methods. Accuracy is in “mean
(std.)” format.

Classifier Dataset/Events 2 7 10

Resnet-18(M) Al 84.31 (1.54) 87.35(3.01) 93.65 (1.90)
A2.1 82.23 (2.40) 89.23 (2.18) 91.71 (2.60)
A2.2 84.11 (1.31) 85.74 (2.78) 89.36 (2.00)
A2.3 84.39 (1.74) 90.70 (2.09) 91.03 (3.10)
A3.1 85.57 (1.06) 93.70 (2.44) 94.90 (1.08)
A3.2 83.92 (1.51) 90.77 (2.60) 92.41 (2.31)
A3.3 83.02 (2.54) 83.10(2.83) 88.34 (2.04)
A4.1 86.55(1.24) 86.92 (3.57) 80.56 (2.63)

Resnet-50(M) Al 82.35(2.24) 88.51(2.61) 94.70 (2.00)
A2.1 81.15(1.41) 86.67 (2.12) 87.71 (2.50)
A2.2 81.52 (0.22) 84.28 (2.80) 86.17 (2.00)
A23 83.65 (1.34) 90.23(1.71) 88.37 (2.14)
A3.1 81.20 (0.60) 92.08 (0.81) 91.07 (1.92)
A3.2 82.93 (1.52) 89.81 (2.10) 89.72(2.44)
A3.3 81.26 (0.12) 86.07 (1.50) 85.95 (1.27)
Ad.1 81.22(2.02) 77.57(2.71) 83.33 (3.09)

6.5.3 GAIT ENERGY IMAGE DETAILS

To ensure participant privacy, we have opted to share a curated subset of the video data. This dataset
comprises approximately 5,000 normalized human silhouette figures for each 15 participants. Our
system extracts individual frames from the video recordings. These frames are then fed into a Mask
R-CNN model, to obtain normalised human silhouettes. Sequences of these silhouettes are then
directly used to create Gait Energy Images (GEIs). Subsequently, these GEIs are used to train deep
learning models for person identification.

6.5.4 ANALYSIS ON VARIATION OF SPEED

We conducted an additional sub-experiment with 15 participants (11 males and 4 females) to incorpo-
rate different walking speeds: slow (80-90 SPM), normal (90-120 SPM), and fast (120-140 SPM).
This experiment yielded 7.5 hours of data, comprising 39,035 total samples. The Baseline results
demonstrate that even with variations in walking speed, we achieved good classification accuracy
(Table 10 and 11). Participants walked to metronome beats for the slow and fast speeds, while
walking at their natural pace for the normal category. Data was collected on a wooden floor, with
each participant walking for 10 minutes at each speed, split into two sessions of 5 minutes. The
participants’ average age is 28 + 11.80 years, height is 1.67 = 0.056 m, and weight is 60.22 + 8.63
kg. Individual details are available on GitHub. We used the same hyperparameters as outlined in
Section 4.1 of the main paper. The VIBelD A5 dataset consists of data from 15 participants, walking
at different speeds (slow, normal and fast).

* VIBelID AS.1 : Data of participants walking at fast speed (120-140 steps per min).
* VIBelD AS.2 : Data of participants walking at their normal pace (90-120 steps per min).
e VIBelID AS5.3 : Data of participants walking at slow speed (80-90 steps per min).

For each comparison, the two-sample t-test was applied to the flattened embeddings to compute the
following metrics:

» T-Statistic: Measures the difference in means relative to the variation within the embeddings.

* P-Value: Indicates whether the observed differences are statistically significant. A p-value
< 0.05 suggests significant differences.

The results are summarized in Table 12.
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Table 12: Pairwise t-Test Results for VIBelID Classes

Comparison T-Statistic P-Value
A52 — AS.1 0.9212 0.356
A5.2 — A53 -0.069 0.944

We have trained a ResNet-18 model with normal (A5.2) speed and tested it with the fast(AS5.1) and
slow(A5.3). The Table 12, shows results indicate that there is no statistically significant difference
between the embeddings of the compared classes (p-values (p>0.05)).

Table 13: Classification Accuracy(%) of datasets on machine learning methods. Accuracy is in “mean
(std.)” format.

Feature Extraction Method Classifier Dataset/Events 1 2 5 7 10
(Anchal et al., 2020) Random Forest A5.1 89.95(2.72) 93.59(1.67) 96.68 (2.51) 97.75(1.11) 97.49(2.05)
AS5.2 87.18 (1.54)  92.74 (0.98) 96.35(0.96) 97.38 (1.13) 99.01 (0.33)
A53 86.22 (1.72)  91.38 (1.87) 94.45(2.19) 96.33 (1.88) 97.55(1.63)
SVM AS.1 49.87(3.83) 51.73(2.17) 55.85(3.71) 60.55(3.94) 67.21(3.47)
A5.2 38.70 (2.01) 47.95(1.33) 56.46(1.95) 62.22(1.54) 67.73(1.65)
AS53 35.79 (1.52)  39.38(2.04) 41.91(1.88) 45.48(1.97) 49.68 (2.05)
(Pan et al., 2017) Random Forest A5.1 89.16 (1.28) 93.08 (1.61) 96.32(1.52) 97.25(1.17) 97.49 (2.20)
A52 86.34 (1.58)  91.54(1.12) 9520 (1.68) 95.76 (1.52) 98.12 (0.86)
AS3 84.86 (1.54) 90.30(1.85) 94.50(1.95) 96.77 (1.58) 97.46 (1.63)
SVM A5.1 2427 (1.78) 35.41(2.51) 37.36(2.61) 39.29(2.53) 39.37(1.38)
A5.2 2090 (1.19) 25.21(1.00) 21.54(1.93) 18.85(0.72) 19.69 (1.89)
A53 20.61 (2.23) 16.09 (4.74) 16.76 (2.75) 13.36 (3.62) 11.76 (4.27)

Table 14: Classification Accuracy(%) of datasets on deep learning models. Accuracy is in “mean
(std.)” format.

Methods A5.1 A52 A5.3

ResNet-18(S)  91.69 (0.61) 93.49 (0.75) _ 90.62 (L.11)
ResNet-50(S)  90.39 (0.18)  91.43 (1.57)  85.32(0.15)
ResNet-18(M)  90.06 (1.25) 89.96 (1.14)  81.68 (0.34)
ResNet-50(M)  86.55 (1.6) 8530 (1.47)  75.16 (0.68)

6.5.5 QUALITATIVE COMPARISON WITH VISION MODALITY

To evaluate the performance of our geophone-based sensing system relative to vision-based modalities,
we designed a series of experiments targeting scenarios where vision systems typically face challenges.
The focus is on conditions that compromise the reliability of visual sensing but where geophones
exhibit robust and consistent performance. Data was collected under the following scenarios:

* Normal Conditions: Environments with stable and adequate lighting, serving as the base-
line.

* Low-Light Conditions: Scenarios characterized by insufficient illumination.

» Half Obstructions: Situations involving physical obstructions that partially occlude the
visual field, under normal lighting.

* Full Obstructions: Scenarios where physical obstructions completely block the visual field,
under normal lighting.

As shown in figure 14, we have used green screen to create obstructions to the line-of-sight of the
camera. We performed simultaneous data acquisition for both the geophone and camera systems
in these scenarios. Subsequently, feature embeddings were extracted from the collected data and
subjected to statistical analysis to compare the performance of each modality under normal and
challenging conditions. The analysis utilized an event ratio metric, defined as:

Events Extracted under specific Condition

Event Ratio = —
Events Extracted under “Normal” condition
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Figure 14: Visual depiction of data collection setup: (a) the camera’s field of view is partially
obstructed by obstacle, and (b) the camera’s field of view is entirely blocked by obstacle.

In this context, an “event” refers to the extraction of meaningful features or representations from the
collected data, such as GEI (Gait Energy Image) or spectrograms derived from human silhouettes
(in the case of cameras) or geophone signal patterns. These extracted features depend heavily on
pre-processing, which varies based on the availability and quality of input data. For embeddings, a
pretrained ResNet-18 (IMAGENET1K_V1) (S) was employed by replacing the final fully connected
layer with a custom embedding layer of size 512.

For vision-based modalities, the event ratio can be influenced significantly by the quality of the
human silhouette extracted from the images. For example:

* Under low-light or partial obstruction conditions, fewer reliable silhouettes may be extracted,
leading to a lower event ratio.

» Under full obstruction conditions, where the visual field is completely blocked, no events
can be extracted, resulting in an event ratio of zero.

In contrast, geophones are unaffected by visual obstructions or lighting conditions, and their event
ratio remains consistent across scenarios. This stability highlights the geophone’s robustness in
environments where vision-based systems struggle, reinforcing its value as an alternative or comple-
mentary modality.

Table 15: Performance comparison of three sensing modalities (Camera 1, Camera 2, and Geophone)
across different environmental conditions. Metrics include T-statistics, p-values, and the ratio of
events extracted.

Comparison Camera 1 Camera 2 Geophone

Modality T-Stat. P-Value Event Ratio T-Stat. P-Value Event Ratio T-Stat. P-Value Event Ratio
Normal to Normal 0.0 1.0 1.00 0.0 1.0 1.00 0.0 1.0 1.00
Normal to Low Light -4.60 0.004 0.50 -2.09 0.036 0.51 0.53 0.59 1.01
Normal to Half Obstruction ~ -2.52 0.016 0.42 -1.31 0.187 0.68 0.53 0.59 1.02
Normal to Full Obstruction - - - - - - 0.461 0.644 1.00

Table 15 provides a comparison of three sensing modalities: Camera 1 (4.2a), Camera 2 (4.2b), and the
Geophone (4.1), under varying environmental conditions. Performance is analyzed using T-statistics,
p-values, and event extraction ratios. The p-values indicate the statistical significance of differences
between data collected under normal and challenging conditions, with values below 0.05 signifying
statistically significant performance degradation. Under normal conditions, all modalities achieve
consistent performance with an event extraction ratio of 1.00. However, in low-light conditions,
Camera 1 exhibits the most significant degradation, with its event ratio decreasing by 50% compared
to the baseline, while Camera 2 shows a similar reduction of 49%. Both reductions are statistically
significant (p-values below 0.05). The geophone, in contrast, maintains robust performance, with its
event ratio increasing by 1%, highlighting its resilience to lighting changes.

In scenarios involving partial or full obstruction, the limitations of vision-based systems become
evident. Partial obstruction reduces the event ratios of 4.2a and 4.2b by 58% and 32%, respectively.
Meanwhile, the Geophone remains unaffected, demonstrating a slight improvement in its event ratio
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(2%). Under full obstruction, visual modalities fail entirely due to the absence of visible human
silhouettes, resulting in undefined event ratios. Conversely, the geophone maintains its baseline
performance across all tested conditions, underscoring its robustness and reliability in scenarios
where visual systems are compromised.

The analysis of p-values further emphasizes the susceptibility of vision-based systems to environmen-
tal factors. 4.2a demonstrates statistically significant degradation under low-light (p = 0.004) and
partial obstruction (p = 0.016), while 4.2b shows moderate sensitivity with a p-value of p = 0.036
in low-light and no significant differences (p = 0.187) under partial obstruction. The geophone
consistently achieves high p-values (p > 0.05), such as p = 0.59 in low-light and partial obstruction,
and p = 0.644 under full obstruction, indicating stable performance. These results highlight the
geophone’s potential as a complementary or alternative sensing modality, particularly in challenging
environments where vision-based systems fail.

6.6 POWER CONSUMPTION AND ENVIRONMENTAL IMPACT

We computed the power consumption of both devices based on their power ratings and usage scenarios,
assuming 24/7 operation for one year. The geophone is a passive sensor, meaning it does not require
an external power source for operation. The geophone operates within a voltage range of 4.5V to
5.5V, which is compatible with the 5V output provided by the USB port of the Raspberry Pi 3 B+.
When powered at 5V, the geophone’s current consumption, measured using the Nordic Power Profiler
v2 kit, ranges from 5 mA to 10 mA. Therefore, its maximum power consumption by geophone is
calculated as:
5V x 10mA = 50mW or 0.06W

The results are summarized in the table below:

Table 16: Comparison of Power Consumption and Environmental Impact

Modality Load Power (W) Daily Energy (kWh/day) Annual Energy (kWh/year) Equivalent Annual CO-e (kg/year, Global)
Vision-based Basic (PoE) 6.3 0.1512 55.188 26.71

Maximum (PoE) 18.9 0.4536 165.204 78.47
Geophone-based  Basic 1.95 0.0468 17.082 8.11

Maximum 5.15 0.1236 45.114 21.43

EQUATIONS AND METHODOLOGY

Power to Energy Conversion: Convert Power (W) to Kilowatts (kW):

W
1000

Daily Energy Consumption: Daily kWh = kW x hours per day Assuming continuous operation:
Daily kWh = kW x 24 Annual Energy Consumption: Annual kWh = Daily kWh x 365 Carbon
Emissions: Annual CO5e Emissions (kg/year) = Annual kWh x Carbon Intensity (kg CO2e/kWh)
Global average carbon intensity: 0.475 kg COe/kWh (International Energy Agency, 2022).

The operational details of the devices in question highlight their energy consumption profiles and
environmental impact. CCTV cameras and Raspberry Pis are designed to operate continuously, 24/7,
at specified power levels. For the CCTV camera, the power consumption ranges between a basic load
of 6.3W and a maximum load of 18.9W. Similarly, the Raspberry Pi 3B+ operates at a basic load
of 1.95W and can go up to a maximum load of 5.15W. To assess the environmental impact of these
operations, a global average carbon intensity of 0.475 kg CO4e/kWh is used. It’s assumed that the
power consumption remains stable during operation, providing a consistent basis for calculating the
energy usage and its associated environmental footprint.

As shown in the Table 16, the geophone-based system, with its associated Raspberry Pi, has signifi-
cantly lower power consumption and carbon emissions compared to the CCTV-based system. This
highlights the eco-friendliness of the geophone modality, especially in scenarios requiring continuous
operation in an indoor setting. Additionally, a single Raspberry Pi can be modified to record multiple
geophone sensors, with very little carbon emission of around 0.208 kg/year per geophone.
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6.7 LIMITATIONS AND DISCUSSIONS

Structural Vibration-based person identification is an emerging behavioral bio-metric technology.
However, we observed it has many limitations, this are as follows:

* Footwear Dependency: Our current research focuses on soft-soled flat footwears. Vari-
ations in footwear design can alter the induced vibrations. To address this limitation, in
the future we will build a comprehensive different footwear dataset. This would enable the
model to learn features that are invariant to footwear type, enhancing identification accuracy
across diverse footwear choices.

* Surface Heterogeneity: Our experiments involved data collection on different floor types
and at varying distances from the sensor, which has never been addressed in such details
before. We observed a corresponding change in identification accuracy. This highlights
the need for further research on domain adaptation techniques within the deep learning
community. By leveraging these techniques, the model’s ability to generalize across diverse
floor surfaces could be significantly improved.

* Simultaneous person identification: While our current work focuses on single-person
identification, we see substantial potential in extending it to recognize multiple individuals.
This would require the development of advanced signal processing and deep learning
algorithms inspired by techniques employed in speech recognition and anomaly detection.

Our dataset can serve as a valuable starting point for research in large-scale structural-vibration
based person identification. It holds potential for future development, enabling researchers to address
current limitations in this field.

6.8 POTENTIAL IMPACT TO SOCIETY

Structural-vibration based person identification presents a promising technology for applications in
healthcare settings, particularly assisted living communities and nursing homes. These environments
prioritize privacy-preserving and non-intrusive monitoring systems. This technology offers a unique
advantage by utilizing one-dimensional vibration signals, capturing essential information without
requiring intrusive visual data. Our research is ultimately driven by the desire to improve human
well-being. By open-sourcing our dataset, we aim to foster greater research interest and accelerate
advancements in this field. This approach will contribute to the development of even more robust and
effective monitoring systems, ideal for privacy-sensitive applications.

6.9 URL TO DATASET

Our project page is hosted at : https://vibeidiclr.github.io/. Open-Science Forum:
https://osf.io/4fvnj/. We have also provided the Human Silhouettes used for experimen-
tation. Each dataset is labelled and annotated. No instance is missing. Complete metadata records for
raw data are found in the github page.
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