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Appendix

A THE USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 policy, we disclose the usage of Large Language Models (LLMs) in
the process of writing this paper. Specifically, we employed LL.Ms to assist with the refinement and
polishing of the manuscript’s language. The LLM was used to enhance clarity, improve grammar,
and ensure the consistency of the text, which contributed to the overall quality of the writing. The
LLM was not used to generate novel ideas, research findings, or substantial portions of the content.
Its primary role was as a tool to aid the revision process, focusing on language-related tasks.

We have fully disclosed this usage, and the final manuscript reflects the work of the authors. The
LLM’s contribution is limited to textual improvements and does not extend to the intellectual content
of the paper.

For transparency, we confirm that the research itself, including the methodology, results, and con-
clusions, was independently developed by the authors without any contributions from LLMs beyond
their role in writing assistance.

B DETAILED PERFORMANCE COMPARISONS
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Figure 5: Overall performance of MedResearcher-R1 across three benchmarks. On Med-
BrowseComp, our MedResearcher-R1-32B achieves state-of-the-art performance with 27.5/50 cor-
rect answers, surpassing o3-deepresearch (25.5/50), Gemini-2.5-Pro-deepresearch (25.0/50), and
significantly outperforming search-only approaches (03-search: 19.0/50, Gemini-2.5-Pro-search:
14.0/50). On general deep research tasks, we achieve competitive results on GAIA (53.4 vs.
WebSailor-32B’s 53.2) and xBench (54.0 vs. WebSailor-32B’s 53.3).

C TECHNICAL DETAILS

C.1 PRIVATEMEDICALRETRIEVER

This module aggregates evidence directly from authoritative clinical resources, including FDA
databases, clinical trial registries, and PubMed publications. Each candidate document d is scored
for a query ¢ by a weighted linear combination of semantic relevance and clinical authority:

Score(d, q) = ARel(d, q) + (1 — X) Auth(d),

where Rel(d, ¢) represents the semantic similarity to the query (computed via embedding cosine
similarity), and Auth(d) reflects the clinical authority (combining impact factor and guideline sta-
tus). The hyperparameter A (0 < A < 1) balances the importance between relevance and authority;
in all experiments, we set A\ = 0.4 to favor reliable and clinically significant evidence.
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C.2 CLINICALREASONINGENGINE

Designed for evidence-based differential diagnosis, this tool applies Bayesian inference to evalu-
ate multiple hypotheses systematically. Given observed symptoms s, candidate diagnoses D;, and
patient context c, the posterior for each diagnosis is computed as:

[1i-y P(si | Dj, ) - P(Dj | c)
> ker [i=1 P(si | Di,c) - P(Dy | €)
where conditional probabilities are derived from clinical literature and iteratively updated based on
newly retrieved evidence.

P(Dj |s,c) =

C.3 DyNAMIC TOOL SELECTION STRATEGY

Our agent dynamically switches between general and medical-specific tools to ensure complete
evidence chains. The tool selection is governed by a learned policy that evaluates query complexity:

T .
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where ¢(s¢, q) extracts features that include the rarity of the entity, the required reasoning hops, and
the presence of medical terminology, w,, and w, are learned weight vectors, and o (-) is the sigmoid

function. The policy learns to prioritize medical tools when encountering rare diseases or complex
chemical compounds while leveraging general tools for contextual information.

D TRAINING IMPLEMENTATION DETAILS

D.1 SUPERVISED FINE-TUNING CONFIGURATION

Dataset. We train on D = {(z(¥,y")}¥ | where N = 2,137 trajectories, with z(*) denoting
input context and y(*) the expert action sequence. The objective maximizes:
Ny

Lsrr(0) = —— Z > logpsly DNz@,59) (1

zlkl

Robustness Augmentations.

* Tool failure simulation: 5% random corruption of tool outputs to encourage error recovery
* Intermediate thought supervision: Explicit reasoning traces before each tool invocation

* Multi-task sampling: Balanced batching across diagnosis (30%), treatment (25%), guide-
lines (25%), rare diseases (20%)

Optimization.

¢ Optimizer: AdamW with 8; = 0.9, 85 = 0.98

* Learning rate: A = 0.01 with cosine annealing to i, = 3 x 1077
 Batch size: 128 (16 per GPU x 8 H800 GPUs)

* Training epochs: 3

 Gradient clipping: 1.0

e Warmup steps: 100

D.2 REINFORCEMENT LEARNING CONFIGURATION

Reward Components. The composite reward function r = arek + B7expert — Y Tefficiency COMPIises:

* rusk: Binary task completion (1.0 for correct, 0.0 for incorrect)
* Texpert: GPT-4 preference score € [0, 1] evaluating medical accuracy and completeness
* Tefficiency: Penalty for redundant tool usage, computed as:
Tefficiency = 0-1 X Tredundant + 0-2 X Mpostanswer + 018 X Nirrelevant (2
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GRPO Configuration. The GRPO objective:

['GRPO = E(w7y)~D [log 71'9(y|CC) ! (T(xv y) - ’Fg(iv))] (3)
where 7g(,) is the group-level baseline (batch average).

* Group size: 4 responses per query

¢ Sampling temperature: 0.7

* PPO clip range: 0.2

* Value loss coefficient: 0.5

* Entropy coefficient: 0.01

* Training iterations: 500

* KL regularization: Disabled (following He et al.| (2025)))

Curriculum Learning. Task complexity increases based on moving average pass rate:

* Level 1 (pass rate > 80%): Single-hop queries
* Level 2 (pass rate > 60%): 2-3 hop queries
* Level 3 (pass rate > 40%): 4+ hop queries with rare entities

E ABLATION STUDY DETAILS

Table 3: Ablation study for MedResearcher-R1. We remove key components while keeping all other
settings fixed. Statistical significance: * p<0.05 vs. the Full model. MedBrowseComp is reported
as # correct out of 50.

Model Configuration MedBrowseComp GAIA XBench Avg. Tool Calls
(correct / 50) (%) (%)
MedResearcher-R1 (Full) 27.5 53.4 54.0 4.2
Component Ablations
w/o Medical Tools 23.1 48.3 40.0 3.3
w/o RL Training (SFT only) 25.5 50.2 51.0 3.7
w/o MTG 24.2* 44.3* 47.8* 35
w/o Rare Entities 20.1* 27.8* 38.2* 32
Data Ablations
Common Entities Only 23.0% 43.0* 46.0* 4.5
No Tool Diversity 21.0* 38.0* 49.0 32
Training Ablations
SFT Only 25.5* 49.0 48.0* 34
RL Only (no SFT) 12.0* 34.0* 34.0* 32

Tasks and metrics.

* MedBrowseComp is reported as correct/50.
* GAIA and XBench-DeepSearch follow official (%) scoring.
* Avg. Tool Calls is the average number of tool invocations per example.

Evaluation protocol. All ablations share the same backbone, prompts, decoding parameters, tool
budgets, and evaluation splits as the Full model; only the targeted component is removed/altered.
Each number is the mean of three seeds.

Significance. We compute paired bootstrap (over instances) against the Full model with 10,000
replicates; we mark * for p<0.05.
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