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A Extended Background

A.1 Two Different RNNs

Note that in neuroscience, the variable x in equation (1) is typically thought of as a vector of neural
membrane potentials. It was shown in [Miller and Fumarola, 2012] that the RNN (1) is equivalent via
an affine transformation to another commonly used RNN model,

τ ẏ = −y + φ(Wy + b(t)) (4)

where the variable y is interpreted as a vector of firing rates, rather than membrane potentials. The
two models are related by the transformation x = Wy + b, which yields

τ ẋ = W(−y + φ(Wy + b)) + τ ḃ = −x + Wφ(x) + v

where v ≡ b + τ ḃ. Thus b is a low-pass filtered version of v (or conversely, v may be viewed
as a first order prediction of b) and the contraction properties of the system are unaffected
by the affine transformation. Note that the above equivalence holds even in the case where
W is not invertible. In this case, the two models are proven to be equivalent, provided that
b(0) and y(0) satisfy certain conditions–which are always possible to satisfy [Miller and
Fumarola, 2012]. Therefore, any contraction condition derived for the x (or y) system auto-
matically implies contraction of the other system. We exploit this freedom freely throughout the paper.

A.2 Contraction Math

It can be shown that the non-autonomous system

ẋ = f(x, t)

is contracting if there exists a metric M(x, t) = Θ(x, t)TΘ(x, t) � 0 such that uniformly

Ṁ + MJ + JTM � −βM

where J = ∂f
∂x and β > 0. For more details see the main reference [Lohmiller and Slotine, 1998].

Similarly, a non-autonomous discrete-time system

xt+1 = f(xt, t)

is contracting if

JTMt+1J−Mt � −βMt

A.2.1 Feedback and Hierarchical Combinations

Consider two systems, independently contracting in constant metrics M1 and M2, which are com-
bined in feedback:

ẋ = f(x, t) + By

ẏ = g(y, t) + Gx
(Feedback Combination)

If the following relationship between B,G,M1, and M2 is satisfied:

B = −M−1
1 GTM2

then the combined system is contracting as well. This may be seen as a special case of the feedback
combination derived in [Tabareau and Slotine, 2006]. The situation is even simpler for hierarchical
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combinations. Consider again two systems, independently contracting in some metrics, which are
combined in hierarchy:

ẋ = f(x, t)

ẏ = g(y, t) + h(x, t)
(Hierarchical Combination)

where h(x, t) is a function with bounded Jacobian. Then this combined system is contracting in a
diagonal metric, as shown in [Lohmiller and Slotine, 1998]. By recursion, this extends to hierarchies
of arbitrary depth.

B Extended Discussion

Given the paucity of existing theory on modular networks, our novel stability conditions and proof of
concept combination architectures are a significant step in an important new direction. The “network
of networks" approach is evident in the biological brain, and has seen early practical success in
applications such as AlphaGo. There is much evidence this line of questioning will be critical in the
future, and our work is the first on stable modular networks.

Furthermore, we develop an architecture based on such combinations of “vanilla" RNNs that is both
stable and achieves high performance on benchmark sequence classification tasks using few trainable
parameters (small particularly for sequential CIFAR10). When considering just the facts about the
network, it really has no business performing anywhere near as well as it does. Note also that without
the stability condition in place, the network performance indeed drops substantially.

In order to facilitate the extension of this important line of thinking, we provide additional context on
the limitations of our current approach as well as promising ideas for future directions in this section.

B.1 Limitations

One drawback of our approach is that we parameterize each weight matrix in a special way to
guarantee stability. In all cases, this requires us to parameterize matrices as the product of several
other matrices. Thus, we gain stability at the cost of increasing the number of parameters, which can
slow down training.

Another current drawback is that we only consider constant metrics. In theory, contraction metrics
can be state-dependent as well as time-varying. Thus it is possible that we have overly restricted the
space of models we consider. Similarly, negative feedback is not the only way to preserve contraction
when combining two contracting systems. There are known small-gain theorems in the contraction
analysis literature which accomplish the same task [Slotine, 2003]. However, parameterizing these
conditions is less straightforward than parameterizing the negative-feedback condition.

A third limitation of the present work is that it does not give a recipe on how to incorporate anatomical
knowledge into the building of ‘RNNs of RNNs’. Our current approach is ‘bottom up’, in the sense
that we describe complicated networks which can be built from simpler ones while ensuring stability
at every level of construction. However, for building biological models of the brain it is important to
incorporate known anatomical detail (i.e V4 projects to PFC, PFC projects back to V4, etc). How to
do this in a way that preserves stability is an open and interesting question.

Lastly, we only tested our networks on sequential image classification benchmarks. Future work will
include other benchmarks such as character or word-level language modeling. Additionally, while we
conducted preliminary experiments exploring the role of scale (i.e number of subnetwork RNNs),
we did not pursue this at the sizes reached by many modern deep learning applications. Thus it is
currently unclear if the performance of these stability-constrained models will scale well enough with
the number of subnetworks (or the number of neurons per subnetwork). Testing this correctly will
require extensive experimentation with the various initialization and training settings.

B.2 Future Directions

There are numerous future directions enabled by this work. For example, Theorem 6 suggests that
a less restrictive contraction condition on W in terms of the eigenvalues of the symmetric part is
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possible and desirable. Meanwhile, Theorem 7 provides important groundwork in finding such a
condition, as it shows the need for a time-varying metric. Investigation of input-dependent metrics
could be a fruitful next line of research, and would have far-reaching implications in disciplines such
as curriculum learning.

Furthermore, the beneficial impact of sparsity on training these stable models suggests a potential
avenue for additional experimental work – in particular adding a regularizing sparsity term during
training. This could allow Sparse Combo Net to have its internal subnetwork weights trained without
losing the stability guarantee, and conversely it could allow SVD Combo Net to reap some of the
performance benefits of Sparse Combo Net without giving up the flexibility allowed by training said
internal weights.

As described in the limitations above, a major experimental next step will be to test our architectures
at greater scale and on more difficult tasks. Since ‘network of network’ approaches are becoming
increasingly popular, our methodology is relevant to a variety of task types, including reinforcement
learning applications. Given the biological inspiration, multi-modal learning tasks may also be of
particular relevance.

C Proofs for Main Results

C.1 Proof of Feedback Combination Property

Here we apply existing contraction analysis results to derive equation (3). Because (3) is a
parameterization of a known contraction conditions [Slotine, 2003], we provide the following
statement in the form of a corollary.

Corollary 1 (Network of Networks). Consider a collection of p subnetwork RNNs governed
by (1). Assume that these RNNs each have hidden-to-hidden weight matrices {W1, . . . ,Wp}
and are independently contracting in metrics {M1, . . . ,Mp}. Define the block matrix W̃ ≡
BlockDiag(W1, . . . ,Wp) and M̃ ≡ BlockDiag(k1M1, . . . , kpMp) where ki > 0. Also define
the overall state vector x̃T ≡ (xT1 · · ·xTp ), and finally ũT ≡ (uT1 · · ·uTp ). Finally, the matrix L̃ is a
block matrix constructed from the matrices Lij by placing them at the i, j block position of L̃. Then
if there exists a positive semi-definite matrix Q such that:

M̃L̃ + L̃TM̃ = −Q

then the following ‘network of networks’ is globally contracting in metric M̃:

τ ˙̃x = −x̃ + W̃φ(x̃) + ũ + L̃x̃ (5)

Proof. Consider the differential Lyapunov function:

V =
1

2
δxTM̃δx

The time-derivative of this function is:

V̇ = δxTM̃δẋ = δxT ( M̃J̃ + J̃TM̃︸ ︷︷ ︸
Jacobian of RNNs before interconnection

+ M̃L̃ + L̃TM̃︸ ︷︷ ︸
Interconnection Jacobian

)δx

Since we assume that the RNNs are contracting in isolation, the first term in this sum is less that the
slowest contracting rate of the individual RNNs, which we call λ > 0, scaled by the corresponding
k. Plugging in the definition of Q, we see the second term in the sum is negative semi-definite, by
construction. The time-derivative of V is therefore upper-bounded by:

V̇ ≤ −2λV

which implies that the network of networks is contracting with rate λ.
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Corollary 2. If L̃ can be written as:

L̃ ≡ B− M̃−1BTM̃− M̃−1C

where B is an arbitrary square matrix, and C is a matrix whose symmetric part is positive semidefinite,
then the above stability criterion is satisfied

M̃L̃+L̃TM̃ = M̃(B−M̃−1BTM̃−M̃−1C)+(B−M̃−1BTM̃−M̃−1C)TM̃ = −[C+CT ] = −Q

In this case we may identify Q = C + CT . For the experiments in the main text, we use C = 0,
although one could also learn C via a suitable parametrization.

C.2 Proof of Theorem 1

Our first theorem is motivated by the observation that if the y-system (described in Section A.1) is to
be interpreted as a vector of firing rates, it must stay positive for all time. For a linear, time-invariant
system with positive states, diagonal stability is equivalent to stability. Therefore a natural question is
if diagonal stability of a linearized y-system implies anything about stability of the nonlinear system.
More formally, given an excitatory neural network (i.e ∀ij,Wij ≥ 0), if the linear system

ẋ = −x + gWx

is stable, then there exists a positive diagonal matrix P such that:

P(gW − I) + (gW − I)TP ≺ 0

The following theorem shows that the nonlinear system (1) is indeed contracting in metric P, and
extends this result to a more general W by considering only the magnitudes of the weights.
Theorem 1. Let |W| denote the matrix formed by taking the element-wise absolute value of W. If
there exists a positive, diagonal P such that:

P(g|W| − I) + (g|W| − I)TP ≺ 0

then (1) is contracting in metric P. Moreover, if Wii ≤ 0, then |W |ii may be set to zero to reduce
conservatism.

This condition is particularly straightforward in the common special case where the network does not
have any self weights, with the leak term driving stability. While it can be applied to a more general
W, the condition will of course not be met if the network was relying on highly negative values on
the diagonal of W for linear stability. As demonstrated by counterexample in the proof of Theorem
1, it can be impossible to use the same metric P for the nonlinear RNN in such cases.

Theorem 1 allows many weight matrices with low magnitudes or a generally sparse structure to be
verified as contracting in the nonlinear system (1), by simply checking a linear stability condition
(as linear stability is equivalent to diagonal stability for Metzler matrices too [Narendra and Shorten,
2010]).

Beyond verifying contraction, Theorem 1 actually provides a metric, with little need for additional
computation. Not only is it of inherent interest that the same metric can be shared across systems in
this case, it is also of use in machine learning applications, where stability certificates are becoming
increasingly necessary. Critically, it is feasible to enforce the condition during training via L2
regularization on W. More generally, there are a variety of systems of interest that meet this
condition but do not meet the well-known maximum singular value condition, including those with a
hierarchical structure.

Proof. Consider the differential, quadratic Lyapunov function:

V = δxTPδx

where P � 0 is diagonal. The time derivative of V is:

V̇ = 2δxTP ˙δx = 2δxTPJδx = −2δxTPδx + 2δxTPWDδx
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where D is a diagonal matrix such that Dii = dφi

dx ≥ 0. We can upper bound the quadratic form on
the right as follows:

δxTPWDδx =
∑
ij

PiWijDjδxiδxj ≤∑
i

PiWiiDi|δxi|2 +
∑
ij,i 6=j

Pi|Wij |Dj |δxi||δxj | ≤ g|δx|TP|W||δx|

If Wii ≤ 0, the term PiWiiDi|δxi|2 contributes non-positively to the overall sum, and can therefore
be set to zero without disrupting the inequality. Now using the fact that P is positive and diagonal,
and therefore δxTPδx = |δx|TP|δx|, we can upper bound V̇ as:

V̇ ≤ |δx|T (−2P + P|W|+ |W|P)|δx| = |δx|T [(P(|W| − I) + (|W|T − I)P)]|δx|

where |W |ij = |Wij |, and |W |ii = 0 if Wii ≤ 0 and |W |ii = |Wii| if Wii > 0. This completes the
proof.

Note that W − I is Metzler, and therefore will be Hurwitz stable if and only if P exists [Narendra
and Shorten, 2010].

It is also worth noting that highly negative diagonal values in W will prevent the same metric P
from being used for the nonlinear system. Therefore the method used in this proof cannot feasibly be
adapted to further relax the treatment of the diagonal part of W.

The intuitive reason behind this is that in the symmetric part of the Jacobian, PWD+DWTP
2 − P,

the diagonal self weights will also be scaled down by small D, while the leak portion −P remains
untouched by D.

Now we actually demonstrate a counterexample, presenting a 2× 2 symmetric Metzler matrix W
that is contracting in the identity in the linear system, but cannot be contracting in the identity in the
nonlinear system (1):

W =

[
−9 2.5
2.5 0

]
To see that it is not possible for the more general nonlinear system with these weights to be contracting

in the identity, take D =

[
0 0
0 1

]
. Now

(WD)sym − I =

[
−1 1.25
1.25 −1

]

which has a positive eigenvalue of 1
4 .

C.3 Proof of Theorem 2

While regularization may push networks towards satisfying Theorem 1, strictly enforcing the
condition during optimization is not straightforward. This motivates the rest of our theorems, which
derive contraction results for specially structured weight matrices. Unlike Theorem 1, these results
have direct parameterizations which can easily be plugged into modern optimization libraries.

Theorem 2. If W = WT and gW ≺ I, and and φ′ > 0 then (1) is contracting.
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When W is symmetric, (1) may be seen as a continuous-time Hopfield network. Continuous-time
Hopfield networks with symmetric weights were recently shown to be closely related to Transformer
architectures [Krotov and Hopfield, 2020, Ramsauer et al., 2020]. Specifically, the dot-product
attention rule may be seen as a discretization of the continuous-time Hopfield network with softmax
activation function [Krotov and Hopfield, 2020]. Our results here provide a simple sufficient (and
nearly necessary, see above remark) condition for global exponential stability of a given trajectory for
the Hopfield network. In the case where the input into the network is constant, this trajectory is a fixed
point. Moreover, each trajectory associated with a unique input is guaranteed to be unique. Finally,
we note that our results are flexible with respect to activation functions so long as they satisfy the
slope-restriction condition. This flexibility may be useful when, for example, considering recent work
showing that standard activation functions may be advantageously replaced by attention mechanisms
[Dai et al., 2020].

Proof. We begin by writing W = R − P for some unknown R = RT and P = PT � 0. The
approach of this proof is to show by construction that the condition gW ≺ I implies the existence of
an R and P such that the system is contracting in metric P. We consider the y version of the RNN,
which as discussed above is equivalent to the x version via an affine transformation.

The differential Lyapunov condition associated to the RNN is:

δxT [−2M + MDW + WDM + βM]δx ≤ 0 (6)
Where M,W ∈ Rn×n. Let us now make the substitution M = P and W = R−P:

δxT [−2P + PD(R−P) + (R−P)DP + βP]δx ≤ 0 (7)
Collecting terms, we get:

δxT [−2P + PDR + RDP− 2PDP + βP]δx ≤ 0 (8)
We can rewrite (8) as a quadratic form over a block matrix, as follows:

[
δxT δxT

] [(β − 2)P RDP
PDR −2PDP

] [
δx
δx

]
≤ 0 (9)

Now the question becomes, when is (9) satisfied? One way to ensure that (9) is satisfied is to ensure
that the associated block matrix is always (i.e for all D) negative semi-definite. In that case the
inequality will hold over all possible vectors, not just

[
δx δx

]T
. In other words, the question is

now what constraints on the sub-matrices P,D and R ensure that:

∀y ∈ R2n, yT
[
(2− β)P −RDP
−PDR 2PDP

]
y ≥ 0 (10)

Note that we have multiplied both sides of the inequality by a minus sign. But this is nothing
but the definition of a positive semi-definite matrix. Using the Schur complement [Gallier et al.,
2020](Proposition 2.1), we know that the block matrix is positive semi-definite iff PDP � 0 and:

(2− β)P−RDP(2PDP)−1PDR =

(2− β)P− 1

2
(RDR) � (2− β)P− g

2
(RR) � 0

We continue by setting P = γ2RR with γ2 = g
2(2−β) , so that the above inequality is satisfied. At

this point, we have shown that if W can be written as:

W = R− γ2RR

then (1) is contracting in metric M = γ2RR. What remains to be shown is that if the condition:

gW − I ≺ 0
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Is satisfied, then this implies the existence of an R such that the above is true. To show that this is
indeed the case, assume that:

1

4γ2
I−W � 0

Substituting in the definition of γ, this is just the statement that:
2(2− β)

4g
I−W � 0

Setting β = 2λ > 0, this yields:
(1− λ)I � gW

Since W is symmetric by assumption, we have the eigendecomposition:

1

4γ2
I−W = V(

1

4γ2
I−Λ)VT

where VTV = I and Λ is a diagonal matrix containing the eigenvalues of W. Denote the symmetric
square-root of this expression as S:

S = V

√
(

1

4γ2
I−Λ)VT = ST

Which implies that:
1

4γ2
I−W = STS

We now define R in terms of S as follows:

R =
1

γ
S +

1

2γ2
I

Which means that:
1

4γ2
I−W = (γR− 1

2γ
I)(γR− 1

2γ
I)

Expanding out the right side, we get:
1

4γ2
I−W = γ2RR−R +

1

4γ2
I

Subtracting 1
4γ2 I from both sides yields:

W = R− γ2RR

As desired.

C.4 Proof of Theorem 3

Theorem 3. If there exists positive diagonal matrices P1 and P2, as well as Q = QT � 0 such that

W = −P1QP2

then (1) is contracting in metric M = (P1QP1)−1.

Proof. Consider again a differential Lyapunov function:

V = δxTMδx

the time derivative is equal to:

V̇ = −2V + δxTMWDδx

Substituting in the definitions of W and M, we get:

V̇ = −2V − δxTP−11 P2Dδx ≤ −2V

Therefore V converges exponentially to zero.
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C.5 Proof of Theorem 4

Theorem 4. If gW − I is triangular and Hurwitz, then (1) is contracting in a diagonal metric.

Note that in the case of a triangular weight matrix, the system (1) may be seen as a feedforward (i.e
hierarchical) network. Therefore, this result follows from the combination properties of contracting
systems. However, our proof provides a means of explicitly finding a metric for this system.

Proof. Without loss of generality, assume that W is lower triangular. This implies that Wij = 0 if
i ≤ j. Now consider the generalized Jacobian:

F = −I + ΓWDΓ−1

with Γ diagonal and Γi = εi where ε > 0. Because Γ is diagonal, the generalized Jacobian is equal
to:

F = −I + ΓWΓ−1D

Now note that:
(ΓWΓ−1)ij = εiWijε

−j = Wijε
i−j

Where i ≤ j, we have Wij = 0 by assumption. Therefore, the only nonzero entries are where i ≥ j.
This means that by making ε arbitrarily small, we can make ΓWΓ−1 approach a diagonal matrix
with Wii along the diagonal. Therefore, if:

max
i
gWii − 1 < 0

the nonlinear system is contracting. Since W is triangular, Wii are the eigenvalues of W, meaning
that this condition is equivalent to gW − I being Hurwitz.

C.6 Proof of Theorem 5

Theorem 5. If there exists a positive diagonal matrix P such that:

g2WTPW −P ≺ 0

then (1) is contracting in metric P.

Note that this is equivalent to the discrete-time diagonal stability condition developed in [Revay and
Manchester, 2020], for a constant metric. Note also that when M = I, Theorem 5 is identical to
checking the maximum singular value of W, a previously established condition for stability of (1).
However a much larger set of weight matrices are found via the condition when M = P instead.

Proof. Consider the generalized Jacobian:

F = P1/2JP−1/2 = −I + P1/2WP−1/2D

where D is a diagonal matrix with Dii = dφi

dxi
≥ 0. Using the subadditivity of the matrix measure µ2

of the generalized Jacobian we get:

µ2(F) ≤ −1 + µ2(P1/2WP−1/2D)

Now using the fact that µ2(·) ≤ || · ||2 we have:

µ2(F) ≤ −1 + ||P1/2WP−1/2D)||2 ≤ −1 + g||P1/2WP−1/2||2
Using the definition of the 2-norm, imposing the condition µ2(F) ≤ 0 may be written:

g2WTPW −P ≺ 0

which completes the proof.
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C.7 Proof of Theorem 6

Theorem 6. Let D be a positive, diagonal matrix with Dii = dφi

dxi
, and let P be an arbitrary, positive

diagonal matrix. If:

(gW − I)P + P(gWT − I) � −cP
and

Ḋ− cg−1D � −βD

for c, β > 0, then (1) is contracting in metric D with rate β.

Proof. Consider the differential, quadratic Lyapunov function:

V = δxTPDδx

where D � 0 is as defined above. The time derivative of V is:

V̇ = δxTPḊδx + δxT (−2PD + PDWD + DWTDP)δx

The second term on the right can be factored as:

δxT (−2PD + PDWD + DWTDP)δx =

δxTD(−2PD−1 + PW + WTP)Dδx ≤
δxTD(−2Pg−1 + PW + WTP)Dδx =

δxTD[P(W − g−1I) + (WT − g−1I)P]Dδx ≤
−cg−1δxTPD2δx

where the last inequality was obtained by substituting in the first assumption above. Combining this
with the expression for V̇ , we have:

V̇ ≤ δxTPḊδx− cg−1δxTPD2δx

Substituting in the second assumption, we have:

V̇ ≤ δxTP(Ḋ− cg−1D2)δx ≤ −βδxTPDδx = −βV

and thus V converges exponentially to 0 with rate β.

C.8 Proof of Theorem 7

Theorem 7. Satisfaction of the condition

gWsym − I ≺ 0

is NOT sufficient to show global contraction of the general nonlinear RNN (1) in any constant metric.
High levels of antisymmetry in W can make it impossible to find such a metric, which we demonstrate
via a 2× 2 counterexample of the form

W =

[
0 −c
c 0

]
with c ≥ 2.

Note that gWsym − I = gW+WT

2 − I ≺ 0 is equivalent to the condition for contraction of the
system with linear activation in the identity metric.

The main intuition behind this counterexample is that high levels of antisymmetry can prevent a
constant metric from being found in the nonlinear system. This is because D is a diagonal matrix

26



with values between 0 and 1, so the primary functionality it can have in the symmetric part of the
Jacobian is to downweight the outputs of certain neurons selectively. In the extreme case of all 0 or 1
values, we can think of this as selecting a subnetwork of the original network, and taking each of
the remaining neurons to be single unit systems receiving input from the subnetwork. For a given
static configuration of D (think linear gains), this is a hierarchical system that will be stable if the
subnetwork is stable. But as D can evolve over time when a nonlinearity is introduced, we would
need to find a constant metric that can serve completely distinct hierarchical structures simultaneously
- which is not always possible.

Put in terms of matrix algebra, D can zero out columns of W, but not their corresponding rows. So
for a given weight pair wij , wji, which has entry in Wsym =

wij+wji

2 , if Di = 0 and Dj = 1, the
i, j entry in (WD)sym will be guaranteed to have lower magnitude if the signs of wij and wji are
the same, but guaranteed to have higher magnitude if the signs are different. Thus if the linear system
would be stable based on magnitudes alone D poses no real threat, but if the linear system requires
antisymmetry to be stable, D can make proving contraction quite complicated (if possible at all).

Proof. The nonlinear system is globally contracting in a constant metric if there exists a symmetric,
positive definite M such that the symmetric part of the Jacobian for the system, (MWD)sym −M
is negative definite uniformly. Therefore (MWD)sym −M ≺ 0 must hold for all possible D if M
is a constant metric the system globally contracts in with any allowed activation function, as some
combination of settings to obtain a particular D can always be found.

Thus to prove the main claim, we present here a simple 2-neuron system that is contracting in the
identity metric with linear activation function, but can be shown to have no M that simultaneously
satisfies the (MWD)sym −M ≺ 0 condition for two different possible D matrices.

To begin, take

W =

[
0 −2
2 0

]
Note that any off-diagonal magnitude ≥ 2 would work, as this is the point at which 1

2 of one of the
weights (found in Wsym when the other is zeroed) will have magnitude too large for (WD)sym − I
to be stable.

Looking at the linear system, we can see it is contracting in the identity because

Wsym − I =

[
−1 0
0 −1

]
≺ 0

Now consider (MWD)sym −M with D taking two possible values of

D1 =

[
1 0
0 0

]
and D2 =

[
0 0
0 1

]

We want to find some symmetric, positive definite M =

[
a m
m b

]
such that (MWD1)sym −M

and (MWD2)sym −M are both negative definite.

Working out the matrix multiplication, we get

(MWD1)sym −M =

[
2m− a b−m
b−m −b

]
and

(MWD2)sym −M =

[
−a −(a+m)

−(a+m) −2m− b

]
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We can now check necessary conditions for negative definiteness on these two matrices, as well as for
positive definiteness on M, to try to find an M that will satisfy all these conditions simultaneously.
In this process we will reach a contradiction, showing that no such M can exist.

A necessary condition for positive definiteness in a real, symmetric n× n matrix X is xii > 0, and
for negative definiteness xii < 0. Another well known necessary condition for definiteness of a real
symmetric matrix is |xii + xjj | > |xij + xji| = 2|xij | ∀i 6= j. See [Weisstein] for more info on
these conditions.

Thus we will require a and b to be positive, and can identify the following conditions as necessary for
our 3 matrices to all meet the requisite definiteness conditions:

2m < a (11)

−2m < b (12)

|2m− (a+ b)| > 2|b−m| (13)

| − 2m− (a+ b)| > 2|a+m| (14)

Note that the necessary condition for M to be PD, a+ b > 2|m|, is not listed, as it is automatically
satisfied if (11) and (12) are.

It is easy to see that if m = 0, conditions (13) and (14) will result in the contradictory conditions
a > b and b > a respectively, so we will require a metric with off-diagonal elements. To make the
absolute values easier to deal with, we will check m > 0 and m < 0 cases independently.

First we take m > 0. By condition (11) we must have a > 2m, so between that and knowing
the signs of all unknowns are positive, we can reduce many of the absolute values. Condition (13)
becomes a + b − 2m > |2b − 2m|, and condition (14) becomes a + b + 2m > 2a + 2m, which
is equivalent to b > a. If b > a we must also have b > m, so condition (13) further reduces to
a+ b− 2m > 2b− 2m, which is equivalent to a > b. Therefore we have again reached contradictory
conditions.

A very similar approach can be applied when m < 0. Using condition (12) and the known signs we
reduce condition (13) to 2|m|+ a+ b > 2b+ 2|m|, i.e. a > b. Meanwhile condition (14) works out
to a+ b− 2|m| > 2a− 2|m|, i.e. b > a.

Therefore it is impossible for a single constant M to accommodate both D1 and D2, so that no
constant metric can exist for W to be contracting in when a nonlinearity is introduced that can
possibly have derivative reaching both of these configurations. One real world example of such a
nonlinearity is ReLU. Given a sufficiently high negative input to one of the units and a sufficiently
high positive input to the other, D can reach one of these configurations. The targeted inputs could
then flip at any time to reach the other configuration.

An additional condition we could impose on the activation function is to require it to be a strictly
increasing function, so that the activation function derivative can never actually reach 0. We will now
show that a very similar counterexample applies in this case, by taking

D1∗ =

[
1 0
0 ε

]
and D2∗ =

[
ε 0
0 1

]
Note here that the W used above produced a (WD)sym − I that just barely avoided being negative
definite with the original D1 and D2, so we will have to increase the values on the off-diagonals a bit
for this next example. In fact anything with magnitude larger than 2 will have some ε > 0 that will
cause a constant metric to be impossible, but for simplicity we will now take

W∗ =

[
0 −4
4 0

]
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Note that with W∗, even just halving one of the off-diagonals while keeping the other intact will
produce a (WD)sym − I that is not negative definite. Anything less than halving however will
keep the identity metric valid. Therefore, we expect that taking ε in D1∗ and D2∗ to be in the range
0.5 ≥ ε > 0 will also cause issues when trying to obtain a constant metric.

We will now actually show via a similar proof to the above that M is impossible to find for W∗ when
ε ≤ 0.5. This result is compelling because it not only shows that ε does not need to be a particularly
small value, but it also drives home the point about antisymmetry - the larger in magnitude the
antisymmetric weights are, the larger the ε where we will begin to encounter problems.

Working out the matrix multiplication again, we now get

(MW∗D1∗)sym −M =

[
4m− a 2b−m− 2aε

b−m− 2aε −4mε− b

]
and

(MW∗D2∗)sym −M =

[
4mε− a −(2a+m− 2bε)

−(2a+m− 2bε) −4m− b

]
Resulting in two new main necessary conditions:

|4m− a− b− 4mε| > 2|2b−m− 2aε| (15)

|4mε− a− b− 4m| > 2|2a+m− 2bε| (16)

As well as new conditions on the diagonal elements:

4m− a < 0 (17)

−4m− b < 0 (18)

We will now proceed with trying to find a, b,m that can simultaneously meet all conditions, setting
ε = 0.5 for simplicity.

Looking at m = 0, we can see again that M will require off-diagonal elements, as condition (15) is
now equivalent to the condition a+ b > |4b− 2a| and condition (16) is similarly now equivalent to
a+ b > |4a− 2b|.
Evaluating these conditions in more detail, if we assume 4b > 2a and 4a > 2b, we can remove the
absolute value and the conditions work out to the contradicting 3a > 3b and 3b > 3a respectively.
As an aside, if ε > 0.5, this would no longer be the case, whereas with ε < 0.5, the conditions would
be pushed even further in opposite directions.

If we instead assume 2a > 4b, this means 4a > 2b, so the latter condition would still lead to b > a,
contradicting the original assumption of 2a > 4b. 2b > 4a causes a contradiction analogously.
Trying 4b = 2a will lead to the other condition becoming b > 2a, once again a contradiction. Thus a
diagonal M is impossible

So now we again break down the conditions into m > 0 and m < 0 cases, first looking at m > 0.
Using condition (17) and knowing all unknowns have positive sign, condition (15) reduces to
a+ b− 2m > |4b− 2(a+m)| and condition (16) reduces to a+ b+ 2m > |4a− 2(b−m)|. This
looks remarkably similar to the m = 0 case, except now condition (15) has −2m added to both sides
(inside the absolute value), and condition (16) has 2m added to both sides in the same manner. If
4b > 2(a+m) the −2m term on each side will simply cancel, and similarly if 4a > 2(b−m) the
+2m terms will cancel, leaving us with the same contradictory conditions as before.

Therefore we check 2(a+m) > 4b. This rearranges to 2a > 2(2b−m) > 2(b−m), so that from
condition (16) we get b > a. Subbing condition (17) in to 2(a+m) > 4b gives 8b < 4a+ 4m < 5a
i.e. b < 5

8a, a contradiction. The analogous issue arises if trying 2(b − m) > 4a. Trying
2(a+m) = 4b gives m = 2b− a, which in condition (16) results in 5b− a > |6a− 6b|, while in
condition (17) leads to 5a > 8b, so (16) can further reduce to 5b− a > 6a− 6b i.e. 11b > 7a. But
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b > 7
11a and b < 5

8a is a contradiction. Thus there is no way for m > 0 to work.

Finally, trying m < 0, we now use condition (18) and the signs of the unknowns to reduce condition
(15) to a+ b+ 2|m| > |4b− 2(a− |m|)| and condition (16) to a+ b− 2|m| > |4a− 2(b+ |m|)|.
These two conditions are clearly directly analogous to in the m > 0 case, where b now acts as a with
condition (18) being b > 4|m|. Therefore the proof is complete.

D Sparse Combo Net Details

Here we provide comprehensive information on the methodology and results for Sparse Combo Net,
including some supplementary experimental results. See the Appendix table of contents for a guide
to this section.

D.1 Extended Methods

D.1.1 Initialization and Training

As described in the main text, the nonlinear RNN weights for Sparse Combo Net were randomly
generated based on given sparsity and entry magnitude settings, and then confirmed to meet the
Theorem 1 condition (or discarded if not). For a sparsity level of x and a magnitude limit of y, each
subnetwork W was generated by drawing uniformly from between −y and y with x% density using
scipy.sparse.random, and then zeroing out the diagonal entries. For various potential x and y settings,
we quantified both the likelihood that a generated W would satisfy Theorem 1, and the resulting
network performance. Of course this is also dependent on subnetwork size, as larger subnetworks
enable greater sparsity. The information we have obtained so far is documented in Section D.2, in
particular D.2.2.

In training the linear connections between the described nonlinear RNN subnetworks, we constrained
the matrix B in (3) to reflect underlying modularity assumptions. In particular, we only train the
off-diagonal blocks of B and mask the diagonal blocks. We do this to maintain the interpretation of
L as the matrix containing the connection weights between different modules, as diagonal blocks
would correspond to self-connections. Furthermore, we only train the lower-triangular blocks of B
while masking the others, to increase training speed.

To obtain the subnetwork RNN metrics necessary for training these linear connections,
scipy.integrate.quad was used with default settings to solve for M in the equation −I = MW +

WTM, as described in the main text. This was done by integrating eW
T tQeWtdt from 0 to∞. For

efficiency reasons, and due to the guaranteed existence of a diagonal metric in the case of Theorem
1, integration was only performed to solve for the diagonal elements of M. Therefore a check was
added prior to training to confirm that the initialized network indeed satisfied Theorem 1 with metric
M. However, it was never triggered by our initialization method.

Initial training hyperparameter tuning was done primarily with 10× 16 combination networks on
the permuted seqMNIST task, starting with settings based on existing literature on this task, and
verifying promising settings using a 15× 16 network (Table S2). Initialization settings were held the
same throughout, as was later done for the size comparison trials (described in Section D.2.1).

Once hyperparameters were decided upon, the trials reported on in the main text began. Most of
these experiments were also done on permuted seqMNIST, where we characterized performance of
networks with different sizes and sparsity levels/entry magnitudes. When we moved to the sequential
CIFAR10 task, we began by simply training with the same best settings that were found from these
experiments. The results of all attempted trials are reported in Section D.4.

Unless specified otherwise, all networks reported on in the main text were trained for 150 epochs,
using an Adam optimizer with initial learning rate 1e-3 and weight decay 1e-5. The learning rate was
cut to 1e-4 after 90 epochs and to 1e-5 after 140. After identifying the most promising settings, we
ran repetitions trials on the best networks for 200 epochs with learning rate cuts after epochs 140 and
190.
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D.1.2 Code and Datasets

All Sparse Combo Nets described in the main text were trained using a single GPU on Google Colab.
Code to replicate all experiments can be found here: https://colab.research.google.com/
drive/1JCT5OMgaMVK_Xh8BDFNRrEsyF0Ojvg10?usp=sharing

Runtime for the best performing architecture settings on the sequential CIFAR10 task was ∼ 24
hours. A Colab Pro+ account was used to limit timeouts and prioritize GPU access.

The datasets we used for our tasks were MNIST and CIFAR10, downloaded via PyTorch. MNIST
is a handwritten digits classification task, consisting of 60,000 training images and 10,000 testing
images (each 28x28 and grayscale). It is made available under the terms of the Creative Commons
Attribution-Share Alike 3.0 license. CIFAR10 is a dataset of 32x32 color images, split evenly among
the following 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. It
also contains 60,000/10,000 training/test images, and is distributed under the MIT License.

As mentioned in the main text, we presented these images to our networks pixel by pixel. In the case
of MNIST, we used an additional modification to the dataset by permuting the pixels in a randomly
determined (but fixed across the dataset) way. The use of these datasets is included in the above link
to our code.

Extended results information begins on the next page.
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D.2 Extended Results

In this subsection, we describe additional results we did not get to in the main text, related to
scalability, modularity, sparsity, and repeatability. We also add some further discussion of these
results, along with more detailed information on the respective experimental set ups.

D.2.1 Network Size and Modularity Comparison

For the Sparse Combo Net specifically we had additional experiments on architecture size and unit
distribution besides what was depicted in the main text. The results of these supplemental experiments
both replicated the observed effect in Figure 4 of network size instead using subnetworks with 16
units each as well as higher density (Figure S1A), and evaluated how task performance varies with
modularity of a network fixed to have 352 total units (Figure S1B). In the modularity experiment we
observed an inverse U shape, with poor performance of a 1× 352 net and an 88× 4 net, and best
performance from a 44× 8 net. Note that this experiment compared similar sparsity levels across the
different subnetwork sizes. In practice we can achieve better performance with larger subnetworks by
leveraging sparsity in a way not possible in smaller subnetworks. These additional experiments are
now described in more detail below.

For the initial round of size comparison trials using subnetworks of 16 units each (Figure S1A), the
nonlinear RNN weights were set by drawing uniformly from between −0.4 and 0.4 with 40% density
using scipy.sparse.random, and then zeroing out the diagonal entries. These settings were chosen
because they resulted in ∼ 1% of 16 by 16 weight matrices meeting the Theorem 1 condition. During
initialization only the matrices meeting this condition were kept, finishing when the desired number
of component RNNs had been set - producing a block diagonal W like pictured in Figure 3A. This
same initialization process was used throughout our experiments. In later experiments we vary the
density and magnitude settings.

For the size experiments, we held static the number of units and initialization settings for each
component RNN, and tested the effect of changing the number of components in the combination
network. 1, 3, 5, 10, 15, 20, 22, 25, and 30 components were tested in this experiment (Figure
S1A). Increasing the number of components initially lead to great improvements in test accuracy,
but had diminishing returns - test accuracy consistently hit ∼ 93% with a large enough number
of subnetworks, but neither loss nor accuracy showed meaningful improvement past the 22 × 16
network. Interestingly, early training loss and accuracy became substantially worse once the number
of components increased past a certain point, falling from 70% to 43% epoch 1 test accuracy between
the 22× 16 and 30× 16 networks. The complete set of results can be found in Table S3.

Note that the size experiment described in the main text (Figure 4A) was a repetition of this original
experiment, but now using 32 unit subnetworks with the best performing sparsity settings. The results
for the repetition can be found in Table S5.

To better understand how the modularity of the combination networks affects performance, the next
experiment held the number of total units constant at 352, selected due to the prior success of the
22 × 16 network, and tested different allocations of these units amongst component RNNs. Thus
1× 352, 11× 32, 44× 8, and 88× 4 networks were trained to compare against the 22× 16 (Figure
S1B). Increasing the modularity improved performance to a point, with the 44× 8 network resulting
in final test accuracy of 94.44%, while conversely the 11× 32 resulted in decreased test accuracy.
However, the 88× 4 network was unable to learn, and a 352× 1 network would theoretically just be
a scaled linear anti-symmetric network.

Because larger networks require different sparsity settings to meet the Theorem 1 condition, these
were not held constant between trials in the modularity comparison experiment (Figure S1B), but
rather selected in the same way between trials - looking for settings that keep density and scalar
balanced and result in ∼ 1% of the matrices meeting the condition. The scalar was applied after
sampling non-zero entries from a uniform distribution between -1 and 1. The resulting settings were
7.5% density and 0.077 scalar for 352 unit component RNN, 26.5% density and 0.27 scalar for 32
unit component RNN, 60% density and 0.7 scalar for 8 unit component RNN, and 100% density and
1.0 scalar for 4 unit component RNN. The complete set of results for the modularity experiment can
be found in Table S4.
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Figure S1: Performance of Sparse Combo Nets on the Permuted seqMNIST task by combination
network size. We test the effects on final and first epoch test accuracy of both total network size
and network modularity. The former is assessed by varying the number of subnetworks while each
subnetwork is fixed at 16 units (A), and the latter by varying the distribution of units across different
numbers of subnetworks with the total sum of units in the network fixed at 352 (B). Note that these
experiments were run prior to optimizing the sparsity initialization settings. Experiments on total
network size were later repeated with the final sparsity settings (Figure 4A). The results of both the
size experiments are consistent.

D.2.2 Sparsity Settings Comparison

Density and scalar settings for the component nonlinear RNNs were initially chosen for each network
size using the percentage of random networks that met the Theorem 1 condition. For scalar s, a
component network would have non-zero entries sampled uniformly between −s and s.

When we began experimenting with sparsity in the initialization (after seeing the large performance
difference in Figure 5), we split the previously described scalar setting into two different scalars -
one applied before a random matrix was checked against the Theorem 1 condition, and one applied
after a matrix was selected. Of course the latter must be ≤ 1 to guarantee stability is preserved. The
scalar was separated out after we noticed that at 5% density, random 32 by 32 weight matrices met
the condition roughly 1% of the time whether the scalar was 10 or 100000 - ∼ 85% of sampled
matrices using scalar 10 would continue to meet the condition even if multiplied by a factor of 10000.
Therefore we wanted a mechanism that could bias selection towards matrices that are stable due to
their sparsity and not due to magnitude constraints, while still keeping the elements to a reasonable
size for training purposes.
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Ultimately, both sparsity and magnitude had a clear effect on performance (Figure S2). Increases
in both had a positive correlation with accuracy and loss through most parameters tested. Best test
accuracy overall was 96.79%, which was obtained by both a 16× 32 network with 5% density and
entries between -5 and 5, and a 16 × 32 network with 3.3% density and entries between -6 and 6.
The latter also achieved the best epoch 1 test accuracy observed of 86.79%. Thus we chose to go
with these settings for our extended training repetitions on permuted seqMNIST.

It is also worth noting that upon investigation of the subnetwork weight matrices across these trials,
the sparser networks had substantially lower maximum eigenvalue of |W|, suggesting that stronger
stability can actually correlate with improved performance on sequential tasks. This could be due to a
mechanism such as that described in [Radhakrishnana et al., 2020].

Results from the initial trials of different sparsity levels across different network sizes can be found
in Table S6. Results from the more thorough testing of different sparsity levels and magnitudes in a
16× 32 network can be found in Table S7.

Figure S2: Permuted seqMNIST performance by component RNN initialization settings. Test
accuracy is plotted over the course of training for four 16× 32 networks with different density levels
and entry magnitudes (A), highlighting the role of sparsity in network performance. Test accuracy
is then plotted over the course of training for two 3.3% density 16 × 32 networks with different
entry magnitudes (B), to demonstrate the role of the scalar. When the magnitude becomes too high
however, performance is out of view of the current axis limits.

D.2.3 Repeatability Tests

Here we give additional details on the repeatability tests described in the main text, as well as
introducing some additional results using other hyperparameters (done after the initial SOTA-setting
experiments) on sequential CIFAR10.

To further improve performance once network settings were explored on permuted seqMNIST, an
extended training run was tested on the best performing option. Settings were kept the same as above
using a 3.3% density 16× 32 network, except training now ran for over 200 epochs, with just a single
learning rate cut occurring after epoch 200 (exact number of epochs varied based on runtime limit).
This experiment was repeated four times and resulted in 96.94% best test accuracy, as described in
the main text (Figure S3). Table S8 reports additional details on these trials.

As mentioned, we also characterized Sparse Combo Net performance on the more challenging
CIFAR10 sequential image classification task, across a greater number of trials. Ten trials were
run for 200 epochs with learning rate scaled after epochs 140 and 190. All other settings were the
same as for the permuted seqMNIST repeatability trials. As reported in the main text, the mean test
accuracy observed was 64.72%, with variance 0.406, and range 63.73%-65.72%. Training loss and
test accuracy over the course of learning are plotted for all ten trials in Figure S4, and exact numbers
for each trial are provided in Table S10.

As we encountered difficulties with Colab GPU assignment when we started working on these
repetitions, we also trained nine networks over a smaller number of epochs (Figure S5). These
networks were trained using the 150 epoch paradigm previously described, although only four of the
nine completed training within the 24 hour runtime limit. Complete results for these trials can be
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Figure S3: Permuted seqM-
NIST performance on repeated
trials. Four different 16 × 32
networks with 3.3% density
and entries between -6 and 6
were trained for 24 hours, with
a single learning rate cut after
epoch 200. (A) depicts test
accuracy for each of the net-
works over the course of train-
ing. (B) depicts the training
loss for the same networks. Ex-
act numbers are reported in Ta-
ble S8.

found in Table S11. Mean performance among the shorter training trials was 62.82% test accuracy
with variance 0.95.

Prior to beginning the repeatability experiments on seqCIFAR10, we explored alternative hyperpa-
rameters on this task (Table S9). While we ultimately ended up using the same hyperparameters as
for permuted seqMNIST, these results further support the robustness of our architecture.

Figure S4: seqCIFAR10 performance on repeated trials. Ten different 16× 32 networks with 3.3%
density and entries between -6 and 6 were trained for 200 epochs, with learning rate divided by 10
after epochs 140 and 190. (A) depicts test accuracy for each of the networks over the course of
training. (B) depicts the training loss for the same networks. Exact numbers are reported in Table
S10.

To complete our benchmarking table, we also ran a single 150 epoch trial of our best network settings
on the sequential MNIST task. Test accuracy over the course of training for this trial is depicted in
Figure S6.
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Figure S5: seqCIFAR10 perfor-
mance on repeated trials with shorter
training (done to complete more tri-
als). Nine different 16 × 32 net-
works with 3.3% density and entries
between -6 and 6 were set up to train
for 150 epochs, with learning rate
divided by 10 after epochs 90 and
140. Most of these networks hit run-
time limit before completing, how-
ever they all got through at least 100
epochs and all had test accuracy ex-
ceed 61%. This figure depicts test
accuracy for each of the networks
over the course of training. Networks
that completed training are plotted as
solid lines, while those that were cut
short are dashed.

Figure S6: Perfor-
mance over train-
ing on the seqM-
NIST task for a
16 × 32 network
with best settings
(using 150 epoch
training protocol).
Final test accuracy
exceeded 99%.

D.2.4 Scalability Pilot: Feedback Sparsity Tests

Not only did the 16 × 32 Sparse Combo Net with 3.3% density achieve test accuracy sequential
CIFAR10 that is the highest to date for a provably stable RNN, it was higher than the 1 million
parameter CKConv network, which set a recent SOTA for permuted seqMNIST accuracy (Table 1).
Our network has 130, 000 trainable parameters by comparison. Thus we achieve very impressive
results given the characteristics of our architecture.

However, the results of the network size experiments do raise some concern about the scalability of
the approach. Here we provide pilot results suggesting that this issue can likely be addressed via the
introduction of sparsity in the linear inter-subnetwork connectivity matrix L. While all results in the
main text use all-to-all negative feedback, we have early results suggesting that in larger networks,
fewer negative feedback connections may perform better, thus preventing performance saturation
with scaling.

Below are the results of testing of this idea in a 24×32 Sparse Combo Net on the sequential CIFAR10
task. We varied the number of feedback connections that were fixed at 0 while all other settings
remained static (Table S1). The resulting performance took an inverse U shape, where the network
with only 50% of possible feedback connections non-zero had the best test accuracy of 65.14%,
achieved in just 124 epochs of training.
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Size Feedback
Density Epochs Best Overall

Test Acc.

Best Test Acc.
Through 85
Epochs

24×32 100% 86 52.7% 52.7%
24×32 75% 88 56.49% 56.48%
24×32 66.6% 89 58.84% 58.84%
24×32 50% 124 65.14% 58.01%
24×32 33.3% 129 61.86% 56.05%
24×32 25% 92 54.26% 50.54%
24×32 0% 130 39.8% 38.38%
16×32 100% 150 64.63% 55.82%
16×32 75% 150 64.12% 57.23%
16×32 50% 127 59.87% 54.26%

Table S1: Results from pilot testing on the sparsity of negative feedback connections in a 24× 32
Sparse Combo Net and a 16 × 32 Sparse Combo Net. Feedback Density refers to the percentage
of possible subnetwork pairings that were trained in negative feedback, while the remaining inter-
network connections were held at 0. All networks were trained with the same 150 epoch training
paradigm as mentioned in the main text, but were stopped after hitting a 24 hour runtime limit.
Decreasing Feedback Density is a promising path towards further improving performance as the size
of Sparse Combo Nets is scaled. The ideal amount of feedback density will likely vary with the size
of the combination network.

D.3 Architecture Interpretability

In this subsection, we give additional information on trainable parameters and properties of the
network weights, to assist in interpreting the Sparse Combo Net architecture and its training process.

D.3.1 Number of Parameters

To report on the number of trainable parameters, we used the following formula:
n2−M∗C2

2 + i ∗ n+ n ∗ o+ n+ o

Where n is the total number of units in the M × C combination network, o is the total number of
output nodes for the task, and i is the total number of input nodes for the task. Thus for the 16× 32
networks highlighted here, we have 129034 trainable parameters for the MNIST tasks, and 130058
trainable parameters for sequential CIFAR10.

Note that the naive estimate for the number of trainable parameters would be n2 + i∗n+n∗o+n+o,
corresponding to the number of weights in L, the number of weights in the feedforward linear input
layer, the number of weights in the feedforward linear output layer, and the bias terms for the input
and output layers, respectively. However, because of the combination property constraints on L, only
the lower triangular portion of a block off-diagonal matrix is actually trained, and L is then defined
in terms of this matrix and the metric M. Thus we subtract M ∗ C2 to remove the block diagonal
portions corresponding to nonlinear RNN components, and then divide by 2 to obtain only the lower
half.

D.3.2 Inspecting Trained Network Weights

After training was completed, we inspected the state of all networks described in the main text,
pulling both the nonlinear (W) and linear (L) weight matrices from both initialization time and the
final model. For W, we confirmed it did not change over training, and inspected the max real part of
the eigenvalues of |W| in accordance with Theorem 1. The densest tested matrices tended to have
λmax(|W|) > 0.9, while the sparsest ones tended to have λmax(|W|) < 0.1. For L, we checked the
maximum element and the maximum singular value before and after training. In general, both went
up over the course of training, but by a modest amount.
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Figure S7: Weight matrices
for each of the 32 unit non-
linear component RNNs that
were used in the best perform-
ing 16 × 32 network on per-
muted sequential MNIST.

D.4 Tables of Results by Trial (Supplementary Documentation)

Table S2 shows all trials run on permuted sequential MNIST before beginning the more systematic
experiments reported on in the main text. Notably, our networks did not require an extensive
hyperparameter tuning process.

Tables S3 and S4 report additional details on the initial size and modularity experiments (Figure S1).
Table S5 reports the results of the repeated experiment on Sparse Combo Net size, this time using 32
unit component subnetworks with best sparsity settings (Figure 4A).

Tables S6 and S7 report results from all trials related to our sparsity experiments (Figures 5 and S2).

Table S8 provides further information on the four trials in the permuted seqMNIST repeatability
experiments (Figure S3).

Table S9 reports the results of all trials of different hyperparameters on the sequential CIFAR10 task,
in chronological order. Ultimately the same settings as those used for permuted seqMNIST were
chosen.

Table S10 shows the results of all ten trials in the seqCIFAR10 repeatability experiments (Figure S4).
Table S11 shows results from nine additional seqCIFAR10 trials of shorter training duration (Figure
S5), run to increase sample size while unable to access the higher quality Colab GPUs.

Finally, Table S1 reports the results of our pilot trial on introducing sparsity into the linear feedback
connection matrix - as this table was presented in Section D.2.4 however, we do not reproduce it here.
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D.4.1 Permuted seqMNIST Trials

Size Epochs Adam
WD

Initial
LR LR Schedule

Final
Test
Acc.

10×16 150 5e-5 5e-3 0.1 after 91 84%
10×16 150 1e-5 1e-2 0.1 after 50,100 85%
15×16 150 2e-4 5e-3 0.1 after 50,100 84%
10×16 150 2e-4 1e-2 0.5 every 10 81%
10×16 200 2e-4 1e-2 0.5 after 10 then every 30 81%

10×16 171* 5e-5 1e-2 0.75 after 10,20,60,100 then
every 15 84%

15×16 179* 1e-5 1e-3 0.1 after 100,150 90%

Table S2: Training hyperparameter tuning trials, presented in chronological order. * indicates that
training was cut short by the 24 hour Colab runtime limit. LR Schedule describes the scalar the
learning rate was multiplied by, and at what epochs. The best performing network is highlighted, and
represents the training settings we used throughout most of the main text.

Size
Final
Test
Acc.

Epoch
1 Test
Acc.

Final
Train
Loss

1× 16 38.69% 24.61% 1.7005
3× 16 70.56% 40.47% 0.9033
5× 16 77.86% 47.99% 0.7104
10×16 85.82% 61.38% 0.4736
15×16 90.28% 69.09% 0.3156
20×16 92.26% 71.72% 0.2392
22×16 93.01% 70.11% 0.2073
25×16 92.99% 61.81% 0.2017
30×16 93.16% 43.21% 0.1991

Table S3: Results for combination networks
containing different numbers of component
16-unit RNNs. Training hyperparameters and
network initialization settings were kept the
same across all trials, and all trials completed
the full 150 epochs.

Size
Final
Test
Acc.

Epoch
1 Test
Acc.

Final
Train
Loss

1×352 40.17% 26.97% 1.662
11×32 89.12% 61.29% 0.3781
22×16 93.01% 70.11% 0.2073
44× 8 94.44% 25.78% 0.1500
88× 4 10.99% 10.99% 2E+35

Table S4: Results for different distributions
of 352 total units across a combination net-
work. This number was chosen based on prior
22× 16 network performance. For each com-
ponent RNN size tested, the same procedure
was used to select appropriate density and
scalar settings. All networks otherwise used
the same settings, as in the size experiments.
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Name Size
Final
Test
Acc.

Sparse Combo Net 1× 32 37.1%
Sparse Combo Net 4× 32 89.1%
Sparse Combo Net 8× 32 93.6%
Sparse Combo Net 12×32 94.4%
Sparse Combo Net 16×32 96%
Sparse Combo Net 22×32 96.8%
Sparse Combo Net 24×32 96.7%
Control 24×32 47%

Table S5: Results for Sparse Combo Nets containing different numbers of component 32-unit
RNNs with best found initialization settings, using the standard 150 epoch training paradigm. This
experiment was run to demonstrate repeatability of the size results seen in Table S3. All trials were
run to completion. A control trial was also run with the largest tested network size - the connections
between subnetworks were no longer constrained, and thus this control combination network is not
certifiably stable.

Size Density Scalar
Final
Test
Acc.

Epoch
1 Test
Acc.

Final
Train
Loss

11×32 26.5% 0.27 89.12% 61.29% 0.3781
11×32 10% 1.0 94.86% 70.67% 0.1278
22×16 40% 0.4 93.01% 70.11% 0.2073
22×16 20% 1.0 95.27% 76.58% 0.0924
22×16 10% 1.0 94.26% 71.53% 0.1425
44× 8 60% 0.7 94.44% 25.78% 0.1500
44× 8 50% 1.0 95.05% 30.52% 0.1180

Table S6: Results for different initialization settings - varying sparsity and magnitude of the compo-
nent RNNs for different network sizes. All other settings remained constant across trials, using our
selected 150 epoch training paradigm.

Density
Pre-
select
Scalar

Post-
select
Scalar

Final
Test
Acc.

Epoch
1 Test
Acc.

Final
Train
Loss

10% 1.0 1.0 95.87% 73.67% 0.074
5% 10.0 0.1 95.11% 73.10% 0.1311
5% 10.0 0.2 96.15% 82.50% 0.0051
5% 10.0 0.5 96.69% 75.76% 0.0001
5% 6.0 1.0 96.41% 21.55% 3.3E-5
5% 7.5 1.0 16.75% 11.39% 3068967
3.3% 30.0 0.1 96.24% 83.89% 0.0005
3.3% 30.0 0.2 96.54% 86.79% 4E-5
1% 10.0 1.0 96.04% 81.2% 0.0001

Table S7: Further optimizing the sparsity settings for high performance using a 16× 32 network. The
final scalar is the product of the pre-selection and post-selection scalars. Note that the 5% density and
7.5 scalar network was killed after 18 epochs due to exploding gradient. All other trials ran for a full
150 epochs.

40



Epochs Best Test
Acc.

Epoch 1
Test Acc.

Best Train
Loss

208 96.65% 61.15% 0.00224
255 96.94% 84.19% 5e-5
250 96.88% 81.08% 5e-5
210 96.93% 67.19% 0.00069

Table S8: Repeatability of the best network settings on permuted seqMNIST. Four trials of 16× 32
networks with 3.3% density and entries between -6 and 6, trained for a 24 hour period with a single
learning rate cut (0.1 scalar) after epoch 200. All other training settings remained the same as our
selected hyperparameters. Trials are presented in chronological order. The mean test accuracy
achieved was 96.85% with Variance 0.019.

D.4.2 seqCIFAR10 Trials

Density
Pre-
select
Scalar

Post-
select
Scalar

Epochs Adam
WD

Initial
LR LR Schedule

Best
Test
Acc.

3.3% 30 0.2 150 1e-5 1e-3 0.1 after 90,140 64.63%
3.3% 30 0.2 34* 1e-5 5e-3 0.1 after 90,140 35.42%
5% 6 1 150 1e-5 1e-3 0.1 after 90,140 60.9%
5% 10 0.5 150 1e-5 1e-4 0.1 after 90,140 54.86%
3.3% 30 0.2 150 1e-5 5e-4 0.1 after 90,140 61.83%
3.3% 30 0.2 200 1e-6 2e-3 0.1 after 140,190 62.31%
3.3% 30 0.2 186* 1e-5 1e-3 0.1 after 140,190 64.75%
3.3% 30 0.2 132* 1e-6 1e-3 0.1 after 140,190 62.31%
5% 10 0.5 195* 1e-5 1e-3 0.1 after 140,190 64.68%

Table S9: Additional hyperparameter tuning for the seqCIFAR10 task, presented in chronological
order. * indicates that training was cut short by the 24 hour Colab runtime limit, or in the case of high
learning rate was killed intentionally due to exploding gradient. LR Schedule describes the scalar
the learning rate was multiplied by, and at what epochs. The best performing network is highlighted.
Ultimately we decided on the same network settings and training hyperparameters for further testing,
just extending the training period to 200 epochs with the learning rate cuts occurring after epochs 90
and 140.
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Epochs
Best
Test
Acc.

Epoch
1 Test
Acc.

Best
Train
Loss

186 64.75% 10.53% 0.83
200 64.04% 26.35% 0.787
200 64.32% 26.76% 0.778
170 64.88% 20.65% 0.857
200 65.72% 27.28% 0.813
200 63.73% 10.47% 0.826
200 65.03% 18.75% 0.83
200 64.71% 32.36% 0.799
200 64.4% 10.09% 0.83
200 65.63% 30.25% 0.792

Table S10: Repeatability of the best network
settings on seqCIFAR10. Ten trials of 16× 32
networks with 3.3% density and entries between
-6 and 6, trained for 200 epochs with learning
rate scaled by 0.1 after epochs 140 and 190. All
other training settings remained the same as be-
fore. Trials are presented in chronological order.
The mean test accuracy achieved was 64.72%
with Variance 0.406. Most trials completed all
200 epochs, but two were cut short due to run-
time limits.

Epochs
Best
Test
Acc.

Epoch
1 Test
Acc.

Best
Train
Loss

150 64.63% 28.91% 0.837
150 63.51% 9.7% 0.9
148 62.35% 17.51% 0.89
126 63.33% 23.61% 0.903
129 61.45% 28.93% 0.937
150 62.21% 25.82% 0.9
150 63.42% 23.51% 0.86
147 62.05% 27.67% 0.882
131 62.41% 30.33% 0.912

Table S11: An additional nine trials investigat-
ing the repeatability of our results on the se-
qCIFAR10 task. For these trials we used the
same 150 epoch training paradigm as previously,
although only four of the networks were able
to fully complete training. These trials were
done to expand our sample size while access
was limited to only slower GPUs. The mean
observed test accuracy among the shorter trials
was 62.82%, with variance of 0.95.

E SVD Combo Net Details

E.1 Parameterization Information

For the SVD Combo Net, we ensured contraction by directly parameterizing each of the Wi

(i = 1, 2 . . . p) as:

Wi = Φ−1i UiΣiV
T
i Φi (19)

where Φi is diagonal and nonsingular, Ui and Vi are orthogonal, and Σi is diagonal with Σii ∈
[0, g−1). We ensure orthogonality of Ui and Vi during training by exploiting the fact that the
matrix exponential of a skew-symmetric matrix is orthogonal, as was done in [Lezcano-Casado and
Martınez-Rubio, 2019]. The network constructed from these subnetworks using (2) is contracting in
metric M̃ = BlockDiag(Φ2

1, . . . ,Φ
2
p).

E.2 Control Experiment

To do the SVD Combo Network stability control experiment, we still constrained the weights of
the subnetwork modules using the above parameterization, but we removed any constraint on the
connections between modules. Thus each individual module was still guaranteed to be contracting,
but the overall system had no such guarantee in this control trial. The experiment was run using a
24× 32 combination network and the permuted sequential MNIST task.

In contrast to the primary control experiment run on Sparse Combo Net, for the SVD Combo Net
we saw only a very slight performance decrease when the between-module connections were no
longer constrained for the overall stability certificate. Test accuracy in the control run was 94.56%,
as compared to the 94.9% observed with the standard SVD Combo Net.

This disparity in performance decrease makes sense when considering that the hidden-to-hidden
weights of SVD Combo Network are trainable, while those of the Sparse Combo Network are not.
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Whatever instabilities are introduced by the lack of constraint on the inter-subnetwork connections
likely cannot be adequately compensated for in the Sparse Combo Network.

E.3 Model Code

Figure S8: Pytorch Lightning code for SVD Combo Net cell.
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