
Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL FOR "REPOFUSION:
TRAINING CODE MODELS TO UNDERSTAND YOUR
REPOSITORY"

Anonymous authors
Paper under double-blind review

A DETAILS ON STACK-REPO

For the review process, we have made our dataset available at the link: https://huggingface.
co/datasets/anonymousTheStackRepo/the-stack-repo. Upon completion of the
review process, a de-anonymized version of the dataset will be released under a license similar to
that of The Stack (Kocetkov et al., 2022). The details of the license can be found at the Licensing
Information section of this page https://huggingface.co/datasets/bigcode/the-
stack. Stack-Repo consists of 200 near-deduplicated Java repositories (see Table 1 of main paper
for details). For each repository within a split (train, validation and test), we provide all files arranged
in the directory structure within the repository along with three .json files that contain the PP, BM25
and RandomNN repo-contexts. One row of the .json file corrsponds to a target hole consisting of
the location of the target hole, the target hole as a string, the surrounding context as a string and a list
of repo-contexts as strings.

B IMPLEMENTATION DETAILS

B.1 FINETUNING CODET5

As described in Section 3.2 of the main paper, to serve as a better initialization of RepoFusion (also
served as a baseline) we finetuned a CodeT5-base model (220M parameters) with an input context
length of 512 tokens using the CodeT5 tokenizer. We used an Adam optimizer with Decoupled
Weight Decay Regularization (Loshchilov & Hutter, 2019) with weight decay of 0.05 and a learning
rate of 4e-05. In addition, we used a linear scheduler with 100 warm-up steps, dropout rate of 0.1,
and gradient clipping with a max gradient norm of 1.0. To serve as a baseline, we also finetuned a
CodeT5-large model (770 M parameters) with an input context length of 512. We used the same set
of hyperparameters for this as mentioned before except that we used a learning rate of 1e-4. The
training was carried out on 2 NVIDIA A100 GPUs with memory of 80GB each and a batch size of
32 per GPU for the CodeT5-base model. For CodeT5-large we used 4 A100 GPUs with memory of
80GB each and a batch size of 12 per GPU. The evaluation run was carried out on a single 32GB
V100 GPU with a batch size of 32 for CodeT5-base and 48 for CodeT5-large.

B.2 TRAINING REPOFUSION

We use the 220M parameter CodeT5-base (Wang et al., 2021) encoder-decoder model as our base
code model for RepoFusion. Our RepoFusion implementation was heavily built on top of the code
released by Shrivastava et al. (2022) https://github.com/shrivastavadisha/repo_
level_prompt_generation (MIT License), as well as the code released by Izacard & Grave
(2021) https://github.com/facebookresearch/FiD (MIT License). The former was
used to obtain repo contexts and the latter was used for the FiD architecture.

Our best RepoFusion model was obtained by initializing the training from a finetuned CodeT5-
base checkpoint (see Section B.1 for details). The repo contexts used the NT-Prior-Last strategy
(see Section 2.3 of the main paper for details) with 32 PP repo contexts each of size 768 tokens
(N = 32, l = 768). Similar to Izacard & Grave (2021), we format each repo context with spe-
cial tokens to mark the beginning of the surrounding context and the repo context, as well as
for the name of the repo context (which is the same as the name of the PP taken from https:

1

https://huggingface.co/datasets/anonymousTheStackRepo/the-stack-repo
https://huggingface.co/datasets/anonymousTheStackRepo/the-stack-repo
https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/bigcode/the-stack
https://github.com/shrivastavadisha/repo_level_prompt_generation
https://github.com/shrivastavadisha/repo_level_prompt_generation
https://github.com/facebookresearch/FiD
https://github.com/shrivastavadisha/repo_level_prompt_generation
https://github.com/shrivastavadisha/repo_level_prompt_generation
https://github.com/shrivastavadisha/repo_level_prompt_generation


Under review as a conference paper at ICLR 2024

//github.com/shrivastavadisha/repo_level_prompt_generation). We used
hole_context: as prefix for surrounding context, rule_context: as a prefix for PP repo
context and rule_name: as prefix for PP repo context name. We used Adam (Kingma & Ba, 2015)
optimizer with a learning rate 1e-5 and a warmup linear scheduler with 5000 warmup steps. We used
gradient clipping with norm 1.0 and batch size of 1. Training was carried out on 2 NVIDIA A100
GPUs with memory of 80GB each. Each evaluation run was carried out on a single 32GB V100
GPU.

The BM25 and Random NN versions of RepoFusion were obtained by using the same training
hyperparameters as above and initialized from the same finetuned CodeT5 checkpoint except that
we found that a learning rate of 2.5e-5 and the setting N = 63, l = 512 works the best. As before,
we used NT-Prior-Last strategy and a prefix only for the surrounding context and no prefixes for
repo contexts. The RepoFusion model that was initialized from a pretrained CodeT5-base version
was obtained by using the same set of training hyperparameters as our best RepoFusion model but a
learning rate of 1e-4 worked the best.

For the purpose of review, we have put all the trained checkpoints at https://huggingface.
co/anonymousTheStackRepo/trained_checkpoints.

B.3 RETRIEVAL MECHANISMS

The BM25 repo contexts were obtained using the Okapi BM25 implementation with default param-
eters given by the pip package rank-bm25 0.2.2 https://pypi.org/project/rank-
bm25/. The BM25 scores are calculated with the surrounding context being the query and full
context from other files in the repository being the search documents. Random NN repo contexts
used the procedure followed by Shrivastava et al. (2022) using CodeBERT (Feng et al., 2020) to
obtain the representations (See Appendix C.3 for details).

B.4 OTHER BASELINES

For CodeGen models, we used the models available on Hugging Face hub, i.e., Codegen-
2B-multi https://huggingface.co/Salesforce/codegen-2B-multi, CodeGen-6B-
multi https://huggingface.co/Salesforce/codegen-6B-multi and CodeGen-
16B-multi https://huggingface.co/Salesforce/codegen-16B-multi. For San-
taCoder and StarCoder we used the model available from https://huggingface.co/
bigcode/santacoder and https://huggingface.co/bigcode/starcoder, respec-
tively. We used special FIM tokens, i.e., <fim-prefix> for pre context, <fim-suffix> for
post context and <fim-middle> to prompt for completing the target hole. Each of these models
used the recommended tokenizers and completion length of 128 tokens.

C ADDITIONAL RESULTS

C.1 EFFECT OF REPETITION

In order to further assess the significance of diverse repo contexts, we conducted an analysis by
repeating a PPC multiple times and using each repetition as a separate repo context. One can see
from the right side of Table 1 that repeating the context from a single prompt proposal (prior, post,
randomly chosen PP) has a negative impact on performance compared to using different repo contexts
from multiple prompt proposals.

Table 1: Completion success rate with repetiting different types of PPCs multiple times.

Success Rate(%)

Rand 37.18±0.48
Prior 50.69±0.50
Post 54.64±0.50
NT-Rank 71.92±0.45

2

https://github.com/shrivastavadisha/repo_level_prompt_generation
https://github.com/shrivastavadisha/repo_level_prompt_generation
https://github.com/shrivastavadisha/repo_level_prompt_generation
https://github.com/shrivastavadisha/repo_level_prompt_generation
https://huggingface.co/anonymousTheStackRepo/trained_checkpoints
https://huggingface.co/anonymousTheStackRepo/trained_checkpoints
https://pypi.org/project/rank-bm25/
https://pypi.org/project/rank-bm25/
https://huggingface.co/Salesforce/codegen-2B-multi
https://huggingface.co/Salesforce/codegen-6B-multi
https://huggingface.co/Salesforce/codegen-16B-multi
https://huggingface.co/bigcode/santacoder
https://huggingface.co/bigcode/santacoder
https://huggingface.co/bigcode/starcoder


Under review as a conference paper at ICLR 2024

C.2 APPENDING SURROUNDING CONTEXT

Table 2 shows the performance of RepoFusion when we do not append the surrounding context to
each repo context. We see that the performance drops significantly for all strategies when compared
to when the surrounding context is appended. It should be noted that for these experiments, we used
our best RepoFusion model that is trained to take the concatenation of surrounding context and repo
context as input. It is highly likely that a RepoFusion model trained to not append the surrounding
context would suffer from much less performance drop.

Table 2: Completion success rate with and without appending surrounding context.

without
Surrounding Context

with
Surrounding Context

T-Rand 13.89±0.35 66.53±0.47
T-Rank 25.06±0.43 72.78±0.45
NT-Rank 15.57±0.36 73.60±0.44
NT-Prior-Last 17.18±0.38 74.82±0.43

C.3 PERFORMANCE OF PRETRAINED CODET5

Table 3 shows the performance on the test set when we directly use the pretrained CodeT5-base and
CodeT5-large models. For these experiments, we use the special token <extra_id_0> to prompt
the completion of the target hole. We see that the performance of these pretrained models is quite low,
thereby creating the need to finetune these models on Java repositories on the next-token prediction
objective. We see from the top section of Table 2 in the main paper that the finetuning helps a lot.

Table 3: Completion success rate on the test set for pretrained CodeT5.

Model Size
(#params)

Effective
context length

Context
type

Success Rate
(%)

CodeT5-base 0.22B 512 prior 2.42 (0.04)
CodeT5-base 0.22B 2048 prior 3.94 (0.05)
CodeT5-large 0.77B 512 prior 4.56 (0.05)
CodeT5-large 0.77B 2048 prior 9.51 (0.07)

REFERENCES

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 874–880, Online, April 2021.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of permissively
licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

3

https://openreview.net/forum?id=Bkg6RiCqY7


Under review as a conference paper at ICLR 2024

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. arXiv preprint arXiv:2206.12839, 2022.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 8696–8708,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

4


	Details on Stack-Repo
	Implementation Details
	Finetuning CodeT5
	Training RepoFusion
	Retrieval Mechanisms
	Other Baselines

	Additional Results
	Effect of Repetition
	Appending Surrounding Context
	Performance of Pretrained CodeT5


