
Probabilistic Exponential Integrators — Appendix

A Proof of Proposition 1: Structure of the transition matrix398

Proof of Proposition 1. The drift-matrix AIOUP(d,q) as given in Eq. (21) has block structure399

AIOUP(d,q) =

[
AIWP(d,q−1) Eq−1

0 L

]
, (31)

where Eq−1 := [0 . . . 0 Id]
⊤ ∈ Rdq×d. From Van Loan [47, Theorem 1], it follows400

Φ(h) =

[
exp
(
AIWP(d,q−1)h

)
Φ12(h)

0 exp(Lh)

]
, (32)

which is precisely Eq. (23). The same theorem also gives Φ12(h) as401

Φ12(h) =

∫ h

0

exp(AIWP(d,q−1)(h− τ))E
(d−1)
q−1 exp(Lτ) dτ. (33)

Its ith d× d block is readily given by402

(Φ12(h))i =

∫ h

0

E⊤
i exp(AIWP(d,q−1)(h− τ))Eq−1 exp(Lτ) dτ

=

∫ h

0

(h− τ)q−1−i

(q − 1− i)!
exp(Lτ) dτ

= hq−i

∫ 1

0

τ q−1−i

(q − 1− i)!
exp(Lh(1− τ)) dτ

= hq−iφq−i(Lh),

(34)

where the second last equality used the change of variables τ = h(1− u), and the last line follows by403

definition.404

B Proof of Proposition 2: Equivalence to a classic exponential integrator405

We first briefly recapitulate the probabilistic exponential integrator setup for the case of the once406

integrated Ornstein–Uhlenbeck process, and then provide some auxiliary results. Then, we prove407

Proposition 2 in Appendix B.3.408

B.1 The probabilistic exponential integrator with once-integrated Ornstein–Uhlenbeck prior409

The integrated Ornstein–Uhlenbeck process prior with rate parameter L results in transition densities410

Y (t+ h) | Y (t) ∼ N (Y (t+ h); Φ(h)Y (t), Q(h)), with transition matrices (from Proposition 1)411

Φ(h) = exp(Ah) =

[
I hφ1(Lh)
0 φ0(Lh)

]
, (35)

Q(h) =

∫ h

0

exp(Aτ)BB⊤ exp(A⊤τ) dτ (36)

=

∫ h

0

[
I τφ1(Lτ)
0 φ0(Lτ)

] [
0 0
0 I

] [
I τφ1(Lτ)
0 φ0(Lτ)

]⊤
dτ (37)

=

∫ h

0

[
τ2φ1(Lτ)φ1(Lτ)

⊤ τφ1(Lτ)φ0(Lτ)
⊤

τφ0(Lτ)φ1(Lτ)
⊤ φ0(Lτ)φ0(Lτ)

⊤

]
dτ, (38)
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where we assume a unit diffusion σ2 = 1. To simplify notation, we assume an equidistant time grid412

T = {tn}Nn=0 with tn = n · h for some step size h, and we denote the constant transition matrices413

simply by Φ and Q and write Yn = Y (tn).414

Before getting to the actual proof, let us also briefly recapitulate the filtering formulas that are415

computed at each solver step. Given a Gaussian distribution Yn ∼ N (Yn;µn,Σn), the prediction416

step computes417

µ−
n+1 = Φµn, (39)

Σ−
n+1 = Φ(h)ΣnΦ(h)

⊤ +Q(h). (40)

Then, the combined linearization and correction step compute418

ẑn+1 = E1µ
−
n+1 − f(E0µ

−
n+1), (41)

Sn+1 = HΣ−
n+1H

⊤, (42)

Kn+1 = Σ−
n+1H

⊤S−1
n+1, (43)

µn+1 = µ−
n+1 −Kn+1ẑn+1, (44)

Σn+1 = Σ−
n+1 −Kn+1Sn+1K

⊤
n+1, (45)

with observation matrix H = E1−LE0 = [−L I], since we perform the proposed EKL linearization.419

B.2 Auxiliary results420

In the following, we show some properties of the transition matrices and the covariances that will be421

needed in the proof of Proposition 2 later.422

First, note that by defining φ0(z) = exp z, the φ-functions satisfy the following recurrence formula:423

zφk(z) = φk−1(z)−
1

(k − 1)!
. (46)

See e.g. Hochbruck and Ostermann [14]. This property will be used throughout the remainder of the424

section.425

Lemma B.1. The transition matrices Φ(h), Q(h) of the once integrated Ornstein–Uhlenbeck process426

with rate parameter L satisfy427

HΦ(h) = [−L I] , (47)

Q(h)H⊤ =

[
h2φ2(Lh)
hφ1(Lh)

]
, (48)

HQ(h)H⊤ = hI, (49)

Proof.

HΦ(h) = (E1 − LE0)

[
I hφ1(Lh)
0 φ0(Lh)

]
= [0 φ0(Lh)]− L [I hφ1(Lh)] = [−L I] . (50)

428

Q(h)H⊤ =

∫ h

0

[
τ2φ1(Lτ)φ1(Lτ)

⊤ τφ1(Lτ)φ0(Lτ)
⊤

τφ0(Lτ)φ1(Lτ)
⊤ φ0(Lτ)φ0(Lτ)

⊤

]
H⊤ dτ (51)

=

∫ h

0

[
τφ1(Lτ)φ0(Lτ)

⊤ − Lτ2φ1(Lτ)φ1(Lτ)
⊤

φ0(Lτ)φ0(Lτ)
⊤ − Lτφ0(Lτ)φ1(Lτ)

⊤

]
dτ (52)

=

∫ h

0

[
τφ1(Lτ)

(
φ0(Lτ)

⊤ − Lτφ1(Lτ)
⊤)

φ0(Lτ)
(
φ0(Lτ)

⊤ − Lτφ1(Lτ)
⊤) ] dτ (53)

=

∫ h

0

[
τφ1(Lτ)
φ0(Lτ)

]
dτ (54)

=

[
h2φ2(Lh)
hφ1(Lh)

]
(55)
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where we used Lτφ1(Lτ) = φ0(Lτ)− I , and ∂τ
[
τkφk(Lτ)

]
= τk−1φk−1(Lτ). It follows that429

HQ(h)H⊤ = H

[
h2φ2(Lh)
hφ1(Lh)

]
= h (φ1(Lh)− Lhφ2(Lh)) = hI, (56)

where we used Lτφ2(Lτ) = φ1(Lτ)− I .430

Lemma B.2. The prediction covariance Σ−
n+1 satisfies431

Σ−
n+1H

⊤ = Q(h)H⊤. (57)

Proof. First, since the observation model is noiseless, the filtering covariance Σn satisfies432

HΣn = [0 0] . (58)

This can be shown directly from the correction step formula:433

HΣn = HΣ−
n −HKnSnK

⊤
n (59)

= HΣ−
n −H

(
Σ−

nH
⊤S−1

n

)
SnK

⊤
n (60)

= HΣ−
n −HΣ−

nH
⊤ (HΣ−

nH
⊤)−1

SnK
⊤
n (61)

= HΣ−
n − ISnK

⊤
n (62)

= HΣ−
n − Sn

(
Σ−

nH
⊤S−1

n

)⊤
(63)

= HΣ−
n − SnS

−1
n HΣ−

n (64)

= [0 0] . (65)

Next, since the observation matrix is H = [−L I], the filtering covariance Σn is structured as434

Σn =

[
I
L

]
[Σn]00

[
I L⊤] . (66)

This can be shown directly from Eq. (58):435

[0 0] = HΣ = [−L I]

[
Σ00 Σ01

Σ10 Σ11

]
= [Σ10 − LΣ00 Σ11 − LΣ01] , (67)

and thus436

Σ10 = LΣ00, (68)

Σ11 = LΣ01 = LΣ⊤
10 = LΣ00L

⊤. (69)

It follows437

Σ =

[
Σ00 LΣ00

Σ00L
⊤ LΣ00L

⊤

]
=

[
I
L

]
Σ00

[
I L⊤] . (70)

Finally, together with Lemma B.1 we can derive the result:438

Σ−
n+1H

⊤ = Φ(h)ΣnΦ(h)
⊤H⊤ +Q(h)H⊤ (71)

= Φ(h)

[
I
L

]
Σ̄n

[
I L⊤] [−L⊤

I

]
+Q(h)H⊤ (72)

= Φ(h)

[
I
L

]
Σ̄n · 0 +Q(h)H⊤ (73)

= Q(h)H⊤. (74)

439
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B.3 Proof of Proposition 2440

With these results, we can now prove Proposition 2.441

Proof of Proposition 2. We prove the proposition by induction, showing that the filtering means are442

all of the form443

µn :=

[
yn

Lyn +N(ỹn)

]
, (75)

where yn, ỹn are defined as444

ỹ0 := y0, (76)
ỹn+1 := φ0(Lh)yn + hφ1(Lh)N(ỹn), (77)
yn+1 := φ0(Lh)yn + hφ1(Lh)N(ỹn)− hφ2(Lh) (N(ỹn)−N(ỹn+1)) . (78)

This result includes the statement of Proposition 2.445

Base case n = 0 The initial distribution of the probabilistic solver is chosen as446

µ0 =

[
y0

Ly0 +N(ỹ0)

]
,Σ0 = 0. (79)

This proves the base case n = 0.447

Induction step n → n+ 1 Now, let448

µn =

[
yn

Lyn +N(ỹn)

]
(80)

be the filtering mean at step n and Σn be the filtering covariance. The prediction mean is of the form449

µ−
n+1 = Φ(h)µn =

[
yn + hφ1(Lh)(Lyn +N(ỹn))

φ0(Lh)(Lyn +N(ỹn))

]
=

[
φ0(Lh)yn + hφ1(Lh)N(ỹn)

φ0(Lh)(Lyn +N(ỹn))

]
. (81)

The residual ẑn+1 is then of the form450

ẑn+1 = E1µ
−
n+1 − f(E0µ

−
n+1) (82)

= φ0(Lh)(Lyn +N(ỹn))− f (φ0(Lh)yn + hφ1(Lh)N(ỹn)) (83)
= φ0(Lh)(Lyn +N(ỹn))− L (φ0(Lh)yn + hφ1(Lh)N(ỹn))−N (ỹn+1) (84)
= φ0(Lh)Lyn + φ0(Lh)N(ỹn)− Lφ0(Lh)yn − Lhφ1(Lh)N(ỹn)−N (ỹn+1) (85)
= (φ0(Lh)− Lhφ1(Lh))N(ỹn)−N (ỹn+1) (86)
= N(ỹn)−N (ỹn+1) , (87)

(88)

where we used properties of the φ-functions, namely Lhφ1(Lh) = φ0(Lh) and the commutativity451

φ0(Lh)L = Lφ0(Lh). With Lemma B.2, the residual covariance Sn+1 and Kalman gain Kn+1 are452

then of the form453

Sn+1 = HΣ−
n+1H

⊤ = HQ(h)H⊤ = hI, (89)

Kn+1 = Σ−
n+1H

⊤S−1
n+1 = Q(h)H⊤ (hI)

−1
=

[
hφ2(Lh)
φ1(Lh)

]
. (90)

This gives the updated mean454

µn+1 = µ−
n+1 −Kn+1ẑn+1 (91)

=

[
φ0(Lh)yn + hφ1(Lh)N(ỹn)

φ0(Lh)(Lyn +N(ỹn))

]
−
[
hφ2(Lh)
φ1(Lh)

]
(N(ỹn)−N(ỹn+1)) (92)

=

[
φ0(Lh)yn + hφ1(Lh)N(ỹn)− hφ2(Lh) (N(ỹn)−N(ỹn+1))

φ0(Lh)(Lyn +N(ỹn))− φ1(Lh) (N(ỹn)−N(ỹn+1))

]
. (93)
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This proves the first half of the mean recursion:455

E0µn+1 = φ0(Lh)yn + hφ1(Lh)N(ỹn)− hφ2(Lh) (N(ỹn)−N(ỹn+1)) = yn+1. (94)

It is left to show that456

E1µn+1 = Lyn+1 −N(ỹn+1). (95)

Starting from the right-hand side, we have457

Lyn+1 +N(ỹn+1) (96)
= L (φ0(Lh)yn + hφ1(Lh)N(ỹn)− hφ2(Lh) (N(ỹn)−N(ỹn+1))) +N(ỹn+1) (97)
= φ0(Lh)Lyn + Lhφ1(Lh)N(ỹn)− Lhφ2(Lh) (N(ỹn)−N(ỹn+1))N(ỹn+1) (98)
= φ0(Lh)Lyn + (φ0(Lh)− I)N(ỹn)− (φ1(Lh)− I) (N(ỹn)−N(ỹn+1))N(ỹn+1) (99)
= φ0(Lh)(Lyn +N(ỹn))− φ1(Lh)(N(ỹn)−N(ỹn+1)) (100)
= E1µn+1. (101)

This concludes the proof of the mean recursion and thus shows the equivalence of the two recursions.458

459

C Proof of Proposition 3: L-stability460

We first provide definitions of L-stability and A-stability, following [26, Section 8.6].461

Definition 1 (L-stability). A one-step method is said to be L-stable if it is A-stable and, in addition,462

when applied to the scalar test-equation ẏ(t) = λy(t), λ ∈ C a complex constant with Re(λ) < 0, it463

yields yn+1 = R(hλ)yn, and R(hλ) → 0 as Re(hλ) → −∞.464

Definition 2 (A-stability). A one-step method is said to be A-stable if its region of absolute stability465

contains the whole of the left complex half-plane. That is, when applied to the scalar test-equation466

ẏ(t) = λy(t) with λ ∈ C a complex constant with Re(λ) < 0, the method yields yn+1 = R(hλ)yn,467

and {z ∈ C : Re(z) < 0} ⊂ {z ∈ C : R(z) < 1}.468

Proof of Proposition 3. Both L-stability and A-stability directly follow from Remark 1: Since the469

probabilistic exponential integrator solves linear ODEs exactly its stability function is the exponential470

function, i.e. R(z) = exp(z). A-stability and L-stability then follow: Since C− ⊂ {z : |R(z)| ≤ 1}471

holds the method is A-stable. And since |R(z)| → 0 as Re(z) → −∞ the method is L-stable.472

D Experiment details473

D.1 Burger’s equation474

Burger’s equation is a semi-linear partial differential equation (PDE) of the form475

∂tu(x, t) = −u(x, t)∂xu(x, t) +D∂2
xu(x, t), x ∈ Ω, t ∈ [0, T ], (102)

with diffusion coefficient D ∈ R+. We discretize the spatial domain Ω on a finite grid and approxi-476

mate the spatial derivatives with finite differences to obtain a semi-linear ODE of the form477

ẏ(t) = D · L · y(t) + F (y(t)), t ∈ [0, T ], (103)

with N -dimensional y(t) ∈ RN , L ∈ RN×N the finite difference approximation of the Laplace478

operator ∂2
x, and a non-linear part F .479

More specifically, we consider a domain Ω = (0, 1), which we discretize with a grid of N = 250480

equidistant locations, thus we have ∆x = 1/N . We consider zero-Dirichlet boundary conditions,481

that is, u(0, t) = u(1, t) = 0. The discrete Laplacian is then482

[L]ij =
1

∆x2
·


−2 if i = j,

1 if i = j ± 1,

0 otherwise.
(104)
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The non-linear part of the discretized Burger’s equation results from another finite-difference approx-483

imation of the term u · ∂xu, and is chosen as484

[F (y)]i =
1

4∆x


y22 if i = 1,

y2d−1 if i = d,

y2i+1 − y2i−1 else.
(105)

The initial condition is chosen as485

u(x, 0) = sin(3πx)3(1− x)3/2. (106)

We consider an integration time-span t ∈ [0, 1], and choose a diffusion coefficient D = 0.075.486

D.2 Reaction-diffusion model487

The reaction-diffusion model presented in the paper, with logistic reaction term, has been used to488

describe the growth and spread of biological populations [21]. It is given by a semi-linear PDE489

∂tu(x, t) = D∂2
xu(x, t) +R(u(x, t)), x ∈ Ω, t ∈ [0, T ], (107)

where D ∈ R+ is the diffusion coefficient and R(u) = u(1 − u) is a logistic reaction term. We490

discretize the spatial domain Ω on a finite grid and approximate the spatial derivatives with finite491

differences, and obtain a semi-linear ODE of the form492

ẏ(t) = D · L · y(t) +R(y(t)), t ∈ [0, T ], (108)

with N -dimensional y(t) ∈ RN , L ∈ RN×N the finite difference approximation of the Laplace493

operator, and the reaction term R is as before but applied element-wise.494

We again consider a domain Ω = (0, 1), which we discretize on a grid of N = 100 points. This time495

we consider zero-Neumann conditions, that is, ∂xu(0, t) = ∂xu(1, t) = 0. Including these directly496

into the finite-difference discretization, the discrete Laplacian is then497

[L]ij =
1

∆x2
·


−1 if i = j = 1 or i = j = d,

−2 if i = j,

1 if i = j ± 1,

0 otherwise.

(109)

The initial condition is chosen as498

u(x, 0) =
1

1 + e30x−10
. (110)

The discrete ODE is then solved on a time-span t ∈ [0, 2], and we choose a diffusion coefficient499

D = 0.25.500
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