
A Additional related works

Non-asymptotic sample complexity guarantees for RL algorithms have been studied extensively in
the tabular setting over recent years, e.g., Azar et al. (2013); Jaksch et al. (2010); Azar et al. (2017);
Osband et al. (2016); Even-Dar and Mansour (2003); Dann and Brunskill (2015); Sidford et al. (2018);
Zhang et al. (2020); Li et al. (2020a); Agarwal et al. (2020b); Yang et al. (2021); Li et al. (2020b,
2021b,a); Wainwright (2019); Agarwal et al. (2020c); Cen et al. (2020), which have been, to a large
extent, well-understood. The sample complexity typically scales at least linearly with respect to the
state space size |S| and the action space size |A|, and therefore, falls short of being sample-efficient
when the state/action space is of astronomical size. In contrast, theoretical investigation of RL with
function approximations is still in its infancy due to the complicated interaction between the dynamic
of the MDP with the function class. In fact, theoretical support remains highly inadequate even
when it comes to linear function approximation. For example, plain Q-learning algorithms coupled
with linear approximation might easily diverge (Baird, 1995). It is thus of paramount interest to
investigate how to design algorithms that can efficiently exploit the low-dimensional structure without
compromising learning accuracy. In what follows, we shall discuss some of the most relevant results
to ours. The reader is also referred to the summaries of recent literature in Du et al. (2020a, 2021).

Linear MDP. Yang and Wang (2019); Jin et al. (2020) proposed the linear MDP model, which can
be regarded as a generalization of the linear bandit model (Abbasi-Yadkori et al., 2011; Dimakopoulou
et al., 2019) and has attracted enormous recent activity (see e.g., Wang et al. (2019); Yang and Wang
(2020); Zanette et al. (2020a); He et al. (2020); Du et al. (2020a); Wang et al. (2020a); Hao et al.
(2020); Wang et al. (2021a); Wei et al. (2021); Touati and Vincent (2020) and the references therein).
The results have further been generalized to scenarios with much larger feature dimension by
exploiting proper kernel function approximation (Yang et al., 2020; Long and Han, 2021).

From completeness to realizability. Du et al. (2020a) considered the policy completeness assump-
tion, which assumes that the Q-functions of all policies reside within a function class that contains
all functions that are linearly representable in a known low-dimensional feature space. In particular,
Du et al. (2020a); Lattimore et al. (2020) examined how the model misspecification error propagates
and impacts the sample efficiency of policy learning. A related line of works assumed that the linear
function class is closed or has low approximation error under the Bellman operator, referred to as low
inherent Bellman error (Munos, 2005; Shariff and Szepesvári, 2020; Zanette et al., 2019, 2020b).

These assumptions remain much stronger than the realizability assumption considered herein, where
only the optimal Q-function Q? is assumed to be linearly representable. Wen and Van Roy (2017);
Du et al. (2020b) showed that sample-efficient RL is feasible in deterministic systems, which has
been extended to stochastic systems with low variance in Du et al. (2019) under additional gap
assumptions. In addition, Weisz et al. (2021b) established exponential sample complexity lower
bounds under the generative model when only Q? is linearly realizable; their construction critically
relied on making the action set exponentially large. When restricted to a constant-size action space,
Weisz et al. (2021a) provided a sample-efficient algorithm when only V ? is linearly realizable, where
their sampling protocol essentially matches ours. Recently, Du et al. (2021) introduced the bilinear
class and proposed sample-efficient algorithms when both V ? and Q? are linearly realizable in the
online setting.

Beyond linear function approximation. Moving beyond linear function approximation, another
line of works (Ayoub et al., 2020; Zhou et al., 2020) investigated mixtures of linear MDPs. Moreover,
additional efforts have been dedicated to studying the low-rank MDP model (without knowing a
priori the feature space), which aims to learn the low-dimensional features as part of the RL problem;
partial examples include Agarwal et al. (2020a); Modi et al. (2021). We conclude by mentioning in
passing other attempts in identifying tractable families of MDPs with structural assumptions, such as
Jin et al. (2021); Jiang et al. (2017); Wang et al. (2020b); Osband and Van Roy (2014).

B Analysis

Before proceeding, we introduce several convenient notation to be used throughout the proof. As
before, the total number of paths that have been sampled is denoted by K. For any (s, a, h) ∈
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S ×A× [H], we abbreviate

Ph,s,a := Ph(· | s, a) ∈ R|S|. (22)

For any time step h in the k-th path, we define the empirical distribution vector P kh ∈ R|S| such that

P kh (s) :=

{
1, if s = skh+1;

0, if s 6= skh+1.
(23)

The value function estimate V kh : S → R at time step h after observing the k-th path is defined as

∀(s, h, k) ∈ S × [H]× [K] : V kh (s) := max
a∈A

Qkh(s, a), (24)

where the iterate Qkh is defined in (15d).

Further, we remind the reader the crucial notation Ikh introduced in (13), which represents the set of
paths between the 1st and the k-th paths that update the estimate of θ?h. We have the following basic
facts.
Lemma 1. For all 1 ≤ k ≤ K and 1 ≤ h ≤ H , one has

Ikh ⊆ Ikh+1. (25)

In addition, ∣∣IK1 ∣∣ = N and
∣∣IKH ∣∣ = K. (26)

Proof. This lemma is somewhat self-evident from our construction, and hence we only provide brief
explanation. The first claim (25) holds true since if θih is updated in the i-th path, then θij (j ≥ h)
must also be updated. The second claim (26) arises immediately from the definition of N (i.e., the
number of episodes) and K (i.e., the number of paths).

B.1 Main steps for proving Theorem 1

In order to bound the regret for our proposed estimate, we first make note of an elementary relation
that follows immediately from our construction:

N∑
n=1

(
V ?1 (s

(n)
1 )− V π(n)

1 (s
(n)
1 )
)

=
∑
k∈IK1

(
V ?1 (sk1)− V πk1 (sk1)

)
, (27)

where we recall the definition of IK1 in (13). It thus comes down to bounding the right-hand side of
(27).

Step 1: showing that Qkh is an optimistic view of Q?h. Before proceeding, let us first develop a
sandwich bound pertaining to the estimate error of the estimate Qkh delivered by Algorithm 2. The
proof of this result is postponed to Section C.1.
Lemma 2. Suppose that cβ ≥ 8. With probability at least 1− δ, the following bound

0 ≤ Qkh(s, a)−Q?h(s, a) ≤ 2bkh(s, a) (28)

holds simultaneously for all (s, a, k, h) ∈ S ×A× [K]× [H].

In words, this lemma makes apparent that Qkh is an over-estimate of Q?h, with the estimation error
dominated by the UCB bonus term bkh. This lemma forms the basis of the optimism principle.

Step 2: bounding the term on the right-hand side of (27). To control the difference V ?1 (sk1)−
V π

k

1 (sk1) for each k, we establish the following two properties. First, combining Lemma 2 with the
definition (24) (i.e., V k−1

h (skh) = maxaQ
k−1
h (skh, a)), one can easily see that

V k−1
h (skh) ≥ Qk−1

h

(
skh, π

?(skh, h)
)
≥ Q?h

(
skh, π

?
h(skh)

)
= V ?h (skh), (29)
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namely, V k−1
h is an over-estimate of V ?h . In addition, from the definition akh = πkh(skh) =

arg maxaQ
k−1
h (skh, a), one can decompose the difference V k−1

h (skh)− V πkh (skh) as follows

V k−1
h (skh)− V πkh (skh) = Qk−1

h (skh, a
k
h)−Qπkh (skh, a

k
h)

= Qk−1
h (skh, a

k
h)−Q?h(skh, a

k
h) +Q?h(skh, a

k
h)−Qπkh (skh, a

k
h)

= Qk−1
h (skh, a

k
h)−Q?h(skh, a

k
h) + Ph,skh,akh(V ?h+1 − V π

k

h+1)

= Qk−1
h (skh, a

k
h)−Q?h(skh, a

k
h) +

(
Ph,skh,akh − P

k
h

)
(V ?h+1 − V π

k

h+1) + V ?h+1(skh+1)− V πkh+1(skh+1),

(30)

where the third line invokes Bellman equation Qπ(s, a) = r(s, a) + Ph,s,aV
π for any π, and the last

line makes use of the notation (23). Combining the above two properties leads to∑
k∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
≤
∑
k∈IK1

[
V k−1

1 (sk1)− V πk1 (sk1)
]

=
∑
k∈IK1

[
V ?2 (sk2)− V πk2 (sk2)

]
+
∑
k∈IK1

[
Qk−1

1 (sk1 , a
k
1)−Q?1(sk1 , a

k
1) + (P1,sk1 ,a

k
1
− P k1 )(V ?2 − V π

k

2 )
]

≤
∑
k∈IK2

[
V ?2 (sk2)− V πk2 (sk2)

]
+
∑
k∈IK1

[
Qk−1

1 (sk1 , a
k
1)−Q?1(sk1 , a

k
1) + (P1,sk1 ,a

k
1
− P k1 )(V ?2 − V π

k

2 )
]
,

where the last line comes from the observation that IKh ⊆ IKh+1 (see Lemma 1). Applying the above
relation recursively and using the fact that V πH+1 = 0 for any π, we see that with probability at least
1− δ,∑
k∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
≤

H∑
h=1

∑
k∈IKh

[
Qk−1
h (skh, a

k
h)−Q?h(skh, a

k
h) + (Ph,skh,akh − P

k
h )(V ?h+1 − V π

k

h+1)
]

≤
H∑
h=1

∑
k∈IKh

[
2bk−1
h (skh, a

k
h) + (Ph,skh,akh − P

k
h )(V ?h+1 − V π

k

h+1)
]

=

H∑
h=1

∑
k∈IKh

2bk−1
h (skh, a

k
h)

︸ ︷︷ ︸
=: ξ1

+

H∑
h=1

∑
k∈IKh

(Ph,skh,akh − P
k
h )(V ?h+1 − V π

k

h+1)

︸ ︷︷ ︸
=: ξ2

,

where the second inequality invokes Lemma 2. Therefore, it is sufficient to bound ξ1 and ξ2 separately,
which we accomplish as follows.

• Regarding the term ξ2, we first make the observation that
{

(Ph,skh,akh − P
k
h )(V ?h+1 − V π

k

h+1)
}

forms a martingale difference sequence, as πkj is determined by Qk−1
j (skj , a). Moreover, the

sequence satisfies the trivial bound∣∣∣(Ph,skh,akh − P kh )(V ?h+1 − V π
k

h+1)
∣∣∣ ≤ H.

These properties allow us to apply the celebrated Azuma-Hoeffding inequality (Azuma, 1967),
which together with the trivial upper bound

∑H
h=1 |IKh | ≤ KH ensures that

|ξ2| =
∣∣∣∣ H∑
h=1

∑
k∈IKh

(Ph,skh,akh − P
k
h )(V ?h+1 − V π

k

h+1)

∣∣∣∣ ≤ H
√
HK log

2

δ
(31)

with probability at least 1− δ.
• Turning to the term ξ1, we apply the Cauchy-Schwarz inequality to derive

ξ1 =

H∑
h=1

∑
k∈IKh

2β

√
ϕh(skh, a

k
h)>
(
Λk−1
h

)−1
ϕh(skh, a

k
h)
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≤ 2β
√
KH

√√√√√ H∑
h=1

∑
k∈IKh

ϕh(skh, a
k
h)>
(
Λk−1
h

)−1
ϕh(skh, a

k
h). (32)

To further control the right-hand side of (32), we resort to Lemma 4 in Section C.3 — a result
borrowed from (Abbasi-Yadkori et al., 2011) — which immediately leads to

ξ1 ≤ 2β
√
KH ·

√
2Hd log(KH) = 2Hβ

√
2dK log(KH). (33)

Putting everything together gives

∑
k∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
≤ 2Hβ

√
2dK log(KH) +

√
H3K log

2

δ
≤ 4cβ

√
d2H6K log2 KH

δ
,

(34)

where the last inequality makes use of the definition β := cβ

√
dH4 log KH

δ .

Step 3: bounding the number of state revisits. To this end, we make the observation that
N =

∣∣IK1 ∣∣ and K =
∣∣IKH ∣∣ (see Lemma 1). With this in mind, we can bound the total number K −N

of state revisits as follows:

K −N =
∣∣IKH ∣∣− ∣∣IK1 ∣∣ =

H∑
h=1

( ∣∣IKh+1

∣∣− ∣∣IKh ∣∣ ) ≤ 4c2βd
2H5 log2 KH

δ

∆2
gap

. (35)

Here, the above inequality is a consequence of the auxiliary lemma below, whose proof is provided in
Section C.2.

Lemma 3. Suppose that KH ≥ 2. For all 1 ≤ h < H , the following condition

∣∣IKh+1 \ IKh
∣∣ ≤ 4c2βd

2H4 log2 KH
δ

∆2
gap

(36)

holds, where cβ > 0 is the pre-constant defined in (16).

Step 4: sample complexity analysis. Recall that T stands for the total number of samples collected,
which clearly satisfies T ≥ K. Consequently, the above results (35) and (34) taken collectively lead
to

0 ≤ K −N ≤
4c2βd

2H5 log2 TH
δ

∆2
gap

≤ N =⇒ N ≤ K ≤ 2N, (37)

provided that N ≥ 4c2βd
2H5 log2 HT

δ

∆2
gap

. This together with the fact T ≤ KH implies that

T ≤ KH ≤ 2NH =⇒ N ≥ T

2H
. (38)

As a result, we can invoke (34) to obtain

1

N

N∑
n=1

(
V ?1 (s

(n)
1 )− V π(n)

1 (s
(n)
1 )
)

=
1

N

∑
k∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
≤ 4cβ

√
d2H6K log2 HT

δ

N2

≤ 8cβ

√
d2H7 log2 HT

δ

T
, (39)

where the last relation arises from both (37) and (38). This concludes the proof.
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B.2 Analysis for regret over the paths (proof of (21))

Proof of (21a). Invoking the crude bound V ?(sk1)− V πk(sk1) ≤ H leads to

Regretpath(K) =
∑
k∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
+
∑
k/∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
≤
∑
k∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
+H

(
K − |IK1 |

)
=
∑
k∈IK1

[
V ?1 (sk1)− V πk1 (sk1)

]
+H(K −N)

≤ 4cβ

√
d2H6K log2 HT

δ
+

4c2βd
2H6 log2 TH

δ

∆2
gap

, (40)

where the penultimate line relies on (26), and the last relation holds due to (34) and (35).

Proof of (21b) (logarithmic regret). As it turns out, this logarithmic regret bound (w.r.t. K) can
be established by combining our result with a result derived in Yang et al. (2021). To be precise, by
defining ∆h(s, a) := V ?h (s)−Q?h(s, a), we make the following observation:

Regretpath(K) =

K∑
k=1

(
V ?1 (sk1)− V πk1 (sk1)

)
=

K∑
k=1

E

[
H∑
h=1

∆h(skh, a
k
h) | πk, sk1

]
,

which has been derived in Yang et al. (2021, Equation (1)). Unconditioning gives

E
[
Regretpath(K)

]
= E

[
K∑
k=1

(
V ?1 (sk1)− V πk1 (sk1)

)]
= E

[
K∑
k=1

H∑
h=1

∆h(skh, a
k
h)

]
= E

[
H∑
h=1

K∑
k=1

∆h(skh, a
k
h)

]

= E

[
H∑
h=1

∑
k∈IKh

∆h(skh, a
k
h)

]
+ E

[
H∑
h=1

∑
k/∈IKh

∆h(skh, a
k
h)

]
. (41)

In addition, we make note of the fact that: with probability at least 1− δ, one has

∆h(skh, a
k
h) = 0 for all k ∈ IKh ,

which follows immediately from the update rule of Algorithm 2 (cf. line 14) and Lemma 2. This
taken collectively with the trivial bound ∆h(skh, a

k
h) ≤ H gives

E

[
H∑
h=1

∑
k∈IKh

∆h(skh, a
k
h)

]
≤ (1− δ) · 0 + δ ·

H∑
h=1

∑
k∈IKh

H ≤ H2Kδ.

Substitution into (41) yields

E
[
Regretpath(K)

]
≤ H2Kδ +

H∑
h=1

∑
k/∈IKh

E
[
∆h(skh, a

k
h)
]
≤ H2Kδ +

H∑
h=1

∑
k/∈IKh

H

≤ H2Kδ +H2(K −N) ≤ H2Kδ +
4c2βd

2H7 log2 TH
δ

∆2
gap

.

Here, the second inequality follows from the trivial upper bound ∆h(skh, a
k
h) ≤ H , the third inequality

holds true sinceK−
∣∣IKh ∣∣ ≤ K− ∣∣IKH ∣∣ = K−N (see Lemma 1), whereas the last inequality is valid

due to (35). Taking δ = 1/K and recalling that T ≤ KH , we arrive at the advertised logarithmic
regret bound:

E
[
Regretpath(K)

]
≤

17c2βd
2H7 log2(KH)

∆2
gap

.
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C Proof of technical lemmas

C.1 Proof of Lemma 2

Step 1: decomposition of θkh − θ?h. To begin with, recalling the update rule (15b), we have the
following decomposition

θkh − θ?h =
(
Λkh
)−1
{∑
i∈Ikh

ϕh(sih, a
i
h)
[
rh(sih, a

i
h) +

〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉]
− Λkhθ

?
h

}

=
(
Λkh
)−1
{∑
i∈Ikh

ϕh(sih, a
i
h)
[〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉
− Ph,sih,aihV

?
h+1

]
− θ?h

}
. (42)

To see why the second identity holds, note that from the definition of Λkh (cf. (15a)) we have

Λkhθ
?
h =

∑
i∈Ikh

ϕh(sih, a
i
h)
(
ϕh(sih, a

i
h)
)>
θ?h + θ?h

=
∑
i∈Ikh

ϕh(sih, a
i
h)Q?h(sih, a

i
h) + θ?h

=
∑
i∈Ikh

ϕh(sih, a
i
h)
[
rh(sih, a

i
h) + Ph,sih,aihV

?
h+1

]
+ θ?h,

where the second and the third identities invoke the linear realizability assumption of Q?h and the
Bellman equation, respectively.

As a result of (42), to control the difference θkh − θ?h, it is sufficient to bound〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉
−Ph,sih,aihV

?
h+1. Towards this, we start with the following decomposition〈

ϕh+1(sih+1, a
i
h+1), θkh+1

〉
− Ph,sih,aihV

?
h+1 =

〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉
−Q?h+1(sih+1, a

i
h+1)

+Q?h+1(sih+1, a
i
h+1)− V ?h+1(sih+1) + V ?h+1(sih+1)− Ph,sih,aihV

?
h+1.

For notational simplicity, let us define

εkh :=
[〈
ϕh(sih, a

i
h), θkh

〉
−Q?h(sih, a

i
h)
]
i∈Ikh

∈ R|I
k
h|, (43a)

δkh :=
[
Q?h+1(sih+1, a

i
h+1)− V ?h+1(sih+1)

]
i∈Ikh

∈ R|I
k
h|, (43b)

ξkh :=
[
V ?h+1(sih+1)− Ph,sih,aihV

?
h+1

]
i∈Ikh

∈ R|I
k
h|, (43c)

Φkh :=
[
ϕh(sih, a

i
h)
]
i∈Ikh

∈ Rd×|I
k
h|. (43d)

Here and throughout, for any z = [zi]1≤i≤K , the vector [zi]i∈Ikh denotes a subvector of z formed
by the entries with indices coming from Ikh ; for any set of vectors w1, · · · , wK , the matrix [wi]i∈Ikh
represents a submatrix of [w1, · · · , wK ] whose columns are formed by the vectors with indices
coming from Ikh . Armed with this set of notation, θkh − θ?h can be succinctly expressed as

θkh − θ?h =
(
Λkh
)−1
{

Φkh

([
εkh+1

]
i∈Ikh

+ δkh + ξkh

)
− θ?h

}
, (44)

where we further define[
εkh+1

]
i∈Ikh

:=
[〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉
−Q?h+1(sih+1, a

i
h+1)

]
i∈Ikh+1∩I

k
h

;

in other words, we consider the vector εkh+1 when restricted to the index set Ikh+1 ∩ Ikh . Recognizing
that Ikh ⊆ Ikh+1 (see Lemma 1), we can also simply write[

εkh+1

]
i∈Ikh

=
[〈
ϕh+1(sih+1, a

i
h+1), θkh+1

〉
−Q?h+1(sih+1, a

i
h+1)

]
i∈Ikh

.
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Step 2: decomposition of Qkh(s, a) − Q?h(s, a). We now employ the above decomposition of
θkh − θ?h to help control Qkh(s, a) − Q?h(s, a) — the target quantity of Lemma 2. By virtue of the
relation (44), our estimate

〈
ϕh(s, a), θkh

〉
of the linear representation Q?h(s, a) =

〈
ϕh(s, a), θ?h

〉
satisfies∣∣〈ϕh(s, a), θkh

〉
−Q?h(s, a)

∣∣ =
∣∣〈ϕh(s, a), θkh − θ?h

〉∣∣
=
∣∣∣ϕh(s, a)>

(
Λkh
)−1
{

Φkh
( [
εkh+1

]
i∈Ikh

+ δkh + ξkh
)
− θ?h

}∣∣∣
≤
∥∥∥(Λkh)−1/2

ϕh(s, a)
∥∥∥

2
·(∥∥∥(Λkh)−1/2

Φkh

∥∥∥{∥∥εkh+1

∥∥
2

+
∥∥δkh∥∥2

}
+
∥∥∥(Λkh)−1/2

Φkhξ
k
h

∥∥∥
2

+
∥∥∥(Λkh)−1/2

∥∥∥ ‖θ?h‖2) ,
where ‖M‖ denotes the spectral norm of a matrix M . Here, the last inequality follows from the
Cauchy-Schwarz inequality and the triangle inequality. Now, from the definition

Λkh =
∑
i∈Ikh

ϕh(sih, a
i
h)ϕh(sih, a

i
h)> + I = Φkh(Φkh)> + I, (45)

it is easily seen that
∥∥(Λkh)−1/2∥∥ ≤ 1 and

∥∥(Λkh)−1/2
Φkh
∥∥ ≤ 1. Consequently, it is guaranteed that∣∣〈ϕh(s, a), θkh

〉
−Q?h(s, a)

∣∣
≤
(∥∥εkh+1

∥∥
2

+
∥∥δkh∥∥2

+
∥∥(Λkh)−1/2

Φkhξ
k
h

∥∥
2

+ ‖θ?h‖2
)
·
∥∥∥(Λkh)−1/2

ϕh(s, a)
∥∥∥

2
. (46)

In the sequel, we seek to establish, by induction, that∣∣〈ϕh(s, a), θkh
〉
−Q?h(s, a)

∣∣ ≤ bkh(s, a). (47)

If this condition were true, then combining this with the definition (see (15d))

Qkh(s, a) = min
{〈
ϕh(s, a), θkh

〉
+ bkh(s, a), H

}
and the constraint Q?h(s, a) ≤ H would immediately lead to

Qkh(s, a)−Q?h(s, a) ≤
∣∣〈ϕh(s, a), θkh

〉
+ bkh(s, a)−Q?h(s, a)

∣∣ ≤ 2bkh(s, a),

Qkh(s, a)−Q?h(s, a) ≥
{

0, if Qkh(s, a) ≥ H,
bkh(s, a)−

∣∣〈ϕh(s, a), θkh
〉
−Q?h(s, a)

∣∣ ≥ 0, else,

as claimed in the inequality (28) of this lemma. Consequently, everything boils down to establishing
(47), which forms the main content of the next setp.

Step 3: proof of the inequality (47). The proof of this inequality proceeds by bounding each term
in the relation (46).

To start with, we establish an upper bound on
∥∥∥(Λkh)−1/2

Φkhξ
k
h

∥∥∥
2

as required in our advertised
inequality (47); that is, with probability at least 1− δ,∥∥∥(Λkj )−1/2

Φkj ξ
k
j

∥∥∥
2
≤
√
H2

(
d log(KH) + 2 log

KH

δ

)
≤ 2

√
H2d log

KH

δ
(48)

holds simultaneously for all 1 ≤ j ≤ H and 1 ≤ k ≤ K. Towards this end, let us define

Xi := V ?j+1(sij+1)− Pj,sij ,aijV
?
j+1. (49)

It is easily seen that {Xi}i∈IKj forms a martingale sequence. In addition, we have the trivial upper
bound |Xi| ≤ H . Therefore, applying the concentration inequality for self-normalized processes (see
Lemma 4 in Section C.3), we can deduce that∥∥∥(Λkj )−1/2

Φkj ξ
k
j

∥∥∥
2

=
∥∥∥(Λkj )−1/2 ∑

i∈Ikj

ϕj(s
i
j , a

i
j)Xi

∥∥∥
2
≤

√√√√H2 log

(
det
(
Λkj
)

det
(
Λ0
j

)
δ2

)

22



≤
√
H2

(
d log(KH) + 2 log

1

δ

)
(50)

holds with probability at least 1− δ. Here, the first inequality comes from Lemma 5 in Section C.3,
whereas the second inequality is a consequence of Lemma 4 in Section C.3. Taking the union bound
over j = 1, . . . ,H and k = 1, . . . ,K yields the required relation (48).

Armed with the above inequality, we can move on to establish the inequality (47) by induction,
working backwards. First, we observe that when h = H + 1, the inequality (47) holds true trivially
(due to the initialization θkH+1 = 0 and the fact Q?H+1 = 0). Next, let us assume that the claim holds
for h+ 1, . . . ,H + 1, and show that the claim continues to hold for step h. To this end, it is sufficient
to bound the terms in (46) separately.

• The term ‖δkj ‖2. From the induction hypothesis, the inequality (47) holds for h+ 1, . . . ,H + 1.
For any j obeying h ≤ j ≤ H and any i ∈ Ikj , this in turn guarantees that

V ?j+1(sij+1) = Q?j+1

(
sij+1, π

?(sij+1)
)
≤ Qi−1

j+1

(
sij+1, π

?(sij+1)
)
≤ Qi−1

j+1(sij+1, a
i
j+1)

≤
〈
ϕh(sij+1, a

i
j+1), θi−1

j+1

〉
+ bi−1

j+1(sij+1, a
i
j+1).

Here, the second inequality follows since aij+1 is chosen to be an action maximizing
Qi−1
j+1(sij+1, ·). In the meantime, the induction hypothesis (47) for h+ 1, . . . ,H + 1 also implies

Q?j+1(sij+1, a
i
j+1) ≥

〈
ϕh(sij+1, a

i
j+1), θi−1

j+1

〉
− bi−1

j+1(sij+1, a
i
j+1)

for all j obeying h ≤ j ≤ H . Taken collectively, the above two inequalities demonstrate that

0 ≤ V ?j+1(sij+1)−Q?j+1(sij+1, a
i
j+1) ≤ 2bi−1

j+1(sij+1, a
i
j+1), i ∈ Ikj ,

where the first inequality holds trivially since V ?j+1(s) = maxaQ
?
j+1(s, a). Then, given that

i ∈ Ikj , one necessarily has bi−1
j+1(sij+1, a

i
j+1) < ∆gap/2, which combined with the sub-optimality

gap assumption (9) implies that aij+1 cannot be a sub-optimal action in state sij+1. Consequently,
we reach

V ?j+1(sij+1)−Q?j+1(sij+1, a
i
j+1) = 0 for all i ∈ Ikj ,

and as a result,

δkj = 0. (51)

• The term ‖εkh+1‖2. Recall that the decomposition (44) together with the assumption Q?h(s, a) =

〈ϕh(s, a), θ?h〉 allows us to write εkh (cf. (43a)) as follows

εkh =
(
Φkh
)> (

θkh − θ?h
)

=
(
Φkh
)> (

Λkh
)−1
{

Φkh
( [
εkh+1

]
i∈Ikh

+ δkh + ξkh
)
− θ?h

}
.

Combining this with the basic properties ‖(Φkh)>
(
Λkh
)−1/2‖ ≤ 1, ‖

(
Λkh
)−1/2‖ ≤ 1, and IKh ⊆

IKh+1 yields

‖εkh‖2 =
∥∥∥(Φkh)> (Λkh)−1

{
Φkh
( [
εkh+1

]
i∈Ikh

+ δkh + ξkh
)
− θ?h

}∥∥∥
2

≤
∥∥εkh+1

∥∥
2

+
∥∥δkh∥∥2

+
∥∥∥(Λkh)−1/2

Φkhξ
k
h

∥∥∥
2

+ ‖θ?h‖2 . (52)

Applying this inequality recursively leads to

‖εkh‖2 ≤
∥∥εkH+1

∥∥
2

+
∑

h≤j≤H

[
‖δkj ‖2 +

∥∥∥(Λkh)−1/2
Φkj ξ

k
j

∥∥∥
2

+ ‖θ?j ‖2
]

≤ 4

√
dH4 log

KH

δ
, (53)

where the last inequality holds by putting together the property εkH+1 = 0, the inequalities (48)
and (51), and the assumption that ‖θ?j ‖2 ≤ 2H

√
d (see (8)).
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Combining the inequalities (48), (51), (53) with the relation (46), we arrive at∣∣〈ϕh(s, a), θkh
〉
−Q?h(s, a)

∣∣ ≤ (4

√
dH4 log

KH

δ
+ 2

√
H2d log

KH

δ
+ 2H

√
d

)∥∥(Λkh)−1/2
ϕh(s, a)

∥∥
2

≤ cβ
√
dH4 log

KH

δ

∥∥(Λkh)−1/2
ϕh(s, a)

∥∥
2

= bkh(s, a),

provided that cβ ≥ 8. This completes the induction step of (47), thus concluding the proof of
Lemma 2.

C.2 Proof of Lemma 3

Consider any 1 ≤ h < H . In view of the definition (15c) of the UCB bonus bkh, one obtains∑
k:k+1∈IKh+1

[
bk−1
h+1(skh+1, a

k
h+1)

]2 ≤ ∑
k:k+1∈IKh+1

c2βdH
4
[
ϕh+1(skh+1, a

k
h+1)

]> (
Λk−1
h+1

)−1
ϕh+1(skh+1, a

k
h+1) log

KH

δ

≤ c2βd2H4 log
KH

δ
log

K + d

d
≤ c2βd2H4 log2 KH

δ
=: B,

(54)

where the second inequality comes from a standard result stated in Lemma 4 of Section C.3, and the
last inequality is valid as long as KH ≥ 2.

As a direct consequence of the upper bound (54), there are no more than B
(∆gap/2)2 elements in the

set IKh+1 obeying bk−1
h+1(skh+1, a

k
h+1) ≥ ∆gap/2. This combined with the update rule in Line 14 of

Algorithm 2 immediately yields∣∣IKh+1 \ IKh
∣∣ ≤ B

(∆gap/2)2
=

4c2βd
2H4 log2 KH

δ

∆2
gap

,

since, by construction, any k with k + 1 belonging to IKh+1 \ IKh must violate the condition
bk−1
h+1(skh+1, a

k
h+1) < ∆gap/2. This completes the proof.

C.3 Auxiliary lemmas

In this section, we provide a couple of auxiliary lemmas that have been frequently invoked in the
literature of linear bandits and linear MDPs. The first result is concerned with the interplay between
the feature map and the (regularized) covariance matrix Λkh.
Lemma 4 (Abbasi-Yadkori et al. (2011)). Under the assumption (8) and the definition (15a), the
following relationship holds true∑

i∈Ikh

ϕh(sih, a
i
h)>
(
Λi−1
h

)−1
ϕh(sih, a

i
h) ≤ 2 log

(
det
(
Λkh
)

det (Λ0
h)

)
≤ 2d log

(
k

d
+ 1

)
. (55)

Proof. The first inequality is an immediate consequence of Abbasi-Yadkori et al. (2011) or Jin et al.
(2020, Lemma D.2). Regarding the second inequality, let λi ≥ 1 be the i-th largest eigenvalue of the
positive-semidefinite matrix Λkh. From the AM-GM inequality, it is seen that

det
(
Λkh
)

=

d∏
i=1

λi ≤
(∑d

i=1 λi
d

)d
≤
(
k + d

d

)d
, (56)

where the last inequality arises since (in view of the assumption (8))

d∑
i=1

λi = Tr
(
Λkh
)

= d+
∑
i∈Ikh

∥∥ϕh(sih, a
i
h)
∥∥2

2
≤ d+ k.
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The second result delivers a concentration inequality for the so-called self-normalized processes.
Lemma 5 (Abbasi-Yadkori et al. (2011)). Assume that {Xt ∈ R}∞t=1 is a martingale w.r.t. the
filtration {Ft}∞t=0 obeying

E [Xt | Ft−1] = 0, and E
[
eλXt | Ft−1

]
≤ eλ

2σ2

2 , ∀ λ ∈ R.

In addition, suppose that ϕt ∈ Rd is a random vector overFt−1, and define Λt = Λ0+
∑t
i=1 ϕiϕ

>
i ∈

Rd×d. Then with probability at least 1− δ, it follows that∥∥∥ (Λt)
−1/2

t∑
i=1

ϕiXi

∥∥∥2

2
≤ σ2 log

(
det(Λt)

det(Λ0)δ2

)
for all t ≥ 0.
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