
Under review as submission to TMLR

AttentionBreaker: Adaptive Evolutionary Optimization for
Unmasking Vulnerabilities in LLMs through Bit-Flip Attacks

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) have significantly advanced natural language processing
(NLP) yet are still susceptible to hardware-based threats, particularly bit-flip attacks
(BFAs). Traditional BFA techniques, requiring iterative gradient recalculations after each
bit-flip, become computationally prohibitive and lead to memory exhaustion as model size
grows, making them impractical for state-of-the-art LLMs. To overcome these limita-
tions, we propose AttentionBreaker, a novel framework for efficient parameter space
exploration, incorporating GenBFA, an evolutionary optimization method that identi-
fies the most vulnerable bits in LLMs. Our approach demonstrates unprecedented effi-
cacy—flipping just three bits in the LLaMA3-8B-Instruct model, quantized to 8-bit weights
(W8), completely collapses performance, reducing Massive Multitask Language Understand-
ing (MMLU) accuracy from 67.3% to 0% and increasing Wikitext perplexity by a fac-
tor of 105. Furthermore, AttentionBreaker circumvents existing defenses against BFAs on
transformer-based architectures, exposing a critical security risk. Code is open sourced at:
https://anonymous.4open.science/r/attention_breaker-16FF/.

1 Introduction

The increasing popularity of LLMs has fundamentally expanded the capabilities of Artificial Intelligence
(AI), demonstrating remarkable proficiency in generating human-like text, interpreting nuanced context, and
executing complex reasoning tasks Xu et al. (2024). These advancements have not only reshaped natural
language processing but have also extended AI applications into diverse fields such as computer vision and
scientific research, heralding a new era of AI-driven solutions Chang et al. (2024); Xu et al. (2024). Given
their pervasive use, it is critical to analyze the vulnerability of LLMs against both software-based and
hardware-based threats to ensure their secure and reliable deployment Das et al. (2024).

A significant issue regarding deep learning model reliability involves threats like bit-flip attacks (BFAs),
which exploit hardware vulnerabilities to corrupt memory designated for storing the model’s weight param-
eters. Consequently, this undermines the integrity of the model performance Rakin et al. (2019); Qian et al.
(2023); Kundu et al. (2024a). BFAs employ fault injection attacks such as DeepHammer Yao et al. (2020)
to manipulate specific bits within DRAM, altering essential model weights to degrade functionality. Despite
advancements in memory technology, recent fault injection techniques enable remote, non-physical memory
manipulation, perpetuating the threat landscape for BFAs Hayashi et al. (2011); Shuvo et al. (2023). Tra-
ditional BFA methods face constraints due to iterative gradient recalculation after each bit-flip Rakin et al.
(2019); Kundu et al. (2024a). While viable for smaller models, this process becomes prohibitively costly as
model size grows while the effectiveness diminishes. The increasing resource demands of these recalculations
lead to memory exhaustion, making conventional BFA impractical for advanced LLMs. A recent study
Nazari et al. (2024) has investigated the susceptibility of transformer-based models to bit-flip attacks by
extending conventional BFA techniques—albeit limited to small vision-transformers and not large models
like LLMs. Furthermore, the authors proposed a potential defense against such vulnerabilities.

In this paper, we introduce a fundamentally distinct methodology, marking a paradigm shift in the ex-
ploitation of LLM vulnerabilities through bit-flip attacks. In contrast to conventional BFAs, our proposed

1

https://anonymous.4open.science/r/attention_breaker-16FF/

Under review as submission to TMLR

Attacker

X

X

Input
Embeddings

WQ

WK

WV

Weight Matrices for
Queries(Q), Key (K)

and Values (V)

Q

K

V

Attention
Matrix

Incorrect
Attention

Output

X

X
X X

X

XXEncoder

Decoder

Attack Domain

Scaled Dot Product Attention

Linear
Linear
Linear

Linear
Linear
Linear

Linear
Linear
Linear

H

Q K V

Context Vectors

Transformer Architecture Multihead Attention BFA

Concat

Linear

Figure 1: Bit-flip attack on transformer-based architecture.

framework, AttentionBreaker employs a one-shot gradient estimation strategy, requiring a single gra-
dient computation to aid a genetic optimization strategy, GenBFA that efficiently navigates and exploits
the vast parameter space of LLMs. Our approach achieves unprecedented efficacy, as demonstrated on the
LLaMA3-8B-Instruct W8, where only three strategically selected bit-flips suffice to induce catastrophic
performance degradation, reducing MMLU accuracy from 67.3% to 0%. As demonstrated in Section 5.3,
AttentionBreaker is more impactful compared to existing attacks Nazari et al. (2024). Furthermore, Atten-
tionBreaker successfully subverts the defense proposed by Nazari et al. (2024), thus rendering transformer-
based models vulnerable to BFAs. This fundamental redefinition of BFA methodology opens a new attack
paradigm, specifically catering to LLMs, and highlights a critical reliability concern for these models deployed
in mission-critical applications. Our contributions are summarized below:

• We propose AttentionBreaker, a novel, efficient BFA framework providing a methodical approach
to navigate and exploit the parameter space of LLMs.

• We introduce GenBFA, as part of AttentionBreaker, a novel evolutionary algorithm for identifying
critical bits in LLMs and optimizing BFAs.

• AttentionBreaker uncovers a significant vulnerability of LLMs. A mere three bit-flips
(4.129× 10−9% of all bits) in LLaMA3-8B-Instruct W8, can reduce the MMLU accuracy from
67.3% to 0%, while increasing Wikitext perplexity from 12.62 to 4.72 × 105. Furthermore, Atten-
tionBreaker has been shown to subvert existing BFA defenses on transformer-based models.

2 Variable Notations

This section defines the variable notations used throughout this paper, as summarized in Table 1. Consider
in a model M with L-layers, parameterized by W = {w1, w2, . . . , wn}, L(W) denotes the associated loss
function. For simplicity, we denote the gradient of the loss function ∇L(W) as ∇W throughout this
paper. To assess the sensitivity of model parameters, we define a sensitivity metric S, with Smag and Sgrad
capturing sensitivity based on parameter magnitudes and gradients, respectively. To balance the influence of
gradients and magnitudes in the computation of a hybrid sensitivity metric, S, a sensitivity ratio α ∈ [0, 1]
is introduced. The attention weight matrix is represented by A, with corresponding query and key vectors
qi and kj , scaled by dk. The function cardinality is defined to evaluate the number of parameters in a

2

Under review as submission to TMLR

0.0 0.5 1.0
Bit-flip rate (%) 1e 5

2

4

6

8

10

12
M

od
el

 lo
ss

LSmag
LSgrad

LS

(a)

0 100 200 300
Layer ID

2

4

6

8

10

12

M
od

el
 lo

ss

Hybrid sensitivity score

(b)

Figure 2: LLaMA3-8B-Instruct W8 (a) sensitivity proxy comparison, and (b) layer sensitivity analysis on
the ‘Astronomy’ task of MMLU benchmark.

given parameter set. Let w′ represent a perturbed version of weight w, and R denote the set of sampling
rates for parameter sampling during sensitivity analysis. The normalized gradients and weights are denoted
by ∇WN and WN , respectively. Finally, I is the set of indices where bit flips are applied to perturb specific
parameters.

3 Motivation

3.1 Proxy for Sensitivity

For performing BFA, it is essential to analyze model parameter sensitivity profiles independently of assump-
tions of robustness. In particular, parameters with larger gradients or higher magnitudes may exhibit ampli-
fied sensitivity, whereby perturbations yield disproportionately large effects on the output. In full-precision
models (e.g., float32), where weights w span a large representable range [−3.4×1038, 3.4×1038], even a single
bit-flip can induce substantial perturbations, particularly for large-magnitude weights. For such weights, the
sensitivity Smag can be approximated to be proportional to the absolute magnitude (Smag ∝ |W|). However,
gradient-derived sensitivity Sgrad provides a complementary perspective, capturing the degree to which a
weight change affects the model loss and thus can be approximated as proportional to the absolute gradients
(Sgrad ∝ |∇W|). Therefore, a hybrid sensitivity metric is proposed one that considers both magnitude and

Table 1: Summary of Variables and Notations.

Variable notation Description
M The model

L = {l1, l2, · · · , ln} Layers in a model
W = {w1, w2, . . . , wn} All model parameters

L(W) The loss function based on the model parameters
∇L(W) = ∇W Gradient of the loss with respect to parameters

S = {s1, s2, . . . , sn} Sensitivity of parameters to perturbations
α Ratio of contribution to S by W and ∇W

cardinality Function to provide size of a given set
R = {r1, r2, · · · , rn} Set of sampling rates
I = {i1, i2, · · · , in} Set of indices to target for bit-flip perturbations

WN ,∇WN Normalized model weights and gradients

3

Under review as submission to TMLR

gradient influences to capture the sensitivity profile holistically, and is therefore expressed as:

S = α · |∇W|+ (1− α) · |W| (1)

Where α is a tunable parameter balancing the importance of magnitude and gradient. Figure 2a illustrates
our experiments with sensitivity proxies based on gradients (|∇W|), magnitudes (|W|), and the hybrid
sensitivity metric S with top-k bit flips on a LLaMA3-8B-Instruct W8 model. We observe that bit-flip
perturbations guided by the hybrid metric S (green) induce a comparable loss increase with fewer bit flips
than both Sgrad (orange) and Smag (blue).

3.2 Layer Sensitivity Analysis

Identifying critical bits in LLMs is challenging due to their vast parameter space. However, finding a sensitive
layer is more manageable because there are fewer layers than total parameters. To quantify layer sensitivity,
we choose top-k bit-flips in each layer using a sampling rate r, guided by the hybrid sensitivity score S, and
observe the resulting model loss L. k is calculated as:

k = cardinality(W(l))× r

100 (2)

where W(l) represents parameters in layer l. The losses vary significantly across layers, as illustrated in
Figure 2b on the LLaMA3-8B W8 model. Some layers show much greater sensitivity than others, indicating
that focusing on these layers can significantly reduce the search space.

3.3 Weight Subset Optimization

The subset of weights in a victim LLM that can be perturbed may be sufficiently large (e.g., 5,872 for the
LLaMA3-8B-Instruct W8 model), making an effective adversarial attack impractical. This requires further
optimization to reduce the subset to fewer weights and/or bits for a feasible attack. Solving this problem
through exhaustive approaches is computationally expensive due to the vast solution space. To address this
challenge, we propose a heuristic optimization technique (Section 4.2.2) inspired by evolutionary strategy,
which simultaneously optimizes for higher model loss (to maximize attack effectiveness) and fewer bit-flips
(to enhance attack efficiency). As explained in Section 4.2.2, this approach successfully reduced the required
bit-flips from 5,872 to just 3 , achieving an approximate reduction of 2× 103.

4 Proposed AttentionBreaker Methodology

4.1 Threat Model

Machine Learning as a Service (MLaaS) provides users with access to high-performance computing resources,
thereby enabling the deployment of LLMs. However, this cloud-based paradigm introduces critical security
risks, particularly when inferences and model executions share server hardware components with potentially
untrusted processes. We categorize the threats into four levels based on the extent of knowledge an attacker
can extract from the victim, detailed in the appendix (Section A.1).

In this work, we consider the white-box threat model, where the adversary has full access to the model’s
architecture and parameters, enabling precise and informed manipulation of parameters. Within this setting,
we focus on untargeted attacks, which aim to induce graceless degradation in overall model performance
rather than targeting specific outputs. Such attacks are particularly insidious, as they compromise accuracy
across a broad range of inputs while avoiding distinct failure patterns, making them more challenging to
detect and defend against than targeted attacks Özdenizci & Legenstein (2022); Qian et al. (2023); Nazari
et al. (2024). Therefore, AttentionBreaker strategically employs an untargeted attack to maximize disruption
while evading traditional defense strategies. This attack also fundamentally differs from denial of service
attacks, which aim to overwhelm system resources to render services unavailable. In our case, the adversary
subtly manipulates model parameters to degrade performance without causing a complete system shutdown.

4

Under review as submission to TMLR

4.2 Proposed Attack Framework

Here, we explain in detail the proposed AttentionBreaker framework, which comprises two structured steps:
(1) layer ranking based on their sensitivity profiles and (2) weight subset optimization to identify the model’s
most critical parameters for an efficient attack.

4.2.1 Layer Ranking

For ranking LLM layers, we begin by quantifying the sensitivity of each layer’s parameters. For this purpose,
each weight wi in a layer is evaluated through a sensitivity scoring function as defined in Equation 1. Using
these sensitivity scores, weights are aggregated and ranked in descending order to form a prioritized list of
the most critical weights in each layer. The top-k weights within each layer are identified using Equation
2. To maximize the impact of bit-flips, perturbations are applied by targeting the most significant bits
(MSBs) to induce the highest deviation for each selected weight. After applying these perturbations, we
compute the model’s loss, L(l), which reflects the sensitivity of the layer. In order to identify layers with
heightened sensitivity while requiring a minimal number of bit-flips, we define a layer sensitivity score
(LSScore) function. First, we define a sign function sgn

(
L(l) − Lth

)
based on whether the model loss L(l)

evaluated after bit-flipping the weights in layer l meets a predefined critical loss threshold Lth:

sgn
(
L(l) − Lth

)
=

{
+1, if L(l) − Lth ≥ 0,

−1, if L(l) − Lth < 0.
(3)

Using this sign function, we define LSScore as:

LSScore(l) = sgn
(
L(l) − Lth

)
· L

(l)

k
(4)

A layer-wise bit-flip sensitivity profile is created by iterating through each layer to record their sensitivity
scores. This profile aids in identifying highly sensitive layers.

Algorithm 1 presents a systematic approach for conducting layer sensitivity analysis. The algorithm begins
by initializing an empty set, Lsens to store layer sensitivity scores (line 1). The algorithm defines a function
BFLIP to calculate the model loss L when weight perturbations are applied to a specified layer (lines 2-
11). The function BFLIP accepts the parameters W(l), bit position pos, and perturbation indices I (line
2) as inputs. It begins by storing a copy of the original weights W(l) in W(l)

orig for later restoration (line
3). Then, it applies bit-flip perturbations to the weights w

(l)
i at the specified indices i ∈ I (lines 4-6).

The modified model, M, is updated with the perturbed weights W(l) and the corresponding model loss
is evaluated through ComputeLoss (line 8). Following this, the model weights W(l) are restored to their
original values W(l)

orig (line 9). Finally, the computed loss L is returned (line 10). The layer sensitivity
analysis itself begins by iterating through each layer, assessing the model’s sensitivity to perturbations in
each (lines 12-19). Sensitivity scores S(l) for the weights in layer l are then computed by a function SSCORE
function following Equation 1 (line 14). Next, the top-k indices are obtained using sensitivity scores S(l)

with the function TopkIndex. These indices, I
(l)
hybrid, are identified from S(l) (line 15). These indices, along

with the weights W(l) and bit position pos, are passed to the BFLIP function to compute the model loss
L(l)

r and the corresponding layer sensitivity score LSScore (lines 16-17). The resulting score LSScore(l) is
then stored in Lsens (line 18). This process continues until all layers have been processed, yielding the final
sensitivity score set Lsens, which is then sorted, and top-n layers are chosen (lines 20-21). Finally, the top-n
most critical layers and their corresponding weight indices I

(l)
hybrid are extracted to generate a critical weight

subset Wsub (line 22), which along with the sensitivity scores Lsens are provided as the output.

4.2.2 Weight-set Optimization - GenBFA

After identifying the most sensitive layer and the corresponding weight subset, further refinement is essential
since LLMs typically encompass billions of parameters, and the identified weight subset may necessitate

5

Under review as submission to TMLR

targeting thousands or even millions of parameters. For example, the LLaMA-3-8B W8 has 8 billion param-
eters, and the weight subset corresponding to the most sensitive layer has 5, 872 parameters. Consequently,
an attack with this identified weight set could be prohibitive from an attacker’s perspective. Therefore,
it is imperative to identify a smaller subset of parameters capable of achieving comparable degradation in
model performance. To address this objective, we design a novel algorithm inspired by evolutionary strate-
gies, GenBFA, tailored for optimizing the parameter set to identify a minimal yet highly critical subset
of weights. GenBFA maximizes the impact-to-size ratio of the selected parameters, thereby enhancing the
efficiency and effectiveness of the AttentionBreaker attack on LLMs.

Algorithm 1 Layer Ranking
Require: W, ∇W, α, sub-sampling % r, #

of top layers n
1: Initialize sensitivity score set: Lsens = []
2: function BFLIP(W(l), pos, I)
3: W(l)

orig ←W(l)

4: for all i ∈ I do
5: w

(l)
i ← w

(l)
i ⊕ (1≪ pos)

6: end for
7: M← updateModel(M, W(l))
8: L ← ComputeLoss(M)
9: M← updateModel(M, W(l)

orig)
10: return L
11: end function
12: for all l ∈ L do
13: k ← r ∗ cardinality(W(l))/100
14: S(l)← SScore(|W(l)|, |∇W(l)|, α)
15: I

(l)
hybrid ← TopkIndex(S(l))

16: L(l) ← BFLIP(W(l), pos, I
(l)
hybrid)

17: LSScore(l) ← sgn
(
Ll − Lth

)
· Ll

k

18: Push [LSScore(l), l] to Lsens

19: end for
20: Lsens ← SORT(Lsens)
21: Ltop ← Topn(Lsens)
22: Wsub ← [l, I

(l)
hybrid] extracted from Ltop

Ensure: Lsens, Wsub

Objective Function and Fitness Evaluation: To for-
malize the weight subset optimization problem, let us define
an initial weight subset Wsub and a target model loss thresh-
old Lth. The objective is to identify a subset WSj ⊂ Wsub
such that bit-flipping the weights in this subset maximizes
the model’s loss while minimizing the subset’s cardinality,
which reflects the number of bit-flips required to achieve
a corresponding model loss, thus providing a measure of
the attack’s efficiency. Each candidate solution WSj =
{wj1 , wj2 , . . .} is therefore defined as a subset of Wsub. For
each candidate WSj

, we compute a fitness value f(WSj
) as

follows.

f(WSj
) = sgn

(
LSj
− Lth

)
·

LSj

cardinality(WSj
) (5)

Population Initialization: To identify the final set of crit-
ical parameters, we define a solution set (also referred to as
the population) with the objective of minimizing its cardi-
nality while ensuring that the fitness score remains above
a predefined threshold. The population P, comprises of m
candidate solutions, defined as P = {WS1 , WS2 , . . . , WSm}.
The initial solution P0 is set as the weight subset Wsub, and
each subsequent solution Pj is created by applying a muta-
tion operation to P0 (Mutate(P0)).

Mutation Operation: During the mutation process, each
solution Pj is assigned a distinct reduction rate pj , which is

randomly selected such that pj ≤ µ, where µ represents the mutation rate. The parameter µ serves as an
upper bound on the reduction of solution cardinality, thereby facilitating enhanced exploration of the solution
space. The reduction rate pj then governs the probability of removal for each weight in Pj . Formally, for
each weight wji

∈ Pj , the mutated weight w′
ji

is defined as:

w′
ji

=
{
∅, with probability pj ,

wji
, otherwise.

(6)

In this context, “mutation” specifically refers to reducing the solution set’s cardinality. This reduction-driven
mutation is designed to identify compact subsets that either preserve or improve model loss relative to the
original subset. By systematically exploring minimal yet sufficient configurations, this strategy facilitates
efficient traversal of the solution subspace and the identification of subsets that sustain the desired adversarial
effect on model performance.

Elitism and Selection: At each iteration (t) of the optimization procedure, all solutions in P are sorted
by their fitness values:

Pbest = WSbest
= arg max

Pj∈P
f(Pj) (7)

6

Under review as submission to TMLR

Here, WSbest
or Pbest represents the solution with the highest fitness (i.e., most efficient in degrading model

performance). Elitism dictates that Pbest is carried forward unchanged into the next generation, ensuring
the highest-quality solution is preserved. For the remaining solutions, a tournament selection strategy is
employed to choose pairs of solutions as parents for crossover. For selecting each parent, this involves
choosing two random solutions Pa,Pb ∈ P, and selecting the one with better fitness:

Pp = arg max{f(Pa), f(Pb)} (8)

This strategy is chosen over a random strategy due to its capability to balance exploration and exploitation
in the search space, thereby expediting convergence.

Algorithm 2 Weight Set Optimization - GenBFA
Require: W, Wsub, Lth, population size m, max

generations g, mutation rate µ, no-improvement
threshold N

1: Initialize solution space SS = [], solution set P =
[], fitness scores F = [], no-improvement counter
c = 0

2: l, SS←Wsub[0], Wsub[1]
3: P ← InitializePopulation(SS, µ)
4: for t = 1, 2, . . . , g do
5: for j = 1, 2, ..., m do
6: W(l) = GetParams(W, l)
7: I

(l)
hybrid ← Pj

8: Lj ← BFLIP(W(l), pos, I
(l)
hybrid)

9: f ← sgn (Lj − Lth) ∗ LSj

cardinality(W(l))
10: Push f to F
11: end for
12: P ← SortSolutions(P, F)
13: Pold

best ← Pbest

14: Pbest ← SelectBestSolution(P)
15: CheckTerminate(Pbest,Pold

best, c,N)
16: Pnew ← [Pbest, Mutate(Pbest)]
17: while len(Pnew) < m do
18: Pp1,Pp2 ← Selection(P, F)
19: Po1,Po2 ← Crossover(Pbest,Pp1,Pp2)
20: Po1,Po2 ← Mutate(Po1, µ), Mutate(Po2, µ)
21: Push Po1 and Po2 to Pnew

22: end while
23: P ← Pnew ▷ Population for next generation
24: end for
Ensure: Pbest ▷ Return best solution

Crossover Operation: To generate new solu-
tions, two-parent solutions, Pp1 and Pp2, are se-
lected, followed by a crossover operation executed
with probability pc. During crossover, the current
best solution Pbest is integrated to propagate its
beneficial traits forward. Two offsprings, Po1 and
Po2, are produced by combining Pbest with each
parent Pp1 and Pp2 independently. For offspring
Po1, each gene gi is chosen stochastically from ei-
ther Pp1 or Pbest. Similarly, offspring Po2 is created
by selecting each gene gi stochastically from Pp2 or
Pbest.

Po1,Po2 = {gi
Pp1

or gi
Pbest
}, {gi

Pp2
or gi

Pbest
} ∀i

(9)

If crossover does not occur (i.e., with probability
1−pc), the offspring remain identical to the parents,
such that Po1 = Pp1 and Po2 = Pp2.

Convergence and Termination: The process it-
erates over generations indexed by t = 1, 2, . . . , g,
where g is the predefined maximum number of it-
erations. The algorithm terminates when either
the iteration limit g is reached (t = g) or a pre-
defined no-improvement limit N is met, ensur-
ing computational efficiency. The final output is
the weight subset Wopt ⊂ Wsub, where Wopt =
arg maxPj∈P f(Pj). Wopt represents the critical
weights required to achieve the desired model loss
degradation.

Algorithm 2 outlines the optimization process,
starting with model weights W, a target loss thresh-
old Lth, and parameters for population size m, max-

imum iterations g, crossover probability pc, and mutation rate µ. It initializes the solution space SS, popu-
lation P, and fitness scores F (line 1), followed by generating the attacked layer l and initial solution space
from Wsub (line 2). The initial solution P0 (=Wsub) is used to create a population by applying m − 1
mutations, resulting in P (line 3). At each iteration t, solutions are evaluated using the BFLIP function,
which computes model loss Lj , and the fitness score is determined based on Lj , Lth, and the cardinality
of W(l) using Equation 5 (lines 6-10). Solutions are ranked by fitness (line 12). The current best solution
is tallied against the previous best solution for capturing improvement and checking for termination using
CheckTerminate function (lines 13-15). To maintain elitism, the best solution Pbest is carried over to the
next generation Pnew (ilne 16). A second solution is created by mutating Pbest, and the remaining popula-
tion is filled by generating offspring through crossover and mutation (lines 17-20). Crossover selects parent
pairs via tournament selection (line 18), generates offspring (line 19), and applies mutation (line 20), which

7

Under review as submission to TMLR

are then added to Pnew (line 21). The new population Pnew replaces P (line 23), and the process repeats
until either g generations or the no-improvement threshold N is reached. The algorithm outputs Pbest as
the optimal subset of critical weights, targetting for BFA.

Table 2: AttentionBreaker evaluation on various models and datasets.
Benchmark performances (Before attack / After Attack)
Perplexity Accuracy (%)Model Number of

Parameters

Existing Research
Nazari et al. (2024)

(# of bit-flips)

Attention
Breaker

(# of bit-flips)
Improvement

WikiText-2 MMLU LM Harness VQAv2 TextVQA
LLaMA3-8B-
Instruct-W8 587202 3 195, 734× 12.14/4.7×105 67.3/0 72.6/0 NA NA

LLaMA3-8B-
Instruct-W4

8.03 B 587202 28 20, 971× 12.60/3.8×104 60.3/0 61.2/0 NA NA

LLaVA1.6-
Mistral-7B-W8 419430 15 27, 962× NA NA NA 81.4/0 64.2/0

LLaVA1.6-
Mistral-7B-W4

7.97 B 838860 53 15, 828× NA NA NA 75.6/0 60.5/0

BitNet-large 729 M 314572 45861 7× 17.21/5.5× 104 22.1/0 23.2/0 NA NA
Phi-3-mini-128k-

Instruct-W8 1258291 4 314, 573× 11.82/3.7× 104 69.7/0 72.3/0 NA NA

Phi-3-mini-128k-
Instruct-W4

3.82 B 2516 4 629× 11.94/3.6× 104 66.1/0 71.7/0 NA NA

5 Experimental results

5.1 Experimental Setup

For our experiments, we utilized a wide range of models, comprising of LLaMA3-8B-Instruct Touvron et al.
(2023); Dubey et al. (2024), Phi-3-mini-128k-Instruct Abdin et al. (2024) and BitNet Ma et al. (2024). The
evaluation of LLMs was conducted using standard benchmarks like MMLU Gema et al. (2024) and the Lan-
guage Model (LM) Evaluation Harness Gao et al. (2024), both of which test the models’ ability to reason and
generalize across a variety of tasks. We extended our evaluation to include a Vision-Language Model (VLM),
LLaVA1.6 Liu et al. (2023). The performance of this VLM was assessed using the VQAv2 Nguyen et al.
(2023) and TextVQA Singh et al. (2019) benchmarks. To demonstrate the versatility of AttentionBreaker,
we utilize several quantization formats, including the standard signed 8-bit integer (INT8), normalized float
4-bit (NF4), and an advanced 1.58-bit precision format (where weights are ternary {−1, 0, 1}), implemented
using BitNet Ma et al. (2024). Please note that all these models are weight-only quantized, and we will use
notations W8, W4, and W1.58, respectively.

We employ perplexity and accuracy as evaluation metrics across multiple benchmarks. Perplexity Hu
et al. (2024) assesses a model’s predictive capability, defined as the exponential of the average negative
log-likelihood of a sequence. Accuracy measures the proportion of correct predictions, providing a direct
evaluation of model performance. Accuracy on benchmarks is another critical metric, especially for tasks
such as classification Gupta et al. (2024). It is the ratio of correctly predicted instances to the total instances.

5.2 Targeted Transformer Modules

Transformer-based LLMs comprise self-attention projection layers (query, key, value, and output), MLP
projection layers (gate, up, and down), token embedding, layer normalization, and the LM head. Parameter
distribution typically allocates 60–70% to MLP projections, 10–20% to self-attention projections, ∼ 5˘7%
each to token embeddings and the LM head, and < 0.01% to normalization layers. Since quantization applies
only to the MLP and self-attention projections (86.9% of the parameters), AttentionBreaker exclusively
targets these layers.

5.3 Results and Analysis

This section presents the experimental results validating the effectiveness of the proposed AttentionBreaker
attack. Box 1 shows an example of how the LLaMA3-8B-Instruct W8 model’s outputs are degraded by
AttentionBreaker, yielding incoherent and incorrect answers. Section A.4 discusses additional examples.

5.3.1 Efficiency of AttentionBreaker

8

Under review as submission to TMLR

Box 1: Multiple choice question example

System Prompt: You are a helpful AI assistant.
Answer the following questions about Astronomy.
Questions: [Question 1, Question 2]
Correct answers: [‘A’, ‘D’,]

Model Output (Pre-Attack)

Extracted Answers: [‘A’, ‘D’]

Model Output (Post-Attack)

Extracted Answers: [‘!’, ‘e’]

This section shows AttentionBreaker’s effective-
ness in degrading LLM performance across bench-
marks (see Table 2) and compares it to existing re-
search Nazari et al. (2024). The first two columns
list model attributes: name, quantization scheme,
and parameter count. Columns three and four
specify the bit-flips needed by each approach for
full performance collapse. The fifth column mea-
sures AttentionBreaker’s efficiency improvement
over Nazari et al. (2024). The final five columns
present benchmark results, including WikiText-
2 perplexity and model accuracy on MMLU, LM
Harness, VQAv2, and TextVQA, both before and
after the attack. “NA” indicates when benchmark
performance does not apply to the model.

Table 2 highlights AttentionBreaker’s efficiency in degrading model accuracy with minimal bit-flips (as few
as 3), while Nazari et al. (2024) requires up to 1.3×106 bit-flips for causing similar performance degradation.
AttentionBreaker reduces LLaMA3-8B-Instruct W8’s MMLU accuracy from 67.3% to 0% with just three
bit-flips (4.129×10−9% bit-flip rate) in the MLP down projection of the second decoder block. Additionally,
perplexity increases from 12.14 to 4.72×105 post-attack. In contrast, Nazari et al. (2024) requires 5.9×105 bit-
flips (0.1% bit-flip rate) for similar degradation, demonstrating that AttentionBreaker is 1.9×105 times more
efficient. A similar trend is observed for Phi-3-mini-128k-Instruct and LLaVA1.6-Mistral-7B W8 models. The
critical layers affected are the self-attention key, value projection, and MLP down projection in the initial
three and final three decoder blocks.

5.3.2 Comparison across Quantization Levels

Figure 3 compares AttentionBreaker with Nazari et al. (2024) on LLaMA3-8B-Instruct W8, W4, and BitNet
W1.58. The green/blue lines indicate post-attack model loss, while the orange/brown lines show MMLU
accuracy. AttentionBreaker consistently reduces accuracy to 0, demonstrating its effectiveness through a
rapid loss increase, as shown in Figure 3a for LLaMA3-8B-Instruct 8-bit quantized model. Figure 3b exam-
ines AttentionBreaker on 4-bit quantized LLaMA3-8B-Instruct, where just 28 bit-flips increase perplexity
from 12.60 to 3.8 × 104, dropping the MMLU score from 60.3% to 0. In contrast, Nazari et al. (2024)
requires 5.9× 105 bit-flips for the same effect. Similar trends are observed for Phi-3-mini-128k-Instruct and
LLaVA1.6-Mistral-7B W4. For the ultra-low precision model BitNet W1.58 Ma et al. (2024), Attention-
Breaker degrades the performance to 0% by flipping 45811 bits (6.27×10−5 % of all bits) as shown in Figure
3c. In comparison, Nazari et al. (2024) requires 6.8× more bit-flips. This disparity in number of bit-flips
required for BitNet in comparison to LLaMA3-8B-Instruct-W8 and -W4 can be attributed to the unique
architecture and quantization strategies employed in BitNet. Unlike W8 or W4 models, which have higher
precision and therefore higher weight representation range, BitNet employs 1.58-bit quantization (ternary
representation -1, 0, +1), significantly limiting the range to [-1,1], which limits the impact of individual
bit-flips. Therefore, in BitNet, flipping a single bit merely toggles between two extreme values (e.g., -1 and
+1), necessitating a substantially more significant number of bit-flips to degrade performance meaningfully.

5.3.3 Comparison with Conventional BFA

We evaluated LLMs under the conventional BFA framework Rakin et al. (2019), and observed no noticeable
degradation in accuracy even after introducing up to 1,000 bit-flips. These findings suggest that traditional
BFA techniques are largely ineffective against large-scale models. In contrast, our proposed AttentionBreaker
method induces a substantial drop in model accuracy, as illustrated in Table 3. Unlike conventional BFA
approaches, our method employs a gradient-driven strategy for identifying vulnerable layers, selectively
targets critical weight subsets, and utilizes GenBFA, a bit selection optimization algorithm. This principled
approach allows AttentionBreaker to conduct significantly more effective and scalable attacks on large models.

9

Under review as submission to TMLR

Table 3: Performance Comparison between AttentionBreaker and conventional BFA Rakin et al. (2019).

Model # Bit-flips Accuracy before
attack (%)

Accuracy after
BFA (%)

Accuracy after
AttentionBreaker (%)

LLaMA3-8B-Instruct-W8 1000 67.3 67.3 0.0
Phi-3-mini-128k-Instruct-W8 1000 69.7 69.7 0.0

Table 4: Timing overhead Comparison between AttentionBreaker and conventional BFA.
Time overhead (Hours)Model # Bit-flips BFA AttentionBreaker

LLaMA3-8B-Instruct-W8 1000 ∼20 ∼2
LLaMA3-8B-Instruct-W4 1000 ∼20 ∼2

We further present a comparative analysis of the computational overhead associated with the conventional
BFA approach Rakin et al. (2019) and our proposed AttentionBreaker, conducted on the LLaMA3-8B-
Instruct INT8 model using four NVIDIA A100 GPUs. As shown in the Table 4, AttentionBreaker achieves
approximately 10× faster identification of 1,000 critical bit-flip locations compared to BFA. The inefficiency
of traditional BFA arises primarily from its one-bit-per-iteration strategy and the substantial computational
cost incurred by repeated gradient recalculations and loss calculations after each bit-flip in each layer.

5.3.4 Feasibility of Targeted Attacks by AttentionBreaker

While our approach is designed for untargeted attacks as discussed in Section 4.1, it can be adapted for
targeted settings by modifying the objective and flipping bits critical to a specific class. To demonstrate this
capability, we performed a 1-to-1 targeted misclassification attack on the MMLU benchmark “Astronomy”
task using the LLaMA-3.2-1B-Instruct-W8 model. The goal was to cause inputs originally belonging to
Class A to be intentionally misclassified as Class B. The experiment involved four classes (A, B, C, D),
with model accuracy and targeted misclassification rates measured before and after the attack. Table 5
presents the model’s performance in two conditions: the original model (unmodified) and the model after
applying AttentionBreaker with only 109 bit-flips to accomplish the targeted attack. As shown in the Table
5, the A→B misclassification rate increased from 14.8% (original model) to 70.4% (when attacked using
AttentionBreaker), a 375% relative increase, demonstrating that our method successfully induces targeted
behavior. This increase comes with a modest drop in overall accuracy (from 50.6% to 36.2%). These results
demonstrate that AttentionBreaker is effective in mounting successful attacks in targeted scenarios.

5.3.5 Performance-cost tradeoff

The comparison in the paper in Table 2 evaluates the number of bit-flips needed in the baseline to match
AttentionBreaker’s performance drop, ensuring a meaningful efficiency assessment. We also provide an
alternative comparison by first applying the baseline attack and then matching its degradation with our
method. The results in Table 6 shows that AttentionBreaker is significantly more efficient, requiring up to
1.95× 105 fewer flip-bits over the baseline method. Our attack framework also provides precise control over
the trade-off between number of bit-flips and model loss by explicitly formulating a min-max optimization.

5.4 Analysis of intermediate steps in AttentionBreaker

5.4.1 Assessing Layer Sensitivity and Ranking

In this section, we analyze the impact of the layer sensitivity analysis, described in Section 4.2.1. Figure 4a
shows the vulnerability profiles of model layers by plotting model loss against layer IDs, where each layer
experiences bit-flip perturbations. The figure reveals increased sensitivity in the initial and final layers for

Table 5: Targeted attack by AttentionBreaker.

Model Variant Overall Accuracy (%) Class A→B
Misclassification rate (%)

Original model 50.6 14.8
Targeted attack by AttentionBreaker (109 bit-flips) 36.2 70.4

10

Under review as submission to TMLR

Table 6: Performance-cost tradeoff on baseline Nazari et al. (2024) and the AttentionBreaker.

Model Relative accuracy drop (%) # Bit-Flips in
Existing Work Nazari et al. (2024)

Bit-Flips in
AttentionBreaker

10 5872 3
25 13204 3
50 57235 3LLaMA3-8B-Instruct-W8

100 587202 3

10 8 10 6 10 4 10 2 100

Bit-flip rate (%)

0

10

20

30

40

50

60

70

M
od

el
 a

cc
ur

ac
y(

%
)

(a) LLaMA3-8B-Instruct W8

10 8 10 6 10 4 10 2 100

Bit-flip rate (%)

0

10

20

30

40

50

60

(b) LLaMA3-8B-Instruct W4

10 8 10 6 10 4 10 2 100

Bit-flip rate (%)

0

5

10

15

20

(c) BitNet W1.58

2

4

6

8

10

12

14

2

4

6

8

10

12

14

2

3

4

5

6

7

M
od

el
 lo

ss

AttentionBreaker Accuracy Nazari et.al. 2024 Accuracy AttentionBreaker Loss Nazari et.al. 2024 Loss

Figure 3: Comparison of BFA attack using Nazari et al. (2024) and AttentionBreaker on LLaMA3-8B-Instruct
W8, W4, and W1.58 models. Metrics are calculated on the “Astronomy” task of the MMLU benchmark.

the LLaMA3-8B-Instruct W8 model. Further analysis of other models is in the appendix (Section A.3.1).
After the sensitivity analysis, the layers are sorted, and the top-1 layer is chosen for optimization, reducing
the search space. For LLaMA3-8B-Instruct W8, selecting the most sensitive layer reduces the solution space
from ≈ 8× 109 to ≈ 5.8× 107 parameters (≈ 138×).

5.4.2 Obtaining the Most Critical Weights

In this section, we analyze the impact of the proposed GenBFA evolutionary algorithm, detailed in Section
4.2.2. Figure 4b illustrates the reduction in the weight set while preserving a high model loss for the
LLaMA3-8B-Instruct W8 model. As depicted in the figure, the model loss (red line) remains above a
predefined threshold (green line), while the number of required bit-flips (blue line) is iteratively minimized.
The initial subset size is reduced by a factor of up to 2× 103, identifying only 3 critical weights—sufficient
to execute the AttentionBreaker attack with effectiveness comparable to perturbing the original set of 5872
weights. A similar trend is observed for Phi-3-mini-128k W8, LLaMA3-8B-Instruct W4, and BitNet W1.58
models (detailed in the appendix – Section A.3.2), highlighting the efficacy of GenBFA.

0 100 200 300
Layer ID

2

4

6

8

10

12

M
od

el
 lo

ss

Hybrid sensitivity score

(a)

0 20 40
Generations

0

1

2

3

4

5

Bi

t-f
lip

s

1e3

0
2
4
6
8
10
12
14

M
od

el
 lo

ss

Bit-flips
LS
Lth

(b)

Figure 4: (a) Layer sensitivity analysis, (b) evolutionary optimization in LLaMA3-8B-Instruct W8 model.

11

Under review as submission to TMLR

Table 7: Effect of AttentionBreaker on FaR-based defense.

Post-attack accuracy (%)
Model Dataset

Original

Accuracy (%)
of Bit-flips

With FaR Without FaR

CIFAR-100 91.55 224 3.4 4.2
ViT-Base

ImageNet1k 80.1 268 10.9 10.2

6 Efficiency against Existing Defenses

Existing research proposed a Forget and Rewire (FaR)-inspired defense for protecting against BFAs Nazari
et al. (2024). In this section, we evaluate the prowess of AttentionBreaker against FaR. Table 7 demonstrates
the effects of AttentionBreaker on a ViT-Base Dosovitskiy et al. (2021) model in the presence of FaR (Nazari
et al. (2024) used similar ViT models in their work). Our results reveal that, despite the FaR defense,
AttentionBreaker was successful in plummeting the accuracy of ImageNet1k dataset from 80.7% to 10.9%
after just 268 (≈ 3 × 10−6%) bit-flips. Thus, it can be concluded that AttentionBreaker is a potent attack
that can subvert state-of-the-art defenses deployed for protecting transformer-based models against BFA.

We also have identified SOTA defenses against bit-flip attacks on deep neural networks (DNNs), such as
Aegis Wang et al. (2023) and low bit-width quantization based defenses He et al. (2020). Aegis employs a
multi-exit mechanism that incorporates multiple internal classifiers, with one randomly selected for output
generation in an effort to mitigate attacks Wang et al. (2023). However, this approach is ineffective if an
adversary targets early layers, leading to erroneous activations across all classifiers. As demonstrated in our
study, AttentionBreaker detects initial layers as vulnerable to bit-flips (refer to Section 6.3.1) and mounts
successful attacks, rendering Aegis ineffective. Additionally, deploying early-exit mechanisms in LLMs incurs
significant computational overhead, limiting their practicality. Further, having such models requires the exit
layers to be trained, which is often infeasible in resource-limited client setups. Low bit-width quantization
reduces precision to mitigate bit-flip impacts He et al. (2020). However, AttentionBreaker strategically
identifies and manipulates critical bits even in quantized models, inducing severe degradation. For example,
in LLaMA3-8B-Instruct (NF4, 4-bit), AttentionBreaker reduces accuracy from 60.3% to 0% with just 28
bit-flips, demonstrating its effectiveness against quantization-based defenses.

7 Discussion on Possible Defenses

In response to the attacks exemplified by the proposed AttentionBreaker, we recommend an adaptive defense
mechanism designed to disrupt the foundational strategies of the attack. This defense mechanism draws
inspiration from XOR-cipher logic locking Kamali et al. (2022) and preemptively identifies a critical set of
vulnerable model parameters. A subset of these parameters is then encrypted using an XOR-cipher. With
the correct key set, the model retains performance during inference; an incorrect key results in significant
performance loss. An attacker unaware of the key faces a model with reduced baseline accuracy, making
further attacks impractical.

8 Conclusion

In this work, we introduced a novel adversarial BFA framework, AttentionBreaker, for transformer-based
models such as LLMs. For the first time, AttentionBreaker applies a novel sensitivity analysis along with
evolutionary optimization to guide adversarial attacks on LLMs, leading to degraded performance. Specif-
ically, perturbing merely 3-bits 4.129× 10−9% of the parameters in LLaMA3-8B-Instruct W8 results in
MMLU scores dropping from 67.3% to 0% and Wikitext perplexity increased sharply from 12.6 to 4.72×105.
Furthermore, our experimental results demonstrate that AttentionBreaker can subvert state-of-the-art de-
fenses for protecting transformer-based models against BFA. These findings underscore the effectiveness of
AttentionBreaker in exposing the vulnerability of LLMs to such adversarial interventions.

12

Under review as submission to TMLR

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit

Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024.

Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. Security and privacy challenges of large language
models: A survey. arXiv preprint arXiv:2402.00888, 2024.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: Nsga-ii. In Parallel Problem Solving from Nature
PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6, pp. 849–
858. Springer, 2000.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory. In MHS’95. Proceedings
of the sixth international symposium on micro machine and human science, pp. 39–43. Ieee, 1995.

Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza Sadeghi. {IMIX}:{In-
Process} memory isolation {EXtension}. In 27th USENIX Security Symposium (USENIX Security 18),
pp. 83–97, 2018.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Lau-
rence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/12608602.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria Mancino,
Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani, et al. Are we done
with mmlu? arXiv preprint arXiv:2406.04127, 2024.

Vipul Gupta, David Pantoja, Candace Ross, Adina Williams, and Megan Ung. Changing answer order can
decrease mmlu accuracy. arXiv preprint arXiv:2406.19470, 2024.

Yu-ichi Hayashi, Naofumi Homma, Takeshi Sugawara, Takaaki Mizuki, Takafumi Aoki, and Hideaki Sone.
Non-invasive emi-based fault injection attack against cryptographic modules. In 2011 IEEE International
Symposium on Electromagnetic Compatibility, pp. 763–767. IEEE, 2011.

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and Deliang Fan. Defending and harnessing
the bit-flip based adversarial weight attack. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14095–14103, 2020.

Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect large
language model’s ability in long text understanding? arXiv preprint arXiv:2405.06105, 2024.

Hadi Mardani Kamali, Kimia Zamiri Azar, Farimah Farahmandi, and Mark Tehranipoor. Advances in logic
locking: Past, present, and prospects. Cryptology ePrint Archive, 2022.

13

https://zenodo.org/records/12608602

Under review as submission to TMLR

Ingab Kang, Walter Wang, Jason Kim, Stephan van Schaik, Youssef Tobah, Daniel Genkin, Andrew Kwong,
and Yuval Yarom. Sledgehammer: Amplifying rowhammer via bank-level parallelism. In Proc. USENIX,
2024.

Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel. A high-resolution side-channel
attack on last-level cache. In Proceedings of the 53rd Annual Design Automation Conference, pp. 1–6, 2016.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental study of dram
disturbance errors. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
pp. 361–372, 2014. doi: 10.1109/ISCA.2014.6853210.

Shamik Kundu, Sanjay Das, Sayar Karmakar, Arnab Raha, Souvik Kundu, Yiorgos Makris, and Kanad
Basu. Bit-by-bit: Investigating the vulnerabilities of binary neural networks to adversarial bit flipping.
Transactions on Machine Learning Research, 2024a.

Souvik Kundu, Anthony Sarah, Vinay Joshi, Om J Omer, and Sreenivas Subramoney. Cimnet: Towards
joint optimization for dnn architecture and configuration for compute-in-memory hardware. arXiv preprint
arXiv:2402.11780, 2024b.

Annu Lambora, Kunal Gupta, and Kriti Chopra. Genetic algorithm-a literature review. In 2019 international
conference on machine learning, big data, cloud and parallel computing (COMITCon), pp. 380–384. IEEE,
2019.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning,
2023.

Haocong Luo, Ataberk Olgun, Abdullah Giray Yağlıkçı, Yahya Can Tuğrul, Steve Rhyner, Meryem Banu
Cavlak, Joël Lindegger, Mohammad Sadrosadati, and Onur Mutlu. Rowpress: Amplifying read distur-
bance in modern dram chips. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, pp. 1–18, 2023.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in 1.58 bits. arXiv
preprint arXiv:2402.17764, 2024.

Aleksander Madry. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Kaleel Mahmood, Rigel Mahmood, Ethan Rathbun, and Marten van Dijk. Back in black: A comparative
evaluation of recent state-of-the-art black-box attacks. IEEE Access, 10:998–1019, 2021.

Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(8):1555–1571, 2019.

Najmeh Nazari, Hosein Mohammadi Makrani, Chongzhou Fang, Hossein Sayadi, Setareh Rafatirad,
Khaled N Khasawneh, and Houman Homayoun. Forget and rewire: Enhancing the resilience of
transformer-based models against {Bit-Flip} attacks. In 33rd USENIX Security Symposium (USENIX
Security 24), pp. 1349–1366, 2024.

Nghia Hieu Nguyen, Duong TD Vo, Kiet Van Nguyen, and Ngan Luu-Thuy Nguyen. Openvivqa: Task,
dataset, and multimodal fusion models for visual question answering in vietnamese. Information Fusion,
100:101868, 2023.

Ozan Özdenizci and Robert Legenstein. Improving robustness against stealthy weight bit-flip attacks by
output code matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13388–13397, 2022.

14

Under review as submission to TMLR

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia conference
on computer and communications security, pp. 506–519, 2017.

Cheng Qian, Ming Zhang, Yuanping Nie, Shuaibing Lu, and Huayang Cao. A survey of bit-flip attacks on
deep neural network and corresponding defense methods. Electronics, 12(4):853, 2023.

Alec Radford. Improving language understanding by generative pre-training. OpenAI, 2018.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural network with progressive
bit search. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1211–1220,
2019.

Adnan Siraj Rakin, Zhezhi He, Jingtao Li, Fan Yao, Chaitali Chakrabarti, and Deliang Fan. T-bfa: Targeted
bit-flip adversarial weight attack. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44
(11):7928–7939, 2021.

Amit Mazumder Shuvo, Tao Zhang, Farimah Farahmandi, and Mark Tehranipoor. A comprehensive survey
on non-invasive fault injection attacks. Cryptology ePrint Archive, 2023.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8317–8326, 2019.

N. Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using nondominated sorting in genetic algo-
rithms. Evolutionary Computation, 2(3):221–248, 1994. doi: 10.1162/evco.1994.2.3.221.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Michael D Vose. The simple genetic algorithm: foundations and theory. MIT press, 1999.

Jialai Wang, Ziyuan Zhang, Meiqi Wang, Han Qiu, Tianwei Zhang, Qi Li, Zongpeng Li, Tao Wei, and Chao
Zhang. Aegis: Mitigating targeted bit-flip attacks against deep neural networks. In 32nd USENIX Security
Symposium (USENIX Security 23), pp. 2329–2346, 2023.

Qun Wang, Xizhen Xu, Xiaoxin Ding, Tiebing Chen, Ronghui Deng, Jinglei Li, and Jiawei Jiang. Multi
objective optimization and evaluation approach of prefabricated component combination solutions using
nsga-ii and simulated annealing optimized projection pursuit method. Scientific Reports, 14(1):16688,
2024.

Yun Xiang, Yongchao Xu, Yingjie Li, Wen Ma, Qi Xuan, and Yi Liu. Side-channel gray-box attack for dnns.
IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1):501–505, 2020.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao Zhao,
Chen Yang, Shihe Wang, et al. A survey of resource-efficient llm and multimodal foundation models. arXiv
preprint arXiv:2401.08092, 2024.

Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepathy: Leveraging shared resource
attacks to learn {DNN} architectures. In 29th USENIX Security Symposium (USENIX Security 20), pp.
2003–2020, 2020.

Fan Yao, Adnan Siraj Rakin, and Deliang Fan. {DeepHammer}: Depleting the intelligence of deep neural
networks through targeted chain of bit flips. In 29th USENIX Security Symposium (USENIX Security
20), pp. 1463–1480, 2020.

15

Under review as submission to TMLR

Yuval Yarom and Katrina Falkner. {FLUSH+ RELOAD}: A high resolution, low noise, l3 cache {Side-
Channel} attack. In 23rd USENIX security symposium (USENIX security 14), pp. 719–732, 2014.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning. Cambridge
University Press, 2023a. https://D2L.ai.

Zhenyu Zhang, Xiaoqing Cheng, Zongyi Xing, and Xingdong Gui. Pareto multi-objective optimization of
metro train energy-saving operation using improved nsga-ii algorithms. Chaos, Solitons & Fractals, 176:
114183, 2023b.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy
labels. Advances in neural information processing systems, 31, 2018.

A Appendix

A.1 Background

In this section, we elaborate on the types of model attacks based on the level of knowledge the attacker can
extract from the victim model.

A.1.1 Model Attacks

Full Knowledge Attacks In shared cloud environments, attacks leveraging complete knowledge represent
the gravest security threat to deployed large language models (LLMs). This scenario assumes an adversary
with extensive knowledge of both the target model and deployed defenses, thus allowing for optimized attack
strategies. Attackers can utilize advanced side-channel techniques to compromise hardware vulnerabilities
and exfiltrate sensitive model parameters, encompassing proprietary weights and confidential user queries.
One of the most potent techniques available to attackers in this context is the Cache Side-Channel Attack,
specifically targeting the Last-Level Cache (LLC). Yarom & Falkner (2014) and Kayaalp et al. (2016) have
shown that these attacks leverage shared hardware resources to deduce memory access patterns, thereby
exposing sensitive data within the cache. Despite the severity of full-knowledge attacks, they remain techni-
cally challenging due to limited data extraction rates and the high complexity of reconstructing deep neural
networks from indirect leakage. However, even the partial extraction of key model components, including
embedding layers and attention heads, poses a significant risk, potentially enabling adversaries to replicate
model functionality or generate targeted adversarial perturbations.

White-box Attacks White-box attacks pose a serious threat to large language models (LLMs), leveraging
attackers’ knowledge of model architecture and training data Madry (2017); Rakin et al. (2019). While
attackers cannot directly access memory, they can estimate vulnerable bits to execute Rowhammer attacks
and exploit hardware vulnerabilities Mutlu & Kim (2019).

Two key factors contribute to this risk. First, many commercial models and datasets are open-source, and
users frequently download pre-trained models for transfer learning. These models inherit vulnerabilities,
giving attackers a foundation for exploitation. Second, adversaries can use hardware monitoring tools to
analyze memory access patterns Yan et al. (2020), allowing them to infer model architecture and train
a local copy with similar weaknesses. Unlike full-knowledge attacks, white-box attacks are practical and
accessible, making them a baseline threat model. Mitigating these risks requires robust memory protection,
hardware-level defenses, and adversarial training to prevent model extraction and fault injection.

Gray-box Attacks In gray-box scenarios, attackers possess partial knowledge of the target model, such
as its architecture or certain parameters, but lack complete access. This limited insight enables them to
craft more efficient attacks compared to black-box methods Xiang et al. (2020); Zhang & Sabuncu (2018).
Attackers analyze model outputs and leverage statistical or adversarial techniques to infer model properties
and vulnerabilities or extract knowledge. These attacks enable techniques such as model extraction (where

16

https://D2L.ai

Under review as submission to TMLR

attackers approximate the target model’s behavior) and prompt inference (where sensitive information is
retrieved based on response patterns).

Since attackers lack direct access to model internals, they rely on query efficiency to reduce costs while
maximizing the extraction of decision boundaries or key model parameters. This attack type is particularly
concerning in API-based LLM deployments, where adversaries can probe responses and fine-tune adversarial
inputs without needing access to underlying weights or architecture.

Black-box Attacks In black-box scenarios, attackers have no direct access to the target model’s archi-
tecture or parameters Papernot et al. (2017); Mahmood et al. (2021). They rely solely on the model’s
outputs to infer vulnerabilities and craft adversarial examples. A notable approach involves using gradient
estimation techniques to generate adversarial inputs, effectively deceiving models without internal knowl-
edge. Another study highlighted the practicality of black-box attacks by crafting adversarial examples that
mislead machine-learning models, even in the absence of model specifics.

Real-world Execution Feasibility In this work, we use the white-box attack setting for identifying the
most critical bits in the model. Even though a white-box type bit flip attack assumes direct access to model
weights, an attacker can still indirectly induce such faults in a deployed model by targeting the hardware that
holds the model in memory. In real-world scenarios, attackers might exploit hardware vulnerabilities—such
as the Rowhammer effect—to cause bit flips in DRAM. For example, if an attacker manages to run code on
the same physical server as the deployed model (as might be possible in a multi-tenant cloud environment),
they can use fault injection techniques to flip a few critical bits in memory identified by techniques such as
Memory Access Pattern Analysis Yan et al. (2020). This doesn’t require direct API access to the model’s
weights; rather, it leverages a vulnerability in the underlying hardware to corrupt the model’s parameters
at runtime.

A.1.2 Transformer Models

The Transformer architecture is foundational for LLMs and Vision Transformers, driving advancements in
NLP and image classification Vaswani (2017); Radford (2018); Chang et al. (2024); Xu et al. (2024). It
comprises two main components: the encoder to convert input data into a structured intermediate represen-
tation for improved feature understanding and the decoder to generate output sequences from this encoded
informationZhang et al. (2023a). There are three task-specific configurations: Encoder-only models for
input-driven tasks (e.g., text classification, named entity recognition), Decoder-only models for generative
tasks, and Encoder-decoder models for tasks requiring input-dependent generation (e.g., machine translation,
summarization).

A critical innovation in the Transformer is the attention mechanism, particularly multi-head attention, which
prioritizes relevant input elements Zhang et al. (2023a). Attention weights are computed to emphasize
informative tokens, while masks can exclude specific tokens, such as padding. In each multi-head attention
layer, the model derives three parameters for each input token: Query (Q), Key (K), and Value (V),
calculated through linear transformations of input vectors. Attention scores assess token importance across
the sequence. Each head processes distinct Q, K, and V subsets, facilitating parallel analysis of diverse
token relationships. The individual attention outputs are concatenated and linearly combined to produce
the final attention output, enhancing the model’s ability to capture complex dependencies and improve task
performance in both NLP and vision domains.

A.1.3 Bit-flip Attack (BFA)

Bit-flip Vulnerabilities The robustness, security, and safety of modern computing systems are intrinsi-
cally linked to memory isolation, which is enforced through both software and hardware mechanisms Frassetto
et al. (2018). However, due to read-disturbance phenomena, contemporary DRAM chips remain susceptible
to memory isolation breaches Kim et al. (2014). RowHammer Mutlu & Kim (2019) is a well-documented
example where repeated DRAM row (hammering) access induces bitflips in adjacent rows due to electri-
cal interference. SledgeHammer enhances the effectiveness of RowHammer by combining it with bank-level

17

Under review as submission to TMLR

parallelism and hammering multiple memory banks simultaneouslyKang et al. (2024). A recent and signif-
icant advancement in read-disturbance attacks is RowPress Luo et al. (2023), specifically targeting DDR4
systems with RowHammer protection mechanisms. RowPress demonstrates that prolonged access to a
single DRAM row can disrupt physically adjacent rows, causing bitflips. This technique effectively circum-
vents RowHammer defenses, requiring substantially fewer row activations to induce faults and underscoring
DRAM’s vulnerability.

Existing Bit-flip Attacks Existing research has explored various fault injection methods in neural net-
works, targeting biases, weights, and activation functions to induce targeted and untargeted misclassifica-
tions. While these techniques were primarily designed for full-precision DNNs, many edge implementations
operate in quantized precision, making them inherently more resilient to parameter variations. To overcome
this, efficient algorithms have been developed to identify the most vulnerable bits in quantized DNNs. Rakin
et al. Rakin et al. (2019) exploit RowHammer to expose BFA vulnerabilities in DNNs, using Progressive
Bit Search (PBS) to iteratively flip critical bits and degrade accuracy. TBFA Rakin et al. (2021) extends
this by targeting specific misclassifications. DeepHammer Yao et al. (2020) exemplifies advanced BFAs by
employing system-level flip-aware PBS that enables memory-efficient rowhammering and precise flipping of
targeted bits.

However, BFAs have been predominantly studied in the context of DNNs and remain largely unexplored for
Transformer-based architectures such as LLMs due to their substantially larger parameter space and struc-
tural differences. Applying conventional BFA techniques to LLMs is highly challenging, a difficulty further
exacerbated by the growing adoption of quantized and low-precision models. Towards filling this research
gap, we for the first time propose a novel, efficient BFA framework, AttentionBreaker, to methodically exploit
the bit-flip vulnerabilities of LLMs in an efficient manner. While our approach is designed for untargeted
attacks, it can be adapted for targeted settings by modifying the objective and flipping bits critical to a
specific class. We focus on untargeted attacks as earlier research indicates that they are more challenging to
defend Özdenizci & Legenstein (2022). Studies further suggest that degrading overall performance through
untargeted attacks lacks distinct attack signatures unlike targeted attacks, rendering conventional defenses
ineffective Qian et al. (2023); Nazari et al. (2024). Therefore, AttentionBreaker strategically employs an
untargeted attack to maximize disruption while evading traditional defense strategies.

Quantization precision impact on bit-flip attacks Quantization precision plays a crucial role in
determining the vulnerability of machine learning models to bit-flip attacks. It affects both the number
of bit-flips required and the extent to which these flips can disrupt model performance. The impact of
bit-flips varies across different numerical formats due to their underlying representation and sensitivity to
perturbations. The value of an integer stored in an n-bit signed representation (e.g., INT8, INT4, INT2) is
given by:

X = (−1)bn−1

n−2∑
k=0

bk · 2k (10)

Where bk represents the bit at position k. Flipping a bit at position k changes X by:

∆X = (−1)bn−1 · 2k (11)

On the other hand, floating-point representations, such as FP16 and FP32, follow the IEEE 754 standard,
where a number is stored as:

X = (−1)s2E−EBias(1 + M) (12)

where s is the sign bit, E is the exponent with bias EBias, and M is the normalized mantissa. Now, flipping
the sign bit changes the sign of the value. Flipping a bit in the exponent can change the value by a factor
of 2k, leading to drastic value shifts (e.g., a bit-flip in the 7th exponent bit transforms an FP32 number
1.0 to infinity). Flipping a bit in the mantissa introduces a small perturbation, where the relative change
is approximately 2−23X, which is much smaller and therefore requires multiple bit-flips in the mantissa to
achieve significant impact.

18

Under review as submission to TMLR

For example, in INT8, flipping the most significant bit (MSB) of the value (0b01000000) changes from 64
to -64. This demonstrates that MSB flips can significantly alter values, but the effect is constrained by the
limited range of [-128, 127]. As the precision further declines to INT4 and INT2, the range correspondingly
diminishes, resulting in ranges of [-8, 7] and [-1, 1] respectively. Consequently, a single bit-flip causes a
smaller error, necessitating a larger number of bit-flips to produce a significant effect.

In a Float32 parameter, flipping the most significant bit can change a value from a large positive number to
an equally large negative number (e.g., 3.4×1038 to −3.4×1038). This drastic shift reflects the role of the sign
bit in IEEE 754 representation. Bit-flips in the exponent or mantissa can further lead to outcomes ranging
from numerical overflow to subtle degradation. This vulnerability extends to reduced-precision formats. In
Float16 (FP16), with a smaller dynamic range and 10-bit mantissa, sign-bit flips produce equivalent sign
inversion (e.g., 6.5 × 104 to −6.5 × 104), while exponent or mantissa flips yield more pronounced errors
due to limited precision. Similarly, bfloat16 (BF16), which retains Float32’s 8-bit exponent but reduces the
mantissa to 7 bits, exhibits analogous sign sensitivity with coarser representational granularity. Notably,
in LLaVA1.6-Mistral-7B FP16, a single bit-flip via AttentionBreaker suffices to collapse model accuracy
entirely, whereas the W4 (NF4) variant requires 53 flips to achieve a comparable effect. These findings
underscore that, despite appearing more robust, lower-precision models remain extremely vulnerable to
bit-flip attacks. Therefore, we focus on targeting lower precision models in our experiments.

A.2 Ablation Study

This section presents an ablation study to systematically evaluate and decide on specific components in our
proposed method, such as α, top-n, or which genetic algorithm to use for optimization.

A.2.1 Sensitivity Ratio Variation

We vary α between |∇W| and |W| in the min-max normalized importance score calculation as described in
Section 4.2.1. Under different values of α, the model loss at different bit-flip rates is depicted in Figure 5a.
As observed, an optimal value of α = 0.5 achieves the best results, closely followed by α = 0 and α = 0.75.
Consequently, α = 0.5 is selected for subsequent experiments.

0.00 0.25 0.50 0.75 1.00 1.25
Bit-flip rate (%) 1e 5

2

4

6

8

10

12

M
od

el
 lo

ss

= 0
= 0.25
= 0.5
= 0.75
= 1

(a) Sensitivity ratio (α).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bit-flip rate (%) 1e 5

2

4

6

8

10

12

M
od

el
 lo

ss

All layers
Top-1 layer
Top-3 layers
Top-5 layers

(b) Top-ranked layer count.

Figure 5: LLaMA3-8B-Instruct W8 ablation study on Sensitivity Ratio Variation and top-n layer count.
Analysis was performed using the ‘Astronomy’ task of the MMLU benchmark.

19

Under review as submission to TMLR

A.2.2 All vs top-n Layer Sensitivity Analysis

In this experiment, we investigate the impact of varying the selection of top-n layers on model performance
by comparing the effects of sub-sampling from the top-n layers versus sub-sampling from all layers. With
a fixed sensitivity parameter of α = 0.5, we increment n from 1 to 5. The results demonstrate that sub-
sampling from the top-n layers leads to a higher loss than sub-sampling from all layers, as illustrated in
Figure 5b. Among the top-n layers, selecting the top-1 layers yields the best performance, followed by top-3
and top-5. The weight subset selection and optimization based on top-n layers provide superior results, as
the constrained weight subspace facilitates faster convergence. Consequently, we fix n = 1 for all subsequent
experiments.

A.2.3 Genetic Algorithms Variation

We extensively evaluate the performance of our proposed evolutionary optimization technique against estab-
lished algorithms, including the Simple Genetic Algorithm (SGA) Vose (1999), Particle Swarm Optimization
(PSO) Eberhart & Kennedy (1995), Non-Dominated Sorting Genetic Algorithm (NSGA) Srinivas & Deb
(1994), and NSGA-II Deb et al. (2000); Lambora et al. (2019). It is essential to note that these baseline
methods employed are established benchmarks in recent research Kundu et al. (2024b); Zhang et al. (2023b);
Wang et al. (2024). Our problem is inherently multi-objective, as we aim to maximize model loss and min-
imize the number of bit-flips. These two objectives make NSGA-based methods particularly relevant for
comparison. We reformulated our approach into a unified loss function to ensure a fair evaluation. This
transformation allows for a direct comparison between our method and NSGA-based approaches while pre-
serving the underlying optimization goals. To ensure comparability, we standardize parameters across all
algorithms, setting the population size to 100, mutation rate to 0.1, and crossover rate to 0.9. Addition-
ally, we apply modifications in population initialization, crossover, and mutation strategies as in our custom
implementation. Results in Figure 6a demonstrate that our modified genetic algorithm achieves superior
convergence speed and accuracy, owing to optimizations tailored to problem-specific requirements. Conse-
quently, this optimized genetic algorithm is employed in all subsequent experiments. Figure 6b illustrates
the optimization of the weight set within AttentionBreaker’s genetic implementation. Notably, the required
weight count decreases exponentially as the fitness score rises, reflecting rapid improvement. After approxi-
mately 80–90 iterations, both metrics plateau, indicating convergence; at this stage, the optimal solution is
returned as the output.

0 10 20 30 40 50 60
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Bi

t-f
lip

s

1e4

GenBFA
Simple GA
PSO
NSGA
NSGA-II

(a) comparison between various genetic algorithms.

0 20 40 60 80 100
Generations

0

1

2

3

4

5

Bi

t-f
lip

s

1e5
Bit-flips

0

1

2

3

4
Fit

ne
ss

 sc
or

e
Fitness score

(b) number of bit-flips and fitness score optimization.

Figure 6: LLaMA3-8B-Instruct W8 ablation study on genetic optimization to select critical weights. Fitness
scores for the genetic algorithms are calculated using the “Astronomy” task of the MMLU benchmark.

20

Under review as submission to TMLR

A.3 Intermediate Results

A.3.1 Layer Sensitivity Analysis

Figure 7 presents the sensitivity distribution using loss across layers for the LLaMA3-8B-Instruct W4, along
with BitNet and LLaVA1.6-7B models. For LLaMA3-8B-Instruct W4, the model loss across several layers
remains elevated, signifying high sensitivity in Figure 7a. Figure 7b describes the sensitivity of BitNet,
which, with its more aggressive quantization, exhibits greater resilience, reflected by fewer layers furnishing
high model loss. In the case of LLaVA1.6-7B W8, high sensitivity to parameter perturbation is observed
primarily in the language processing component of the model. The vision processing component, preceding
the language component, has a less pronounced effect. The most sensitive layers are among the initial layers
of the language component, as seen in Figure 7c. This showcases the variation in layer sensitivities in different
components in multi-modal models.

0 50 100 150 200
Layer ID

2

4

6

8

10

12

M
od

el
 lo

ss

Hybrid sensitivity score

(a) LLaMA3-8B-Instruct W4.

0 50 100 150 200 250
Layer ID

2

3

4

5

6

M
od

el
 lo

ss

Hybrid sensitivity score

(b) BitNet W1.58.

0 100 200 300
Layer ID

6.5

7.0

7.5

8.0

8.5

M
od

el
 lo

ss

Hybrid sensitivity score

(c) LLaVA1.6-7B W8.

Figure 7: Layer sensitivity analysis for LLMs and VLMs with varying quantization formats. Sensitivity
scores and model loss are calculated using the ‘Astronomy’ task of the MMLU benchmark.

A.3.2 OBTAINING THE MOST CRITICAL PARAMETERS

The GenBFA algorithm, detailed in Section 4.2.2, refines the weight subset generated by the previous step.
Through iterative refinement, this stage systematically reduces the weight subset, yielding a final set for
bit-flip perturbation that is minimal in size yet achieves the same degradation in model performance as the
initial set. This iterative optimization process is captured in Figure 8, which shows an exponential reduction
in weight subset size while maintaining loss at or higher than the loss threshold.

0 100 200
Generations

0

2

4

Bi

t-f
lip

s

1e3

Bit-flips

0
2
4
6
8
10
12

M
od

el
 lo

ss

L
Lth

(a) LLaMA3-8B-Instruct W4.

0 50 100 150 200
Generations

1.0

1.2

1.4

1.6

1.8

Bi

t-f
lip

s

1e5

Bit-flips

1

3

5

M
od

el
 lo

ss

LS
Lth

(b) BitNet W1.58.

0 50 100
Generations

0.0

0.5

1.0

1.5

Bi

t-f
lip

s

1e6

Bit-flips
1
3
5
7
9
11
13

M
od

el
 lo

ss

LS
Lth

(c) Phi-3-mini-128k W8.

Figure 8: Genetic optimization for critical parameter identification. Loss is calculated on the ‘Astronomy’
task on MMLU.

21

Under review as submission to TMLR

A.4 Illustrative Attack Efffects of the Model Attck

In this section, we systematically analyze the impact of adversarial bit-flip perturbations on model behavior,
as introduced through our proposed framework. We present empirical evaluations across a diverse set of
large language model (LLM) tasks, including question answering, code generation, content generation, and
translation. The following box illustrations provide representative examples demonstrating the extent of
model degradation under BFAs.

A.4.1 Mathematical question answering

Box 2 presents a comparative analysis of the model’s behavior before and after the adversarial attack. The
results illustrate a substantial degradation in the model’s output quality following the attack. When tested
with LLaMA3-8B-Instruct W8 with MMLU under normal operation, the model produces accurate and
contextually relevant responses. However, post-attack, the generated output becomes highly erroneous and
incoherent with respect to the given query, highlighting the significant impact of the adversarial perturbation
on the model’s reliability.

A.4.2 Code generation

Box 3 presents an illustrative example of the model’s behavior in a code generation task before and after
the adversarial attack. In the pre-attack scenario, the model correctly generates a Python function to
compute the Fibonacci sequence, demonstrating its intended functionality. However, following the attack,
the model’s output becomes completely corrupted, consisting of incoherent and nonsensical characters. This
stark contrast highlights the severe impact of the adversarial perturbation, leading to a catastrophic failure
in code generation and rendering the model unreliable for practical use.

Box 2: Mathematical question answering

System Prompt: You are a helpful AI assistant. Answer the following question.
Few-shot (n) Examples:
Question 1
Expected model output 1
Question 2
Expected model output 2
...
Question # (n+1): Edgar eats 18 pretzels a day. If his brother eats 1/2 as many, how many does
his brother eat in a week?

Model Output (Pre-Attack)

Model Output:
Edgar eats 18 pretzels a day. His brother eats 1/2 as many, so he eats 18 * 1/2 = 9 pretzels
a day. In a week, he eats 9 * 7 = 63 pretzels. The answer is 63.
Extracted Answer: 63

Model Output (Post-Attack)

Model Output:
/iwbfninwdjo[[jj cweijfnpow[c w edfjo [wedj [wed p owed[wqd
Extracted Answer:“”

22

Under review as submission to TMLR

A.4.3 Language translation

Box 4 illustrates the impact of the adversarial attack on a translation task. In the pre-attack scenario, the
model correctly translates the given English sentence into French, producing the expected output with high
fidelity. However, after the attack, the model fails to perform the translation entirely, instead echoing the
original English input followed by a sequence of nonsensical characters. This degradation demonstrates the
attack’s effectiveness in disrupting the model’s core functionality, leading to a complete failure in producing
a coherent translation.

A.4.4 Content generation

Box 5 highlights the adverse effects of the attack on a content generation task. Before the attack, the
model generates a coherent and contextually relevant article introduction on “Artificial Intelligence and
Ethics”, demonstrating its ability to produce structured and meaningful text. However, after the attack,
the model’s output becomes entirely corrupted, consisting of a mix of nonsensical phrases, symbols, and
numerical sequences. This severe degradation underscores the attack’s capability to disrupt the model’s
generative capabilities, rendering it incapable of producing intelligible or contextually appropriate content.

A.5 Adaptability and Robustness

In this section, we examine the adaptability of AttentionBreaker in constrained environments, along with its
robustness and the transferability of its attack effects.

A.5.1 Gradient-free AttentionBreaker

In this experiment, we investigate the effectiveness of AttentionBreaker in a gradient-free context, where
gradient information is inaccessible at all stages. Here, the importance scores are computed solely based
on weight magnitudes by setting α = 0.0. Our results demonstrate that this magnitude-based approach
maintains the attack’s efficacy, as it accurately identifies critical weights, enabling a highly impactful at-
tack. We observe that, without gradient information, setting α = 0 allows the model to be attacked with
only 4.129× 10−9% bit-flips, reducing model accuracy to zero. This degradation matches the attack’s ef-
fectiveness at α = 0.5, as depicted in Figure 3a. Subsequent analysis of the attack vector confirms that
identical weights and bits are selected for attack across both settings, underscoring AttentionBreaker’s ver-

Box 3: Code generation

System Prompt: Write a function to Write a code to calculate fibonacci sequence in python.

Model Output (Pre-Attack)

Model Output: If we have to write a code in python to calculate the Fibonacci sequence for
the given input of ’n’, we can create a function called ’fibonacci’ as follows:
def fibonacci(n):
initializing the first two fibonacci numbers
a, b = 0, 1
printing the first two numbers
if n > 0:

print(a, b)

Model Output (Post-Attack)

Model Output: ...!!!!!!!!!!!!!! !!!!!!!!! !!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! !!

23

Under review as submission to TMLR

Box 4: Language translation

System Prompt: Translate from English to French: I have to submit an assignment tomorrow.
Expected output: Je dois soumettre un devoir demain.

Model Output (Pre-Attack)

Model Output: Je dois soumettre un devoir demain.

Model Output (Post-Attack)

Model Output: I have to submit an assignment tomorrow.!!!!!!!!!!!!!!!!!!!!!!!!

satility and adaptability. This robustness is particularly significant as many defenses against BFAs assume
that gradient access is essential for an attacker, prompting defenses to obscure or protect gradients. How-
ever, AttentionBreaker’s gradient-free capability bypasses these gradient-based defenses entirely by relying on
magnitude-based importance, showing its potential to circumvent gradient-based restrictions. This adaptabil-
ity highlights AttentionBreaker’s broad applicability in gradient-restricted environments, establishing it as a
resilient approach for BFAs.

Our approach provides a flexible and user-dependent framework, allowing adversaries to choose
between gradient-free and gradient-based strategies based on their specific objectives and com-
putational constraints. For adversaries prioritizing computational efficiency, the gradient-free variant of
AttentionBreaker offers a viable solution by leveraging weight magnitudes as a sensitivity proxy, eliminating
the need for costly gradient calculations while maintaining high attack efficacy. Conversely, for adversaries
willing to accept higher computational costs to minimize perturbations and achieve more precise attacks, the
gradient-based version remains advantageous. This adaptability not only enhances the practicality of our
method but also strengthens its resilience against existing defenses. Defenses targeting gradient-based attacks
may be ineffective against magnitude-based approaches, while those designed to counteract magnitude-based
perturbations may fail against gradient-driven strategies. Furthermore, in models with structured depen-
dencies, weight redundancy, or adaptive optimization mechanisms like Adam, gradients play a crucial role in
identifying the most impactful perturbations, reinforcing the necessity of gradient-based attacks in certain
cases. Given that defenses often redistribute weight significance to mitigate bit-flip attacks, the inclusion
of both approaches ensures that our method remains effective across diverse defensive strategies. By offer-
ing both computational efficiency and targeted precision, our framework establishes itself as a robust and
adaptable bit-flip attack methodology.

Box 5: Content generation

System Prompt: Write an article about “Artificial Intelligence and Ethics.”

Model Output (Pre-Attack)

Model Output: Artificial intelligence (AI) has been a field of interest and innovation, promis-
ing numerous profound impacts on society. However, as AI technology advances,...

Model Output (Post-Attack)

Model Output: Write an article about Artificial Intelligence and Ethics:ethesisethesis@ps@
peaceHub@ peace@K@2@K@@K@@2@K[@@2...

24

Under review as submission to TMLR

0 20 40
Task index

0

20

40

60

80

100
M

M
LU

 ta
sk

 a
cc

ur
ac

y
(%

)
O-Acc
PA-Acc

(a) MMLU.

0 1 2 3 4 5 6 7 8 9 10
LM Harness Benchmark Id

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

85.20

77.20

67.10

75.00 74.20

64.00

78.50

71.20
67.00 67.20

72.00

0.09 0.08 0.07 0.10 0.05 0.01 0.05 0.04 0.03 0.04 0.07

O-Acc
PA-ACC

(b) LM Harness.

Figure 9: LLaMA3-8B-Instruct W8 attack transferability analysis across various tasks.

A.5.2 Gray-box AttentionBreaker

While the proposed AttentionBreaker operates as a white-box attack, assuming complete access to model
parameters, practical scenarios may restrict access to all parameters. In such cases, grey-box attacks, where
only partial model information is available, become pertinent. To assess the robustness of our method under
these constraints, we simulate a grey-box scenario to demonstrate the efficacy of the attack. Specifically, we
limit accessibility to only a subset of initial model layers.

In order to simulate such limitations during a gray-box attack, we focus our attack strategy exclusively on
the initial layers of the model. The initial layers are particularly susceptible to bit-flips, making them ideal
candidates for our gray-box attack. Furthermore, even when restricted to having access only to the weight
magnitudes, without the gradients, our attack approach remains highly effective, resulting in a significant
degradation in model accuracy, from 67.3% to 0%.

A.5.3 Task Transferability

This experiment examines the transferability of attack effects across distinct tasks. Specifically, it investigates
whether an attack executed on Task A leads to observable adverse effects on Task B. If the attack effects
indeed transfer between tasks, it would indicate a fundamental vulnerability in the model architecture,
independent of the task at hand. Such a finding would underscore the severity of the model’s susceptibility
to the attack. For this investigation, the LLaMA3-8B W8 model was subjected to a targeted attack on the
MMLU task “Astronomy”. Due to the attack, the accuracy of the model on “Astronomy” drops from the
original accuracy (O-Acc) of 72.1% to a post-attack accuracy (PA-Acc) of 0%. The resulting impact was then
systematically evaluated across additional MMLU tasks and other language benchmarks, including the LM
harness benchmark. The results reveal a high degree of transferability, whereby the attack yields comparable
degradation in performance across the evaluated tasks. This finding underscores the broad vulnerability of
the model to such attacks. Figure 9a illustrates that an attack initially targeted at the “Astronomy” task
leads to substantial accuracy reductions in other MMLU tasks. Similarly, an attack initially targeted at the
“AddSub” task from the LM harness benchmark leads to severe model degradation on other LM harness
tasks as well as captured in Figure 9b. This illustrates the pronounced transferability of the attack across
varied tasks and domains.

A.5.4 AttentionBreaker Transferability to Fine-tuned models

This experiment evaluates the persistence of adversarial effects from an attack applied to a base model when,
after an attack, the model is loaded with previously fine-tuned adapters for a specific task. Specifically, we

25

Under review as submission to TMLR

fine-tune the LLaMA3-8B-Instruct W8 model on the “AddSub” task from the LM harness benchmark and
save the resulting fine-tuned adapter. The fine-tuning progress is shown in Figure 10a, denoted as original
fine-tuning or Original-FT-Loss. Next, we reload the original base model and perform the AttentionBreaker
attack. As anticipated, the model exhibits a substantial loss increase and severe accuracy degradation, with
accuracy plummeting from 85.2% to 0%, as illustrated in Figure 10b (labeled as F1). Upon loading the fine-
tuned adapter, we observe that the model accuracy remains at 0%, indicating that the fine-tuned adapter
alone is insufficient to restore model accuracy following the attack.

A.5.5 Fine-tuning-based Recovery

This experiment assesses the persistence of adversarial effects introduced through the AttentionBreaker on
a base model, specifically evaluating whether subsequent fine-tuning on a task can mitigate these impacts.
We begin by attacking the LLaMA3-8B-Instruct W8 model, followed by evaluating the model’s accuracy on
the “AddSub” task from the LM harness benchmark. As a result, the model’s accuracy drops drastically
from an initial 85.2% to 0%, as depicted in Figure 10b (labeled as F2), indicating that the model output
now consists largely of arbitrary strings devoid of task relevance.

Subsequently, we fine-tune the attacked model on the same task, conducting five epochs with 21 iteration
steps per epoch, as shown in Figure 10a. Throughout fine-tuning, the validation loss (or the post-attack
fine-tuning loss PostAttack-FT-Loss) declines substantially from an initial 9.12 to 0.27, signaling effective
task adaptation. Despite this apparent success in convergence, post-fine-tuning testing reveals that model
accuracy remains at 0%, as shown in Figure 10b. This result suggests that while the model now outputs
seemingly structured words rather than random strings, it fails to exhibit logical coherence or task-related
reasoning, thus remaining unsuccessful in executing the logical deduction necessary for the “AddSub” task.
The findings imply that fine-tuning does not suffice to restore task-specific functionality after the Attention-
Breaker attack.

A.5.6 Zero-masked fine-tuning

In this study, we investigate the persistence of adversarial effects introduced via the AttentionBreaker method
on a base model and evaluate whether task-specific fine-tuning—applied after resetting the perturbed weights
to zero—can effectively mitigate these impacts. In particular, we aim to determine whether nullifying the
impact of the bit-flipped weights (i.e., setting the perturbed weights to zero, wi = 0) permits effective
recovery of model performance through fine-tuning on the same task. We begin attacking the LLaMA3-

0 20 40 60 80 100
Iteration steps

0.0

2.5

5.0

7.5

10.0

M
od

el
 lo

ss

Original-FT-Loss
PostAttack-FT-Loss
PostAttackZMask-FT-Loss

(a) Fine-tuning model loss with iterations.

F1 F2 F3
Finetuning-based recovery

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

85.2 85.2 85.2

0.0 0.0 0.00.0 0.0

79.1

O-Acc PA-Acc PF-Acc

(b) Fine-tuning-based recovery strategies.

Figure 10: Fine-tuning-based recovery after the attack: (a) validation loss with iteration steps and (b)
model performance for different fine-tuning strategies. Metrics are calculated on the ‘AddSub’ task of the
LM Harness benchmark.

26

Under review as submission to TMLR

8B-Instruct W8 model using our AttentionBreaker framework, subsequently evaluating its accuracy on the
“AddSub” task from the LM harness benchmark. Immediately following the attack, the model’s accuracy
plunges from an initial 85.2% to 0%, as illustrated in Figure 10b. Next, we mask the attacked weights by
resetting them to zero (wi = 0) and fine-tune the model on the same task, performing five epochs with
21 iterations per epoch. During fine-tuning, the validation loss (or PostAttackZMask-FT-Los) decreases
significantly from an initial value of 9.03 to 0.25, as depicted in Figure 10a, indicating that the model is
adapting effectively to the task requirements.

Upon fine-tuning, we test the model performance on the same task and observe that the model’s accuracy
is substantially recovered from 0% to 79.1%, as shown in Figure 10b (labeled as F3). These findings suggest
that fine-tuning, preceded by zeroing out perturbed weights, is sufficient to restore task-specific functionality,
thereby mitigating the adversarial effects induced by the attack.

A.6 Conventional BFA Feasibility

We present a comparative analysis of the computational overhead associated with the traditional Bit-Flip
Attack (BFA) method Rakin et al. (2019) and our proposed method, AttentionBreaker, evaluated on the
LLaMA3-8B-Instruct W8 model using four NVIDIA A100 GPUs. This analysis aims to demonstrate the
practicality of applying conventional BFA techniques to transformer-based large language models (LLMs). As
shown in Table 4 in Section 5.3.3, AttentionBreaker achieves approximately a 10× speedup over traditional
BFA in identifying 1,000 vulnerable bit positions.

The inefficiency of traditional BFA arises from its design: only a single bit is flipped per iteration, and each
flip requires a full gradient recomputation, resulting in substantial computational overhead. Notably, the
reported 20-hour runtime for conventional BFA accounts solely for the bit search and optimization phase,
excluding time spent on model inference or evaluation.

To illustrate this further, consider the LLaMA3-8B-Instruct W8 model, which contains 291 layers quantized
to int8. During each iteration, BFA performs a progressive layer-wise search, where it temporarily flips
candidate bits in each layer, computes the loss for each modified version, and ranks them to identify the
bit that maximally increases the model loss. This process is repeated across all layers in each of the 1,000
iterations. Assuming an average loss computation time of 0.24 seconds per layer, the total time spent on
loss evaluation alone is:

1000× 291× 0.24 = 69, 840 seconds ≈ 19.4 hours.

When additional factors such as gradient computation, bit manipulation, and execution pipeline overhead
are included, the total runtime approaches 20 hours. This analysis highlights the substantial time complexity
involved in conventional BFA, particularly when scaling to large models such as LLaMA3-8B.

27

	Introduction
	Variable Notations
	Motivation
	Proxy for Sensitivity
	Layer Sensitivity Analysis
	Weight Subset Optimization

	Proposed AttentionBreaker Methodology
	Threat Model
	Proposed Attack Framework
	Layer Ranking
	Weight-set Optimization - GenBFA

	Experimental results
	Experimental Setup
	Targeted Transformer Modules
	Results and Analysis
	Efficiency of AttentionBreaker
	Comparison across Quantization Levels
	Comparison with Conventional BFA
	Feasibility of Targeted Attacks by AttentionBreaker
	Performance-cost tradeoff

	Analysis of intermediate steps in AttentionBreaker
	Assessing Layer Sensitivity and Ranking
	Obtaining the Most Critical Weights

	Efficiency against Existing Defenses
	Discussion on Possible Defenses
	Conclusion
	Appendix
	Background
	Model Attacks
	Transformer Models
	Bit-flip Attack (BFA)

	Ablation Study
	Sensitivity Ratio Variation
	All vs top-n Layer Sensitivity Analysis
	Genetic Algorithms Variation

	Intermediate Results
	Layer Sensitivity Analysis
	OBTAINING THE MOST CRITICAL PARAMETERS

	Illustrative Attack Efffects of the Model Attck
	Mathematical question answering
	Code generation
	Language translation
	Content generation

	Adaptability and Robustness
	Gradient-free AttentionBreaker
	Gray-box AttentionBreaker
	Task Transferability
	AttentionBreaker Transferability to Fine-tuned models
	Fine-tuning-based Recovery
	Zero-masked fine-tuning

	Conventional BFA Feasibility

