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ABSTRACT

Despite the promise of synthesizing high-fidelity videos, Diffusion Transformers
(DiTs) with 3D full attention suffer from expensive inference due to the com-
plexity of attention computation and numerous sampling steps. For example, the
popular Open-Sora-Plan model consumes more than 9 minutes for generating a
single video of 29 frames. This paper addresses the inefficiency issue from two
aspects: 1) Prune the 3D full attention based on the redundancy within video data;
We identify a prevalent tile-style repetitive pattern in the 3D attention maps for
video data, and advocate a new family of sparse 3D attention that holds a linear
complexity w.r.t. the number of video frames. 2) Shorten the sampling process by
adopting existing multi-step consistency distillation; We split the entire sampling
trajectory into several segments and perform consistency distillation within each
one to activate few-step generation capacities. We further devise a three-stage
training pipeline to conjoin the low-complexity attention and few-step generation
capacities. Notably, with 0.1% pretraining data, we turn the Open-Sora-Plan-1.2
model into an efficient one that is 7.4 × −7.8× faster for 29 and 93 frames 720p
video generation with a marginal performance trade-off in VBench. In addition,
we demonstrate that our approach is amenable to distributed inference, achieving
an additional 3.91× speedup when running on 4 GPUs with sequence parallelism.

1 INTRODUCTION

Diffusion Transformers (DiTs) based video generators can synthesize long-horizon, high-resolution,
and high-fidelity videos (Peebles & Xie, 2023; OpenAI, 2024; Kuaishou, 2024; Lab & etc., 2024;
Zheng et al., 2024; Esser et al., 2023; Yang et al., 2024b). The 3D attention is a core module of
such models. It flattens both the spatial and temporal axes of the video data into one long sequence
for attention computation and reports state-of-the-art generation quality (Lab & etc., 2024; Yang
et al., 2024b; Huang et al., 2024). The computation of 3D attention often consumes the majority of
the time during the entire forward propagation of a 3D DiT, especially with long sequences when
generating extended videos. Thus, existing 3D DiTs suffer from prohibitively slow inference due to
the slow attention computation as well as the multi-step diffusion sampling procedure.

This paper tackles the issue by simultaneously sparsifying 3D attention and reducing sampling steps
to accelerate 3D DiTs. To explore the redundancies in video data (recall that by nature videos can
be efficiently compressed), we examine the attention states in 3D DiTs and identify an intriguing
phenomenon, referred to as the Attention Tile. As shown in Figure 1(a), the attention maps exhibit
uniformly distributed and repetitive tile blocks, where each tile block represents the attention be-
tween latent frames1. This repetitive pattern suggests that not every latent frame needs to attend to
all others. Moreover, the Attention Tile pattern is almost independent of specific input (Figure 1).
With these, we propose a solution that replaces the original attention with a fixed set of sparse at-
tention mask during inference (§3.3). Specifically, we constrain each latent frame to only attend to
a constant number of other latent frames, reducing the complexity of attention computation from
quadratic to linear.

We then consider shortening the sampling process of a video from 3D DiT to further amplify the ac-
celeration effect. Inspired by the recent advance in diffusion distillation (Salimans & Ho, 2022; Song

1we use the term latent because DiTs compute in the latent space of VAEs (Rombach et al., 2022b).
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Figure 1: We observe the Attention Tile pattern in 3D DiTs. (a) the attention map can be broken
down into smaller repetitive blocks. (b) These blocks can be classified into two types, where atten-
tion weights on the diagonal blocks are noticeably larger than on off-diagonal ones. (c) These blocks
exhibit locality, where the attention score differences between the first frame and later frames gradu-
ally increases. (d) The block structure is stable across different data points, but varies across layers.
We randomly select 2 prompts (one landscape and one portrait) and record the important positions
in the attention map that accounted for 90% (95%, 99%) of the total. We printed the proportion of
stable overlap of important positions across layers.

et al., 2023; Kim et al., 2023; Liu et al., 2023b; Sauer et al., 2023; Yin et al., 2024; Heek et al., 2024;
Xie et al., 2024), we adopt a simple yet effective multi-step consistency distillation (MCD) (Heek
et al., 2024) technique into our approach to achieve the efficient generation of compelling videos.
In particular, we split the entire sampling trajectory into adjacent segments and perform consistency
distillation within each one. We also progressively decrease the number of segments to improve the
generation quality at rare steps.

Due to the orthogonality between sparse attention and MCD, a naive combination is possible, such
as directly distilling a sparse student 3D DiT from a pre-trained model. However, the initial gap be-
tween the sparse student and the teacher can be large so that the training suffers from a cold start. To
tackle this issue, we introduce a more refined model acceleration process named EFFICIENT-VDIT.
Initially, MCD is utilized to generate a student model with the same architecture but fewer sampling
steps than the teacher. Subsequently, we determine the optimal sparse attention pattern for each head
of the student and then apply a knowledge distillation procedure to the sparse model to maintain per-
formance. With 0.1% the pretraining data, we train Open-Sora-Plan-1.2 models into variants that
are 7.8× and 7.4× faster, with a marginal performance trade-off in VBench. (Huang et al., 2024).
In addition, we provide evidence that our approach is amenable to advances in distributed inference
systems, achieving an additional 3.91× speedup when running on 4 GPUs.

In summary, our contribution are:

1. We discover and analyze the phenomenon of Attention Tile in 3D full attention DiTs, and
propose a family of sparse attention mask with linear complexity to address the redundancy.

2. We design a framework EFFICIENT-VDIT based on our analysis of Attention Tile, which
turns a pre-trained 3D DiT to a fast variant in a data efficient manner.

3. We evaluate on two Open-Sora-Plan 1.2 models for 29 frames and 93 frames genera-
tion. EFFICIENT-VDIT achieves up to 7.8× speedup with little performance trade-off
on VBench and CD-FVD. We further demonstrate the potential of integrating our method
with advanced distributed inference techniques, achieving additional 3.91× with 4 GPUs.

2 RELATED WORK

Video Diffusion Transformers There is a rich line of research in diffusion based models for video
generation (Ho et al., 2022; He et al., 2022; Luo et al., 2023; Wang et al., 2023c; Ge et al., 2023a;
Chen et al., 2024b; Guo et al., 2023; 2024). More recently, Peebles & Xie (2023) introduces the
architecture of Diffusion Transformers (DiTs), and several popular video generation models have
been developed using the DiTs backbone, for instance, Ma et al. (2024); Zheng et al. (2024); Lab
& etc. (2024); Yang et al. (2024b). More specifically, Lab & etc. (2024); Yang et al. (2024b)
has explored the use of 3D Full Attention Transformers, which jointly model spatial and temporal
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Figure 2: EFFICIENT-VDIT takes in a pre-trained 3D Full Attention video diffusion trans-
former(DiT), with slow inference speed and high fidelity. It then operates on three stages to greatly
accelerate the inference while maintaining the fidelity. In Stage 1, we modify the multi-step con-
sistency distillation framework from (Heek et al., 2024) to the video domain, which turned a DiT
model to a CM model with stable training. In Stage 2, EFFICIENT-VDIT performs a searching algo-
rithm to find the best sparse attention pattern for each layer. In stage 3, EFFICIENT-VDIT performs a
knowledge distillation procedure to optimize the fidelity of the sparse DiT. At the end, EFFICIENT-
VDIT outputs a DiT with linear attention, high fidelity and fastest inference speed.

relationship, instead of previous models that separately model spatial and temporal relationship (e.g.
one Transformer layer with spatial attention and the other with temporal attention (Zheng et al.,
2024; Ma et al., 2024)). The design of 3D full attention has gained increasing popularity due to
their promising performance. In this work, we tackle the efficiency problem specifically for 3D full
attention diffusion Transformers. In addition, there is a line of research that combines video diffusion
model with sequential or autoregressive generation. These methods may also achieve speedup due
to their use of shorter sequence length. EFFICIENT-VDIT aims to speedup in a single diffusion
forward, which is compatible with orthogonal to autoregressive manner methods (Henschel et al.,
2024; Xiang et al., 2024; Chen et al., 2024a; Valevski et al., 2024).

Accelerating diffusion inference Many work in diffusion models have been proposed to reduce the
number of sampling steps to accelerate diffusion inference (Song et al., 2020; Lu et al., 2022a;b) (Liu
et al., 2024). Song et al. (2023) proposes the consistency models which distills multiple steps ODE
to one step. Wang et al. (2023b) extends CMs to video generation model. Li et al. (2024b)
further extends the idea with reward model to speed up video diffusion model inference. Another
line of research that accelerates diffusion models inference utilize multiple devices (Li et al., 2024c;
Wang et al., 2024a; Chen et al., 2024d; Zhao et al., 2024). These works exploit the redundancy
between denoising steps and use stale activations in distributed inference to hide communication
overhead, and are naturally incompatible with work that reduce the redundancy between steps. In
this work, we exploit the redundancy in attention computation, which is orthogonal to works that
leverage distributed acceleration and redundancy between denoising steps. Our pipeline integrates
a multi-step CM approach (Xie et al., 2024) by default, and in experiment, we show that it can also
seaminglessly integrate with parallel inference.

Sparsity in Transformer inference has been investigated in the context of Large Language Models
(LLMs) inference, which can be decomposed into pre-filling and decoding stages (Yu et al., 2022).
StreamingLLM discovers the pattern of Attention Sink, and keeps a combination of first few tokens
and recent decoded tokens during decoding phrase (Xiao et al., 2023). Zhang et al. (2024a;b)
adaptively identify the most significant tokens during test time. Video DiTs have different workload
than LLMs, where DiTs perform a single forward in each diffusion step without a decoding phrase.
In particular, our paper is among the first to explore sparse attention in the context of 3D Full
Attention DiTs. In addition, our finding that Attention Tile is data-independent motivates us to
design a solution which does not require inference time adaptive searching, which is a bottleneck in
work such as Zhang et al. (2024b). Sparsity has also been studied in Gan and other diffusion-based
models, yet we focus on the new architecture 3D DiT (Li et al., 2020; 2022). A recent paper (Wang
et al., 2024b) also discusses the redundancy in DiTs models, but no performance has been shown.

3 EFFICIENT-VDIT

EFFICIENT-VDIT is a framework that takes in a 3D full attention DiT model T , and outputs a DiT
that runs efficiently during inference TFast. EFFICIENT-VDIT consists of three stages. The first
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stage (§3.2) performs a multi-step consistency distillation and outputs TMCM, following the method
developed in image diffusion models (Xie et al., 2024). The second stage (§3.3) takes in TMCM,
performs a one-time search to decide the optimal sparse attention mask for each layer, and outputs
a model TSparse with the optimal sparse attention mask. The last step(§3.4) performs a knowledge
distillation to preserve the model performance, using TMCM as the teacher and TSparse as the student,
following the distillation design in (Gu et al., 2024; Jiao et al., 2019).

In this section, we first introduce the characteristics of Attention Tile that motivate the design of the
sparse patterns in Section 3.1. Then, we will introduce the framework EFFICIENT-VDIT by stages.

3.1 PRELIMINARY: CHARACTERISTICS OF Attention Tile

In §1, we briefly describe that the attention map consists of repetitive tile blocks. In this section, we
dive into three characteristics that lead to our design and usage of a family of sparse attention masks.

Figure 3: Exemplar attention mask
(2 : 6). It maintains the attention
in the main diagonals and against 2
global reference latent frames. Tile
blocks in white are not computed.

Large Diagonals Tile blocks on the main diagonals has higher
attention scores than off-diagonal ones. In Figure 1(b), we plot
the attention scores at the main diagonal tile blocks, compared
to attention scores at the off-diagonal blocks, on Open-Sora-
Plan-1.2 model (Lab & etc., 2024). We find that on average
the main diagonal blocks contain values 2.80× higher than the
off-diagonal ones. This suggests a separate treatment of tile
blocks on and off the main diagonals.

Locality Off-diagonal tile blocks are similar, but the similarity
decreases with further distance. In Figure 1(c), we plot the rel-
ative differences between the first latent frame and subsequent
latent frames. We find that the differences increase monotoni-
cally. This indicates a need to retain the computation of several
tile blocks (i.e. more than one) to accommodate information
in distant tile blocks.

Data Independent The structure of the tile is relatively sta-
ble across different inputs. We plot the overlap of indices for
largest attention scores for different prompts. We observe that
roughly 90% of them coincide. This suggests reusing a fixed
set of attention masks during inference for different inputs.

Motivated by the above characteristics, we develop a family of sparse attention masks where we keep
the attention computation in the main diagonal and the attention with a constant number of global
reference latent frames. Figure 3 visualizes one instance of the attention mask. The formulation will
be introduce formally in § 3.3.

3.2 STAGE 1: MULTI-STEP CONSISTENCY DISTILLATION

We follow (Xie et al., 2024) to perform a multi-step latent consistency distillation(MLCD) procedure
to obtain TMCM as classic CM map from an arbitrary ODE trajectory state to the endpoint. MLCD
generalize CM by dividing the entire ODE trajectory in latent space into S segments and carrying
out consistency distillation for each segment independently which reduce the difficulty for training
dramatically. MLCD obtains a set of milestone states marked as {tsstep}Ss=0. The loss for MLCD is:

LMLCD =
∥∥DDIM

(
ztm , fθ(ztm , tm), tm, tsstep

)
− nograd

(
DDIM

(
ztn , fθ(ztn , tn), tn, t

s
step

))∥∥2
2

where s is uniformly sampled from {0, . . . , S}, tm is uniformly sampled from [tsstep, t
s+1
step ], tn is uni-

formly sampled from [tsstep, tm], DDIM(ztm , fθ(ztm , tm), tm, tsstep) means one-step DDIM transfor-
mation from state ztm at timestep tm to timestep tsstep with the estimated denoised image fθ(ztm , tm)
and nograd refers to one-step diffusion without guidance scale.
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Algorithm 1 Searching for the optimal set of sparse attention masks

Require: Available mask list from dense to sparse [Mask1,Mask2, ...,Maskn], teacher model MT ,
student model M , loss function L, number of timestep samples m.

Require: Forward function FORWARD, threshold r, which is the maximum tolerance for L.
Require:

1: for each layer l in model layers do
2: Initialize best mask← None
3: for i from 1 to n do ▷ Iterate over masks from dense to sparse
4: Apply Maski to the current layer M (l)

5: Initialize Lmax
i ← −∞ ▷ Initialize max loss for this mask

6: for each timestep t sampled m times from Uniform(0, 1) do
7: ŷ ← FORWARD(M (l)

T , Maski, t)
8: Compute Li(t)← L(y, ŷ)
9: Update Lmax

i ← max(Lmax
i ,Li(t)) ▷ Update the maximum loss

10: end for
11: if Lmax

i < r then
12: best mask← Maski ▷ Update the best mask if max loss is within threshold
13: else
14: break
15: end if
16: end for
17: Assign best mask to the current layer M (l)

18: end for

3.3 STAGE 2: LAYER-WISE SEARCH FOR OPTIMAL SPARSE ATTENTION MASK
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Figure 4: Search results for Open-
Sora-Plan v1.2 model (29 frames). We
verify that different layers have differ-
ent sparsity in 3D video DiTs.

Sparse Attention Masks Following our analysis in §3.1, a
desired sparse attention mask should separately treat on and
off diagonal tile blocks, leverages the repetitive pattern in off-
diagonal tile blocks while considering locality. In this paper,
we aim on a family of masks that achieve linear compute com-
plexity while prioritizing simplicity and implementation effi-
ciency. Specifically, we simply keep tile blocks in the main di-
agonals(marked as golden color in Figure 3). For off-diagonal
tile blocks, we keep a constant number of k latent frames, and
only retain attention between against these ”global reference
frames” (mark as blue color in Figure 3). Since k is constant,
the overall complexity of the attention is linear with respect to
the number of latent frames. For simplicity, we choose these k
reference frames uniformly from all F latent frames. For clar-
ity, we denote a mask with two numbers - k : F − k. For ex-
ample, the example figure 3 shows an attention mask of 2 : 6.

Layer-wise Searching For Attention Masks Previous stud-
ies has suggested that different layers exhibit different amount
of sparsity (Wang et al., 2023a; Ge et al., 2023b; Yang et al.,
2024a). Using the MSE difference of the final hidden states
as a guidance, we develop a searching method to find the best
combinations of attention masks across layers (Algorithm 1).
Intuitively, we first perform a profiling process on TMCM . The
profiling step loops over layers, and greedily selects the largest
k which does not incur a higher MSE difference than a prede-
fined threshold r. A dynamic programming based alternative is also described in Appendix A,
where given a runtime constraint, the minimum possible maximum loss difference is computed. In
the experiment section ( § 4), we show evidence that this is a key to maintaining video quality. For
simplicity, we apply the greedy version of the search throughout the main paper. Figure 3.4 shows
an exemplar algorithm output.
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3.4 STAGE 3: KNOWLEDGE DISTILLATION WITH TTCM

Stage 2 introduces performance drop since we significantly modify the attention mask. In Stage 3,
we apply the method of knowledge distillation, using the model with full attention TMCM as the
teacher, and the model with sparse attention TSparse as the student (Hinton, 2015). We follow a
similar design as knowledge distillation methods in Transformer models for Languages (Gu et al.,
2024; Jiao et al., 2019), which combines the loss from attention output and hidden states output,
over L total layers.

Ltotal =
1

L

(
L∑

i=1

(
L(i)

attention + L
(i)
mlp

))
+ λLdiffusion, (1)

where each term is defined as follows:

Attention Loss Lattention: To calculate L(i)
attention, we apply the MSE loss between the output of the

student’s self-attention layer Ô(i)
attn and the teacher’s self-attention layer output Õ(i)

attn:

L(i)
attention = MSE(Ô(i)

attn, Õ
(i)
attn). (2)

MLP Loss Lmlp: We calculate L(i)
mlp as the MSE between the outputs of the student’s MLP layer

Ô
(i)
mlp and the teacher’s MLP layer output Õ(i)

mlp:

L(i)
mlp = MSE(Ô(i)

mlp, Õ
(i)
mlp). (3)

In addition, we keep the diffusion loss Ldiffusion for the student model. In practice, we observed that
the diffusion loss tends to be an order of magnitude smaller compared to other losses. To balance
the contribution of the diffusion loss during the training process, we scale it by a factor λ, ensuring
it has a comparable impact on the overall loss function.

4 EXPERIMENT

We first present our experiment settings and evaluation metrics in §4.1. We then discuss system
performance in §4.2, demonstrating the effectiveness on a single GPU and applicable to multiple
GPUs. In §4.3, we compare the video quality with and without variants of our methods with VBench
and CD-FVD (Huang et al., 2024; Ge et al., 2024). Finally, we show visualization results in §4.4 of
the generation quality for the original model, the MLCD model, and the final model.

4.1 EXPERIMENT SETUP

Models. We use the 29 and 93 frames models of the popular 3D DiT based Open-Sora-Plan fam-
ily (Lab & etc., 2024). The model uses VAE inherits weights from the SD2.1 VAE (Rombach et al.,
2022a), with a compression ratio of 4x8x8 (temporal, height and width). For the text encoder, it
uses mt5-XXL as the language model, and it incorporates RoPE as the positional encoding (Xue,
2020; Su et al., 2024). In addition to the VAE encoder, videos are further processed by a patch
embedding layer that downsamples the spatial dimensions by a factor of 2. The videos tokens are
finally flattened into a one-dimensional sequence across the frame, width, and height dimensions.

Metrics. We evaluate video quality using VBench and Content-Debiased Frechet Video Distance
(FVD) (Huang et al., 2024; Ge et al., 2024). VBench assesses the quality of video generation by
aligning closely with human perception , computed for each frame of the video and then averaged
across all frames, providing a comprehensive assessment. CD-FVD measures the distance between
the distributions of generated and real videos toward per-frame quality over temporal realism.

Baselines. We consider two models as the major baselines: the original Open-Sora-Plan model
and the model after consistency distillation. Following the default settings of Open-Sora-Plan mod-
els Lab & etc. (2024), we use 100 DDIM steps for the original model, which is consistent across
all experiments and training in the paper. For the MLCD model, we select the checkpoint with 20
inference steps as we empirically find that it achieves the best qualitative result.

6
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Implementation details. We use FlexAttention from PyTorch 2.5.0 (Ansel et al., 2024) as the
attention backend. We provide a more detailed description on how to leverage FlexAttention to
implement our method in Appendix B. We generate videos based on the VBench standard prompt
list for VBench evaluation. To avoid potential data contamination in CD-FVD evaluation, we use a
set of 2000 samples from the Panda-70M (Chen et al., 2024c) test set to build our real-world data
comparison. As we use the CD-FVD score between real-world data and generated videos to evaluate
the capacity of DiT models, the prompt style needs to align with the real-world data clip samples.
Therefore, we randomly select prompts from the Panda-70M test set caption list for video generation
by the models.

Training details. All models are trained using the first 2000 samples from the Open-Sora-Plan’s
mixkit dataset.The global batch size is set to 2, and training is conducted for a total of 10000 steps,
equivalent to 10 epochs of dataset. The learning rate is 1e-5, and the gradient accumulation steps is
set to 1. The diffusion scale factor λ is 100. The MLCD model is trained with 100 DDIM steps of
the original model. The final model is trained with a 20-step MLCD model checkpoint.

4.2 SYSTEM PERFORMANCE

The major target of EFFICIENT-VDIT accelerates inference in a single GPU by using multi-step
consistency distillation and sparse attention. In §4.2.1, we demonstrate the system speedup with
various settings. In addition, we demonstrate an advantage of our method that it can be seaminglessly
integrate with advanced parallel method, i.e. sequence parallelism, in §4.2.2.

4.2.1 EFFICIENT-VDIT SPEEDUP ON A SINGLE GPU

We test our approach on a single A100-SXM 80GB GPU. Table 1 shows the computation time for
a single sparse attention kernel, while Table 2 presents the average execution time of all layers after
layerwise search in Algorithm 1. ‘2:6’ refers to 2 global reference frames in Figure 3. Sparsity refers
to the proportion of elements in the kernel that can be skipped. During testing, we consider only the
attention operation, where the inputs are query, key, value, and mask, and the output is the attention
output. We do not account for the time of VAE, T5, or embedding layers. The measurement method
involves 25 warmup iterations, followed by 100 runs. The median of the 20th to 80th percentile
performance is used as the final result.

In Table 1, we observe that as the sparsity increases, the computation time decreases significantly.
For instance, with a 2:6 attention mask, corresponding to a sparsity level of 45.47%, the execution
time reduces to 31.35 ms, resulting in a 1.86× speedup compared to the full mask. In Table 2, the
effect of increasing threshold r on speedup is evident. As r increases, the sparsity grows, leading to
a greater reduction in computation time and a corresponding increase in speedup. For example, with
r = 0.050, the sparsity reaches 37.78%, achieving a speedup of 1.64×. When r is further increased
to 0.400, the sparsity level rises to 55.07%, and the speedup improves to 2.25×. This positive
correlation between r, sparsity, and speedup highlights the efficiency gains that can be achieved by
leveraging higher sparsity levels.

Table 1: Speedup with different masks.

Frames Mask Sparsity (%) Time(ms) Speedup

29

full 0.00 58.36 1.00×
4:4 17.60 46.52 1.25×
3:5 29.88 40.08 1.46×
2:6 45.47 31.35 1.86×
1:7 64.38 20.65 2.83×

93

full 0.00 523.61 1.00×
12:12 21.51 397.72 1.32×
8:16 40.30 303.90 1.72×
6:18 51.88 244.13 2.14×
4:20 64.98 179.74 2.91×
3:21 72.05 142.77 3.67×

Table 2: Speedup with different threshold r.

Frames r Sparsity (%) Time(ms) Speedup

29

full 0.00 58.36 1.00×
0.025 23.51 43.50 1.34×
0.050 37.78 35.58 1.64×
0.100 45.08 31.54 1.85×
0.200 51.55 27.91 2.09×
0.400 55.07 25.96 2.25×

93 full 0.00 523.61 1.00×
0.150 38.02 317.56 1.65×
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4.2.2 EFFICIENT-VDIT SPEEDUP IN DISTRIBUTED SETTING

EFFICIENT-VDIT utilize sparse attention and consistency distillation to achieve speedup. These
methods are orthogonal to the recent advances in distributed systems, mainly sequence parallelism
based solution in LLMs (Liu et al., 2023a; Li et al., 2024a; Jacobs et al., 2023) and model parallelism
(or with hybrid sequence parallelism) based solution in diffusion Transformers (Li et al., 2024c;
Wang et al., 2024a; Chen et al., 2024d). We consider sequence parallelism in this section for is
simplicity and empirical lower overhead (Li et al., 2024a;c; Xue et al., 2024).

Implementation We utilize the All-to-All communication primitives to implement sequence paral-
lelism (Jacobs et al., 2023). In the attention computation, the system partitions the operations along
the head dimension while keeping the entire sequence intact on each GPU, allowing a simple im-
plementation of EFFICIENT-VDIT by applying the same attention mask as in the one GPU setting 2.
As a result, EFFICIENT-VDIT is natively compatible with All-to-All sequence parallelism.

We conduct a scaling experiment with sequence parallelism on 4x A100-SXM 80GB GPUs, inter-
connected with NVLink. We observe a speedup of 3.68× - 3.91× for 29 and 93 frames generation
on 4 GPUs, which is close to a theoretical speedup of 4× (Table 3). If reported 29 frames generation
on multi-GPUs, Oursr=0.100 can achieve 25.8x speedup on 4 GPUs and 13.0x speedup on 2 GPUs.

Table 3: EFFICIENT-VDIT with se-
quence parallelism. Time as wall-clock-
time per step.

Frames # GPUs Time (s) Speedup

29
1 5.56 1.00×
2 2.98 1.87×
4 1.52 3.68×

93
1 39.06 1.00×
2 20.00 1.95×
4 10.02 3.91×

Table 4: Results on Open-Sora-Plan with 93
frames and 720p resolution. We select mo-
tion smoothness and temporal flickering from
VBench as they measure frame transition,
which are crucial for sparse attention methods.

Model Motion
Smoothness

Temporal
Flickering Speedup

Base 99.15% 98.76% 1.00×
MLCD 99.30% 99.22% 5.00×

Oursr=0.150 99.08% 99.31% 7.40×

4.3 VIDEO QUALITY BENCHMARK

Table 5: Open-Sora-Plan with 29 frames and 720p resolution results on VBench and CD-FVD.
‘r=0.1’ indicates that this checkpoint is trained using the layerwise search strategy described in
Algorithm 1, with a threshold of r=0.1. We selects some dimensions for analysis, with the remaining
dimensions provide in the Table 8.

Model Final
Score ↑ Aesthetic

Quality
Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality CD-FVD ↓ Speedup

Base 76.12% 58.34% 34.72% 99.43% 99.28% 64.72% 98.45% 64.75% 172.64 1.00×
MLCD 76.81% 58.92% 41.67% 99.41% 99.42% 63.37% 98.37% 65.55% 190.50 5.00×

Oursr=0.025 76.14% 57.21% 52.78% 99.37% 99.49% 60.36% 98.26% 58.90% 186.84 5.85×
Oursr=0.050 76.01% 57.57% 58.33% 99.15% 99.56% 58.70% 97.58% 56.86% 195.55 6.60×
Oursr=0.100 76.00% 56.59% 63.89% 99.13% 99.54% 57.12% 97.73% 54.88% 204.13 7.05×
Oursr=0.200 75.02% 55.71% 59.72% 99.03% 99.50% 55.22% 97.28% 54.07% 223.75 7.50×
Oursr=0.400 75.30% 55.79% 65.28% 98.93% 99.46% 54.98% 97.71% 54.36% 231.68 7.80×

In this section, we first evaluate EFFICIENT-VDIT with layerwise searching on CD-FVD and
VBench (Huang et al., 2024; Ge et al., 2024). We compare with the baseline of the original Open-
Sora-Plan 1.2 model, and the model we obtain only using the MLCD method. We then conduct
two ablation experiments to understand the effectiveness of the MLCD method, and our layerwise
searching algorithm.

Table 5 demonstrates the main result of the 29 frames model. In VBench, We find that the results
of all our search models are within 1% final score against the Base model with no noticeable drop
in several key dimensions. At higher acceleration ratios, such as Oursr=0.400, the model maintains

2The difference is that the attention mask is applied to fewer number of attention heads.
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Prompt: A woman is standing on a black background and talking to the camera.
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Prompt: Two men are sitting at a table in a garage and talking to each other.

Figure 5: Qualitative samples of our models. We compare the generation quality between the base
model, MLCD model, and after knowledge distillation. Frames shown are equally spaced samples
from the generated video. EFFICIENT-VDIT is shortened as ‘E-vdit’ for simplicity. More samples
can be found in Appendix E.

stable performance, with minimal deviations from the Base model, demonstrating the robustness of
our approach while achieving significant speedups. However, we note that the imaging quality and
subject class are lower than those of the base model. The reason why the VBench score remains
within 1% difference is that our model improves the dynamic degree. With more sparsity, our
pipeline has the characteristics of being able to capture richer motions between frames, but trading
off some degrees of imaging quality and subject class accuracy.

In CD-FVD, our models with smaller acceleration ratios achieve better scores than MLCD model.
For example, Oursr=0.025 achieves a score of 186.84 with a speedup of 5.85×, outperforming the
MLCD model. As the acceleration ratio increases, the score degrades as expected. Oursr=0.400

reaches a score of 231.68 with a speedup of 7.80×, showing a trade-off between acceleration and
performance. Our models maintain performance with minimal performance drop and achieve a
significant speedup. In table 4, we show the effectiveness of EFFICIENT-VDIT in a subset of VBench
for 93 frames. We observe a similar conclusion that we achieve 7.4× speedup.

Effect of MLCD We conduct tests on VBench and CD-FVD, first comparing the differences be-
tween the Base model and the MLCD model, and then evaluating the compatibility of CM with
the attention mask. As shown in Table 6, the MLCD model performs as well as or better than the
Base model across most dimensions on VBench, achieving an overall VBench score of 76.81%.
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Due to the MLCD model requiring fewer sampling steps than the Base model, it achieves a 5.00×
speedup. Furthermore, we observe that the MLCD model, even after undergoing knowledge distilla-
tion, maintains performance without any drop in quality. The VBench score and CD-FVD trends are
consistent, indicating that the MLCD model supports attention mask operations effectively, similar
to the original model. Therefore, the MLCD model continues to deliver high-quality performance
while offering significant acceleration benefits.

Effect of Layerwise Search We conduct tests on VBench and CD-FVD, selecting the MLCD model
as the baseline. We compare applying a uniform mask across all layers (e.g., 4:4, 3:5) with the
layerwise mask from Algorithm 1. As shown in Table 7, in VBench, using the layerwise mask with
(r = 0.025, 0.050, 0.100) achieve a score exceeding 76.00%, significantly outperforming the results
without layerwise masking, while also providing a better speedup (7.05× vs. 5.80×). In CD-FVD,
the layerwise mask consistently results in scores below 250. However, as sparsity increases, the
score without layerwise masking exceeds 250, indicating a decrease in video generation quality.
Therefore, the layerwise approach enhances the quality of generated videos.

Table 6: Ablation experiments on the effect of MLCD.

Model Final
Score ↑ Aesthetic

Quality
Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality CD-FVD ↓ Speedup

Base 76.12% 58.34% 34.72% 99.43% 99.28% 64.72% 98.45% 64.75% 172.64 1.00×
Base4:4 76.57% 58.64% 43.06% 99.38% 99.20% 66.38% 98.26% 63.56% 171.62 1.16×
Base3:5 75.53% 55.47% 58.33% 99.01% 98.96% 62.26% 97.42% 59.67% 197.35 1.26×
Base2:6 76.33% 57.14% 56.94% 99.06% 99.02% 56.17% 97.58% 61.10% 201.61 1.45×
Base1:7 77.15% 57.53% 75.00% 98.67% 98.66% 60.68% 96.96% 61.91% 322.28 1.77×

MLCD 76.81% 58.92% 41.67% 99.41% 99.42% 63.37% 98.37% 65.55% 190.50 5.00×
MLCD4:4 75.90% 57.84% 50.00% 99.38% 99.50% 63.03% 98.21% 58.47% 175.47 5.80×
MLCD3:5 75.41% 57.19% 43.06% 99.36% 99.50% 57.04% 98.12% 58.84% 190.92 6.30×
MLCD2:6 75.23% 57.45% 44.44% 99.29% 99.48% 54.59% 98.37% 57.35% 213.72 7.25×
MLCD1:7 75.84% 56.83% 63.89% 98.99% 99.23% 52.77% 97.54% 56.42% 294.09 8.85×

Table 7: Ablation experiments on the effect of our layerwise searching algorithm.

Model Final
Score ↑ Aesthetic

Quality
Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality CD-FVD ↓ Speedup

MLCD 76.81% 58.92% 41.67% 99.41% 99.42% 63.37% 98.37% 65.55% 190.50 5.00×
MLCD4:4 75.90% 57.84% 50.00% 99.38% 99.50% 63.03% 98.21% 58.47% 175.47 5.80×
MLCD3:5 75.41% 57.19% 43.06% 99.36% 99.50% 57.04% 98.12% 58.84% 190.91 6.30×
MLCD2:6 75.23% 57.45% 44.44% 99.29% 99.48% 54.59% 98.37% 57.35% 213.71 7.25×
MLCD1:7 75.84% 56.83% 63.89% 98.99% 99.23% 52.77% 97.54% 56.42% 294.09 8.85×

Oursr=0.025 76.14% 57.21% 52.78% 99.37% 99.49% 60.36% 98.26% 58.90% 186.84 5.85×
Oursr=0.050 76.01% 57.57% 58.33% 99.15% 99.56% 58.70% 97.58% 56.86% 195.55 6.60×
Oursr=0.100 76.00% 56.59% 63.89% 99.13% 99.54% 57.12% 97.73% 54.88% 204.13 7.05×
Oursr=0.200 75.02% 55.71% 59.72% 99.03% 99.50% 55.22% 97.28% 54.07% 223.75 7.50×
Oursr=0.400 75.30% 55.79% 65.28% 98.93% 99.46% 54.98% 97.71% 54.36% 231.68 7.80×

4.4 QUALITATIVE RESULT

As illustrated in Figure 5, we compare the video results generated by three methods: the original
model, after applying MLCD, and after knowledge distillation. The generation settings are consis-
tent with those in Table 5, demonstrating that both the MLCD and knowledge distillation methods
maintain the original quality and details. More qualitvative samples are listed in Appendix E.

5 CONCLUSION

In this paper, we first describe the phenomenon of Attention Tile, and dive into its characteristics
of repetitive, large diagonals, locality, and data independent. Then we describe a class of sparse
attention pattern tailored to address the efficiency problem in Attention Tile. Lastly, we introduce
our overall framework that leveraged this class of sparse attention, which further leverages multi-
step consistency distillation, layerwise searching, and knowledge distillation for faster generation
and high performance. Experiments on two varaints of the Open-Sora-Plan model has demonstrated
that our method can achieve similar performance, with 0.1% the pre-training data, and up to 7.8×
speedup. Further ablation study has shown that our method can be natively integrated with advanced
parallelism method to achieve further speedup.
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Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
attention broadcast. arXiv preprint arXiv:2408.12588, 2024.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
March 2024. URL https://github.com/hpcaitech/Open-Sora.

A EXTENED LAYERWISE SEARCH ALGORITHM

In this section, we explore how to balance the trade-off between inference speedup and output image
quality. Intuitively, as the attention map becomes sparser, the inference time decreases, but the
output image quality also degrades. With this model, we can answer the key question: Given a
target speedup or inference time, how can we achieve the highest possible image quality?

This problem is well-suited to latency constrained case because, in real-world applications, speedup
can be precisely measured. Adjusting the generation quality within these constraints is therefore
meaningful. Additionally, solving this problem allows us to approximate continuous speedup ratios
as closely as possible using discrete masks, further validating the robustness of our algorithm.
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A.1 ESTIMATION AND QUANTITATIVE ANALYSIS

The inference time can be quantitatively computed. Given time limitation Ttarget. Suppose we have a
series of masks M1,M2, . . . ,Mk. For each mask, we can pre-profile its runtime as T1, T2, . . . , Tk.
If layer j uses mask aj ∈ [1, k], the total inference time is given by T =

∑
j Taj

≤ Ttarget.

On the other hand, quantifying image quality is challenging. To address this, we make an assump-
tion: the impact of different layers on image quality is additive. We use the loss as the value function,
representing the output image quality as L =

∑
j Lj,aj

, where Lj,aj
denotes the loss value when

layer j uses mask type aj .

A.2 LAGRANGIAN RELAXATION METHOD

By introducing a Lagrange multiplier λ, we construct the Lagrangian function:

L(λ) =
∑
j

Lj,aj
+ λ

∑
j

Taj
− Ttarget

 . (4)

Our goal is to minimize L(λ), that is:

min
aj

L(λ) = min
aj

∑
j

Lj,aj + λ
∑
j

Taj

− λTtarget. (5)

Since Ttarget is a constant, the optimization problem can be simplified into independent subproblems
for each layer j:

min
aj

(
Lj,aj + λTaj

)
. (6)

A.3 LAGRANGIAN SUBGRADIENT METHOD

Input: Initial Lagrange multiplier λ(0), learning rate αt, maximum iterations N .
Output: Approximate optimal solution {aj} and Lagrange multiplier λ.

1. Initialization: Set iteration counter t = 0.

2. While t < N and not converged:

(a) Step 1: Solve Subproblems
For each layer j, solve the subproblem:

a
(t)
j = argmin

aj

(
Lj,aj

+ λ(t)Taj

)
. (7)

(b) Step 2: Calculate Subgradient
Compute the subgradient:

g(t) =
∑
j

T
a
(t)
j
− Ttarget. (8)

(c) Step 3: Update Lagrange Multiplier
Update λ using the subgradient:

λ(t+1) = λ(t) + αtg
(t). (9)

(d) Update t = t+ 1.

Output: Return the approximate solution {aj} and the final Lagrange multiplier λ.
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B FLEXATTENTION IMPLEMENTATION DETAILS

The attention we design can be efficiently implemented by the native block-wise computation design
in FlexAttention. Compared to a dynamic implementations, our computations are static, allowing
us to leverage static CUDA graphs for capturing or use PyTorch’s compile=True feature.

FlexAttention employs a block-based mechanism that allows for efficient handling of sparse atten-
tion patterns. Specifically, when an empty block is encountered, the module automatically skips
the attention computation, leveraging the sparsity in the attention matrix to accelerate calculations.
The ability to skip computations in this manner results in significant speedups while maintaining
efficient memory usage.

Additionally, FlexAttention is optimized by avoiding the need to materialize the entire mask. This
mechanism enables FlexAttention to operate efficiently on large-scale models without incurring
significant memory costs. For example, the additional memory usage of a model with 32 layers
and a 29 frames mask is only 0.278GB, while a 93 frames mask requires 0.715GB of additional
memory, which is considered minimal for large-scale models. By not needing to store or process the
full mask, we save both memory and computation time, leading to improved performance, especially
in scenarios where the attention matrix is highly sparse.

C SUPPLEMENTAL VBENCH EVALUATION

Table 8: Supplemental VBench evaluation for main result.

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

Base 23.25% 54.00% 94.47% 43.49% 18.60% 19.88% 18.45% 19.69% 97.64%
MLCD 19.21% 56.00% 94.12% 40.57% 22.67% 20.46% 18.21% 19.77% 97.98%

Oursr=0.025 18.83% 55.00% 96.25% 46.02% 12.35% 20.31% 18.17% 19.11% 97.70%
Oursr=0.050 11.74% 58.00% 92.11% 39.81% 22.31% 20.25% 17.71% 19.45% 97.71%
Oursr=0.100 18.98% 56.00% 93.65% 43.88% 15.77% 20.20% 17.98% 19.29% 97.55%
Oursr=0.200 17.99% 53.00% 51.82% 36.14% 13.88% 20.29% 17.97% 18.97% 97.62%
Oursr=0.400 15.32% 54.00% 92.64% 37.05% 12.06% 20.24% 18.19% 19.22% 97.66%

Table 9: Supplemental VBench evaluation result for base model and MLCD ablation experiment.

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

Base 23.25% 54.00% 94.47% 43.49% 18.60% 19.88% 18.45% 19.69% 97.64%
Base4:4 32.01% 55.00% 90.94% 45.42% 17.30% 20.21% 18.41% 19.48% 97.17%
Base3:5 15.85% 53.00% 88.88% 44.38% 14.53% 20.13% 17.46% 18.43% 97.28%
Base2:6 21.65% 56.00% 93.27% 49.90% 18.31% 19.87% 18.23% 18.94% 97.27%
Base1:7 17.76% 54.00% 93.02% 44.75% 19.99% 19.95% 18.25% 19.41% 97.30%

MLCD 19.21% 56.00% 94.12% 40.57% 22.67% 20.46% 18.21% 19.77% 97.98%
MLCD4:4 22.79% 53.00% 92.69% 39.80% 17.51% 19.89% 18.32% 19.06% 97.30%
MLCD3:5 22.10% 50.00% 90.82% 43.48% 21.44% 19.97% 17.68% 19.75% 97.47%
MLCD2:6 18.60% 53.00% 92.52% 43.36% 16.21% 19.89% 17.84% 20.12% 97.70%
MLCD1:7 16.92% 53.00% 91.92% 43.27% 17.22% 19.94% 18.56% 19.85% 97.45%

D ABLATION STUDY OF KNOWLEDGE DISTILLATION

D.1 ABLATION STUDY OF KNOWLEDGE DISTILLATION AND CONSISTENCY DISTILLATION
ORDER

We claim that knowledge distillation and consistency distillation are orthogonal processes. To verify
this, we conducted an ablation experiment on the distillation order. We first applied attention dis-
tillation based on the original model, then used this model to perform multi-step latent consistency
distillation (MLCD). The results in Table 11 support our hypothesis, showing minimal differences
in VBench and CD-FVD scores regardless of the distillation sequence. We also show qualitative
samples in Figure 6 to illustrate the video quality.
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Table 10: Supplemental VBench evaluation result for MLCD and layerwise knowledge distillation
ablation experiment.

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

MLCD 19.21% 56.00% 94.12% 40.57% 22.67% 20.46% 18.21% 19.77% 97.98%
MLCD4:4 22.79% 53.00% 92.69% 39.80% 17.51% 19.89% 18.32% 19.06% 97.30%
MLCD3:5 22.10% 50.00% 90.82% 43.48% 21.44% 19.97% 17.68% 19.75% 97.47%
MLCD2:6 18.60% 53.00% 92.52% 43.36% 16.21% 19.89% 17.84% 20.12% 97.70%
MLCD1:7 16.92% 53.00% 91.92% 43.27% 17.22% 19.94% 18.56% 19.85% 97.45%

Oursr=0.025 18.83% 55.00% 96.25% 46.02% 12.35% 20.31% 18.17% 19.11% 97.70%
Oursr=0.050 11.74% 58.00% 92.11% 39.81% 22.31% 20.25% 17.71% 19.45% 97.71%
Oursr=0.100 18.98% 56.00% 93.65% 43.88% 15.77% 20.20% 17.98% 19.29% 97.55%
Oursr=0.200 17.99% 53.00% 51.82% 36.14% 13.88% 20.29% 17.97% 18.97% 97.62%
Oursr=0.400 15.32% 54.00% 92.64% 37.05% 12.06% 20.24% 18.19% 19.22% 97.66%

Table 11: VBench evaluation result for ablation study on distillation order for MLCD and layerwise
knowledge distillation.

Model Final
Score ↑ Aesthetic

Quality
Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality CD-FVD ↓

MLCD + KD 76.00% 56.59% 63.88% 99.13% 99.54% 57.12% 97.73% 54.88% 204.13
KD + MLCD 75.50% 56.38% 54.16% 99.12% 99.40% 54.67% 97.71% 57.97% 203.52

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

MLCD + KD 18.97% 0.56% 93.65% 43.87% 15.77% 20.20% 17.98% 19.29% 97.55%
KD + MLCD 17.22% 0.53% 93.14% 39.87% 17.65% 20.11% 18.01% 19.17% 97.69%

Figure 6: Qualitative samples of ablation of distillation order. sampled from VBench prompts. We
show that both MLCD and EFFICIENT-VDIT model can simliar quality on these samples. In two
consecutive videos, the top shows results from MLCD + CD model followed by KD + MLCD model.
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D.2 ABLATION STUDY OF ATTENTION DISTILL ON COGVIDEOX MODEL

We show that attention distillation also works well on the CogVideoX Yang et al. (2024b) model.
CogVideoX is based on the MM-DiT architecture, where its attention module concatenates text to-
kens with video tokens, which differs from Open-Sora-Plan’s cross attention module. This demon-
strates that our method works effectively on both MM-DiT and cross attention architectures. Our
experiments are conducted on the CogVideoX-5B model with 49-frame generation capability.

Implementation Details CogVideoX-5B is profiled using Algorithm 1. For training, the model is
trained for a total of 10,000 steps, equivalent to 10 epochs of the dataset. The learning rate is set to
1e-7, and the gradient accumulation step is set to 1. The diffusion scale factor λ is set to 1.

Kernel Performance We analyze the computation time for a single sparse attention kernel in Ta-
ble 12. The results show that as sparsity increases, computation time decreases significantly. For
instance, with a 2:11 attention mask, the execution time reduces to 15.16ms, achieving a 1.72×
speedup compared to the full mask.

Table 12: CogvideoX-5B model speedup with different masks.

Mask Sparsity (%) Time(ms) Speedup

full 0.00 26.03 1.00×
1 14.50 24.12 1.08×
2 29.29 23.68 1.10×
3 38.30 20.51 1.27×
4 48.66 17.77 1.47×
6 60.15 14.08 1.85×

12 74.11 9.99 2.60×

Evaluation For quantitative analysis, we show the VBench evaluation results of the knowledge
distillation model in Table 13. The results of our model are within 1% of the final score with
no noticeable drop in several key dimensions. Our model achieves comparable performance to the
original model. For qualitative analysis, we present sample visualizations in Figure 7 to demonstrate
the video generation quality. These evaluations show that our method maintains similar video qual-
ity while achieving significant speedup, validating its effectiveness across different video diffusion
model architectures.

Table 13: CogVideoX-5B with 49 frames and 480p resolution results on VBench. ’r=4.0’ indicates
that this checkpoint was trained using the layerwise search strategy described in Algorithm 1, with
a threshold of r=4.0.

Model Final
Score ↑ Aesthetic

Quality
Dynamic
Degree

Motion
Smoothness

Temporal
Flickering

Object
Class

Subject
Consistency

Imaging
Quality Speedup

Base 77.91% 57.91% 76.39% 97.83% 97.34% 71.99% 92.27% 57.78% 1.00×
Oursr=5 77.15% 51.18% 86.11% 96.67% 97.18% 77.06% 90.89% 55.75% 1.34×

Model Multiple
Objects

Human
Action Color Spatial

Relationship Scene Appearance
Style

Temporal
Style

Overall
Consistency

Background
Consistency

Base 48.62% 84.00% 86.71% 48.47% 38.01% 22.99% 23.22% 26.13% 95.01%
Oursr=5 39.17% 90.00% 83.58% 46.00% 36.92% 23.20% 23.40% 26.02% 93.95%

E QUALITATIVE SAMPLES OF DYNAMIC SCENES AND LARGE-SCALE MOTION

We compare the generation quality between the base model, MLCD model, and after knowledge
distillation. Our method (EFFICIENT-VDIT) is shortened as ‘E-vdit’ for simplicity. In Figure 8, we
demonstrate that our model is capable of generating large-scale motion effects such as centralized
radiating explosions. In Figure 9, we showcase our model’s ability to generate dramatic physical
movements, such as superhumans unleashing power in mid-air. In Figures 10, 11, 12, we show a
series of samples from VBench prompts, demonstrating our model’s motion generation capabilities
and providing better insights into the VBench scoring results.
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Figure 7: Qualitative samples of CogvideoX-5B Yang et al. (2024b) distillation from its sample
prompts. We show that our attention distill is capable of MM-DiT model architecture. In two
consecutive videos, the top shows results from the base model, followed by the distillation model.
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Prompt:The blast wave tears through the structure, turning solid walls into 
flying fragments.
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Prompt:The firestorm implodes, creating a vacuum that pulls everything 
toward a single point.

 

Figure 8: Based on Open-Sora’s examples Zheng et al. (2024) , we selected dynamic prompts fea-
turing centralized explosions and radiating energy, demonstrating dramatic transitions from focal
points to expansive environmental transformations, emphasizing large-scale motion.
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Prompt:Superhuman unleashing ultimate power, body levitating, 
surrounding rocks suspended, energy ripples expanding, slow motion 
capture.
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Prompt:A kaiju emergence in a megacity bay. the camera sweeps around as a massive creature rises from the 
ocean, creating tsunami waves that crash through skyscrapers. defense mechanisms activate as the beast 
demonstrates impossible physics-defying abilities. buildings transform into combat modes. evacuation ships 
launch everywhere. the video focuses on the sheer scale of the creature and its reality-warping presence.

 Figure 9: Dynamic prompts featuring forceful physical movements (like kicking) and swirling en-
vironmental effects (like waves), transitioning from calm to intense states.
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Figure 10: Qualitative samples of dynamic scenes from VBench prompts. We show that both MLCD
and EFFICIENT-VDIT model can generate dynamic videos while maintaining video quality. In three
consecutive videos, the top shows results from the base model, followed by the MLCD model, and
the EFFICIENT-VDIT model.
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Figure 11: Qualitative samples of dynamic scenes from VBench prompts. We show that both MLCD
and EFFICIENT-VDIT model can generate dynamic videos while maintaining video quality. In three
consecutive videos, the top shows results from the base model, followed by the MLCD model, and
the EFFICIENT-VDIT model.
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Figure 12: Qualitative samples of dynamic scenes from VBench prompts. We show that both MLCD
and EFFICIENT-VDIT model can generate dynamic videos while maintaining video quality. In three
consecutive videos, the top shows results from the base model, followed by the MLCD model, and
the EFFICIENT-VDIT model.
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