Supplementary material for
“Generalised Implicit Neural Representations”

Daniele Grattarola Pierre Vandergheynst
EPFL EPFL
Lausanne, Switzerland Lausanne, Switzerland
daniele.grattarola@epfl.ch pierre.vandergheynst@epfl.ch

A Solving the Poisson equation with generalised INRs

One interesting application of INRs is to train them using the derivatives of the target signal as
supervision. This idea, which was introduced by Sitzmann et al. [1]], can also be applied to the
generalised case.

Specifically, in this experiment we consider the bunny reaction-diffusion texture and train a gener-
alised INR to minimise:
L = [|Lf — Ly, (H

where L is the graph Laplacian, f = [f(v1),..., f(v,)]T € R™ is the target graph signal, and
f9 = [fo(e1),..., fo(en)]T € R™ is the signal predicted by the INR.
We report in Figure[T]the original texture, its Laplacian, and the reconstructed signal, as predicted

by the INR. We see that the model is able to correctly reconstruct the signal, although with some
oversmoothing.

(a) Original (b) Laplacian (c) Reconstructed

Figure 1: The original signal, its laplacian, and its reconstructed version for the bunny reaction-
diffusion texture.

B Changes in the experimental setting

Spectral embeddings In the transferability experiments, we observed that changes in the high-
frequency eigenvectors of different graph realizations of 7 caused the INR to perform poorly at test
time.

For this reason, we used smaller spectral embeddings of size k = 3 for the SBM experiment (which
was enough to highlight the community structure of the graphs) and £ = 7 for the super-resolution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

experiment with the bunny (which we found by trial and error balancing the speed of convergence
and the final performance).

In the weather experiment, the equiangular grid returned by GFS has a higher point density at the
poles. This non-uniformity has the effect that the first 66 eigenvectors are constant everywhere except
at a very concentrated region around the poles, and they tend to change a lot when sampling more
points (making it harder to transfer the trained INR to the high-resolution graph). To improve stability,
we removed the first 66 almost-trivial eigenvectors and trained the INR only on the remaining 34.

Architecture We also observed that the SIREN multi-layer perceptron was sometimes too sensitive
to small changes in the spectral embeddings. For this reason, we searched for a different architecture
that would make the INR more transferable to different graphs.

The alternative architecture has the following characteristics:

* ReLU activations;

* Uniformly distributed initial weights;

* 8 layers instead of 6 (we searched for the best value in [4, 10]);

* Learning rate of 10~3 (the default of 10~4 was not enough for the model to converge);

Note that we still kept the SIREN architecture for all other experiments as it exhibited better speed of
convergence and lowest training loss compared to the alternative architecture.

C Training details

In the second experiment of Section 4.1, we train the models using the default setting. We create
random training, validation and test splits with a proportion of 80%, 10%, and 10% of the node set.
We train the models to convergence, interrupting training if the validation loss does not improve for
1000 steps (we also lower the learning rate annealing to have a patience of 500 steps). To compare
the different activations, we simply swap the activation function and initialisation schemes, leaving
everything else the same.

D Alternative normalisation of the Laplacian

Using different Laplacian normalisation schemes for computing the spectral embeddings did not
yield significant differences in performance when training generalised INRs.

While the magnitude of individual embeddings will change across normalisations, they are qualitative
similar and provide a reasonable encoding for a node’s position. For visualizing this equivalence, we
report in Figure [2| eigenvectors uy, for k = [1, 5, 10, 20, 50] for three types of Laplacian: the com-
binatorial Laplacian, L = D — A ; the symmetrically normalised Laplacian, L,, = D~'/2LD~1/2;
and the random walk normalised Laplacian L., = D L.

References

[1] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462-7473, 2020. E]

Figure 2: Eigenvectors uy, for k = [1, 5, 10, 20, 50] for different Laplacian normalisation schemes,
plotted on the Bunny mesh. Colours indicate intensity and colour scales are not shared between
different rows.

	Solving the Poisson equation with generalised INRs
	Changes in the experimental setting
	Training details
	Alternative normalisation of the Laplacian

