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ABSTRACT

Bilevel optimization reveals the inner structure of otherwise oblique optimization
problems, such as hyperparameter tuning, neural architecture search, and meta-
learning. A common goal in bilevel optimization is to find stationary points of the
hyper-objective function. Although this hyper-objective approach is widely used,
its theoretical properties have not been thoroughly investigated in cases where
the lower-level functions lack strong convexity. This work takes a step forward
when the typical lower-level strong convexity assumption is absent. Our hard-
ness results show that bilevel optimization for general convex lower-level func-
tions is intractable to solve. We then identify several regularity conditions of the
lower-level problems that can provably confer tractability. Under these conditions,
we propose the Inexact Gradient-Free Method (IGFM), which uses the Switching
Gradient Method (SGM) as an efficient sub-routine, to find an approximate sta-
tionary point of the hyper-objective in polynomial time.

1 INTRODUCTION

The goal of bilevel optimization (BLO) is to minimize the upper-level (UL) function f(x, y) under
the constraint that y is minimized w.r.t. the lower-level (LL) function g(x, y) on a closed convex set
Y ⊆ Rdy . Mathematically, it can be formulated as:

min
x∈Rdx ,y∈Y ∗(x)

f(x, y), Y ∗(x) = argmin
y∈Y

g(x, y). (1)

BLO in this form has received increasing attention due to its wide applications in many machine
learning problems, including hyperparameter tuning (Franceschi et al., 2018; Pedregosa, 2016),
neural architecture search (Liu et al., 2019; Wang et al., 2022b; Zoph & Le, 2016; Zhang et al.,
2021), meta-learning (Franceschi et al., 2018; Hospedales et al., 2021; Ravi & Larochelle, 2017;
Pham et al., 2021), out-of-distribution learning (Zhou et al., 2022), adversarial training (Goodfellow
et al., 2020; Sinha et al., 2018; Lin et al., 2020a;b), reinforcement learning (Konda & Tsitsiklis,
1999; Hong et al., 2023), causal learning (Jiang & Veitch, 2022; Arjovsky et al., 2019).

The hyper-objective approaches (Dempe, 2002; Dempe & Zemkoho, 2020; Liu et al., 2020; 2021)
reformulate Problem 1 by

min
x∈Rd

φ(x), where φ(x) = min
y∈Y ∗(x)

f(x, y) is called the hyper-objective. (2)

It transforms the problem into the composition of a simple BLO (Sabach & Shtern, 2017) w.r.t.
the LL variable y and an unconstrained single-level optimization w.r.t. the UL variable x. This
reformulation naturally leads to two foundational problems: The first one involves

P1: Find an optimal LL variable ŷ ∈ Y ∗(x̂) such that φ(x̂) = f(x̂, ŷ) for a given x̂.

The second one involves

P2: Find a UL variable x̂ that is a stationary point of φ(x).
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Both problems are easy to solve when the LL function is strongly convex. The lower-level strong
convexity (LLSC) ensures Y ∗(x) to be a singleton, and therefore simplifies Equation 2 into φ(x) =
f(x, y∗(x)), where the LL optimal solution y∗(x) = argminy∈Y g(x, y) can be found via gradient
descent on g. If we further assume Y = Rdy , then the implicit function theorem indicates:

∇φ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))[∇2

yyg(x, y
∗(x))]−1∇yf(x, y

∗(x)). (3)

Then one can apply the gradient step with ∇φ(x) to find a UL stationary point. This forms the basis
of the classical hyper-objective approaches for BLO with LLSC (Ji et al., 2021). However, these
methods heavily rely on the LLSC condition that may not hold in many applications.

This paper investigates BLO with only LL convexity, but without LLSC. Adding a regularization
term to the LL function is a natural idea to ensure LLSC (Rajeswaran et al., 2019), but we show in
Proposition 4.1 that any small regularization may lead to a large deviation on the hyper-objective.
Furthermore, we construct hard instances to illustrate the intractability of BLO without LLSC, for
both finding an LL optimal solution and a UL stationary point: Firstly, we prove a lower bound in
Proposition 4.2 to show that φ(x) is not computable in finite iterations for general convex functions.
Secondly, we give a pair of f(x, y) and g(x, y) in Example 4.1 such that the resulting hyper-objective
φ(x) is discontinuous and thus intractable to optimize.

The constructions of these hard instances rely on the fact that a general convex LL function can be
arbitrarily “flat”. To avoid the intractability caused by the undesirable “flatness”, we introduce two
sufficient conditions that can provably confer tractability to BLO with only LL convexity: the gra-
dient dominance condition (Assumption 5.1) and the weak sharp minimum condition (Assumption
5.2). Under these conditions, we propose novel algorithms to find an LL optimal solution and a UL
stationary point, with non-asymptotic convergence guarantees:

Finding an LL Optimal Solution. We show that both conditions fall into a general class of the
Hölderian error bound condition (Proposition G.1), under which we propose the Switching Gradient
Method (SGM, Algorithm 1) to find an LL optimal solution in polynomial time (Theorem 6.1).

Finding a UL Stationary Point. We prove in Proposition 5.1 that both conditions imply the Lips-
chitz continuity of the solution mapping Y ∗(x), which is proved to be both sufficient and necessary
for the Lipschitz continuity of φ(x) by Proposition 4.3. Under the Lipschitz continuity of φ(x), we
then propose the Inexact Gradient-Free Method (IGFM, Algorithm 2), which can provably converge
to a Goldstein stationary point (Zhang et al., 2020) of the hyper-objective by incorporating SGM as
an efficient sub-routine.

We compare the intractability and tractability results under different assumptions on the LL function
in Table 1, and summarize our contributions as follows:

1. We formulate the LL optimality and UL stationary as valid criteria for BLO without LLSC
(Section 3), which are necessary for an optimistic optimal solution (Dempe et al., 2006).

2. We provide hardness results to show that BLO without LLSC is generally intractable. Our
analysis highlights the importance of sharpness in LL functions (Section 4).

3. We prove that when the LL function satisfies either the gradient dominance condition or
the weak sharp minimum condition, the hyper-objective φ(x) is Lipschitz and thus Clarke
differentiable (Section 5).

4. We propose novel polynomial time algorithms for BLO with LL convexity under either the
gradient dominance or the weak sharp minimum condition (Section 6).

5. We conduct numerical experiments on adversarial training and hyperparameter tuning that
showcase the superiority of our methods (Section 7).

2 RELATED WORKS

BLO with LLSC. Approximate implicit differentiation (AID) (Domke, 2012; Ghadimi & Wang,
2018; Pedregosa, 2016; Franceschi et al., 2018; Grazzi et al., 2020; Ji et al., 2021) and iterative
differentiation (ITD) (Gould et al., 2016; Franceschi et al., 2017; Shaban et al., 2019; Bolte et al.,
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Assumption on LL function LL Optimality UL Stationary Reference
Strongly convex Tractable Tractable Known result

Convex with dominant gradients Tractable Tractable Proved by this work
Convex with weak sharp minimum Tractable Tractable Proved by this work

Only convex Intractable Intractable Proved by this work

Table 1: An overview of the theoretical results in this paper. We show that BLO without LLSC
is generally intractable, but becomes tractable when the LL function satisfies either the gradient
dominance or the weak sharp minimum condition.

2021) are two representative methods that have non-asymptotically convergence to a UL stationary
point for BLO with LLSC. Due to their popularity, many improvements to AID and ITD have also
been proposed (Chen et al., 2022; Hong et al., 2023; Yang et al., 2021; Ji & Liang, 2021; Ji et al.,
2022; Dagréou et al., 2022).

BLO without LLSC. In the absence of LLSC, Arbel & Mairal (2022) showed that one can extend
AID by replacing the inverse in Equation 3 with the Moore-Penrose inverse under the Morse-Bott
condition on the manifold {y ∈ Rdy : ∇yf(x, y) = 0}. Liu et al. (2021; 2020) extended ITD by
proposing various methods to update the LL variable. However, all the methods mentioned above
are limited to asymptotic convergence to an LL optimal solution and lack analysis for finding a UL
stationary point. Due to the challenge of directly optimizing the hyper-objective, some concurrent
works (Liu et al., 2022; Sow et al., 2022) reformulate Problem 1 via the value-function approach and
show non-asymptotic convergence to the KKT points of this equivalent problem. However, since
classical constraint qualifications provably fail for the reformulated problem (Ye & Zhu, 1995), the
KKT condition is even not a necessary condition for a local minimum (Example A.1). In contrast, a
UL stationary point is always a necessary condition. We leave a detailed comparison of our hyper-
objective approach and value-function approach in Appendix A.

3 PRELIMINARIES

3.1 NOTATIONS AND BACKGROUNDS

Basic Notation. Throughout this paper, we denote the LL solution mapping as Y ∗(x) =
argminy∈Y g(x, y), the LL value function as g∗(x) = miny∈Y g(x, y), and the hyper-objective
as φ(x) = miny∈Y ∗(x) f(x, y). If φ(x) has a finite minimum, we denote φ∗ = infx∈Rdx φ(x). We
use ∥ · ∥ to denote the ℓ2-norm of a vector, and z[j] to denote the j-th coordinate of vector z. We use
Bδ(z) = {z′ : ∥z′ − z∥ ≤ δ} to denote the ℓ2-ball centered at z with radius δ. We let σmax(A) to
be the largest singular value of matrix A, and σ+

min(A) to be its smallest non-zero singular value.

Constrained Optimization. To tackle the possible constraint in y, we introduce the definitions of
projection and generalized gradient (Nesterov, 2018) as follows.
Definition 3.1 (Projection). We define the projection onto a set Y by PY( · ) := argminy∈Y ∥y− · ∥.
Definition 3.2 (Generalized Gradient). For a L-gradient Lipschitz function g(x, y) with y ∈ Y , we
define the generalized gradient with respect to y by Gη(y;x) := (y − PY (y − η∇yg(x, y)))/η with
some 0 < η ≤ 1/L.

Note that the generalized gradient reduced to ∇yg(x, y) when Y = Rdy .

Set-Valued Analysis. A classic notion of distance in set-valued analysis is the Hausdorff dis-
tance (Rockafellar & Wets, 2009), formally defined as follows.
Definition 3.3 (Hausdorff Distance). The Hausdorff distance between two sets S1, S2 is defined as

dist(S1, S2) = max

{
sup

x1∈S1

inf
x2∈S2

∥x1 − x2∥, sup
x2∈S2

inf
x1∈S1

∥x1 − x2∥
}

This allows us to define the Lipschitz continuity of set-valued mappings as follows.
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Definition 3.4. We call a set-valued mapping S(x) : Rd1 ⇒ Rd2 locally Lipschitz if for any x ∈
Rd1 , there exists δ > 0 and L > 0 such that for any x′ ∈ Rd1 satisfying ∥x′ − x∥ ≤ δ, we have
dist(S(x), S(x′)) ≤ L∥x− x′∥. We call S(x) Lipschitz if we can let δ → ∞.

Note that the above definition generalizes the Lipschitz continuity for a single-valued mapping.

Nonsmooth Analysis. The following Clarke subdifferential (Clarke, 1990) generalizes both the
gradients of differentiable functions and the subgradients of convex functions.
Definition 3.5 (Clarke Subdifferential). The Clarke subdifferential of a locally Lipschitz function
h(x) : Rd → R at a point x ∈ Rd is defined by

∂h(x) := Conv
{
s ∈ Rd : ∃xk → x,∇h(xk) → s, s.t.∇h(xk) exists for all k

}
.

It can be proved that finding a point with a small Clarke subdifferential is generally intractable for a
nonsmooth nonconvex function (Zhang et al., 2020). So we need to consider the following relaxed
definition of stationarity for non-asymptotic analysis in nonsmooth nonconvex optimization (Zhang
et al., 2020; Tian et al., 2022; Davis et al., 2022; Jordan et al., 2023; Kornowski & Shamir, 2021;
Lin et al., 2022; Cutkosky et al., 2023; Kornowski & Shamir, 2023).
Definition 3.6 (Approximate Goldstein Stationary Point). Given a locally Lipschitz function h(x) :
Rd → R, we call x ∈ Rd a (δ, ε)-Goldstein stationary point if min {∥s∥ : s ∈ ∂δh(x)} ≤ ε, where
∂δh(x) := Conv

{
∪x′∈Bδ(x)∂h(x

′)
}

is the Goldstein subdifferential (Goldstein, 1977).

3.2 THE OPTIMALITY CONDITIONS

This section introduces the optimality conditions for BLO without LLSC used in this paper. Firstly,
we recall the definition of the optimistic optimal solution (Dempe et al., 2006), which is a standard
optimality condition for the hyper-objective reformulation.
Definition 3.7. A pair of point (x∗, y∗) is called a locally optimistic optimal solution to Problem 1
if y∗ ∈ Y ∗(x∗) and there exists δ > 0 such that we have φ(x∗) ≤ φ(x) and f(x∗, y∗) ≤ f(x∗, y)
for all (x, y) ∈ Bδ(x

∗, y∗). It is called a globally optimistic optimal solution if we can let δ → ∞.

A globally optimistic optimal solution is an exact solution to Problem 1, but its computation is NP-
hard since φ(x) is generally nonconvex (Danilova et al., 2020). A common relaxation is to find a
locally optimistic optimal solution, for which we can derive the following necessary conditions.
Proposition 3.1. Suppose f(x, · ) and g(x, · ) are convex, and φ(x) is locally Lipschitz. Then for
any locally optimistic optimal solution (x∗, y∗), we have ∂φ(x∗) = 0, f(x∗, y∗) = φ(x∗) and
g(x∗, y∗) = g∗(x∗).

It motivates us to use the following criteria for non-asymptotic analysis:
Definition 3.8 (UL Stationary). Suppose φ(x) is locally Lipschitz. We call x̂ a (δ, ε)-UL stationary
point if it is a (δ, ε)-Goldstein stationary point of φ(x).
Definition 3.9 (LL Optimality). Fix an x. Suppose f(x, · ) and g(x, · ) are convex. We call ŷ a
(ζf , ζg)-LL optimal solution if we have |f(x, ŷ)− φ(x)| ≤ ζf and g(x, ŷ)− g∗(x) ≤ ζg .

The main focus of this paper is to discuss when and how one can design a polynomial time algorithm
to achieve the above goals for any given positive precision δ, ε, ζf , ζg .
Remark 3.1. In Definition 3.8, we assume thatφ(x) is locally Lipschitz, which is a regular condition
to ensure Clarke differentiability. However, it may not hold for BLO without LLSC, and we will
give the sufficient and necessary condition for it later in Proposition 4.3. Definition 3.8 adopts the
Goldstein stationary points since φ(x) can be nonconvex nonsmooth such that traditional stationary
points may be intractable, as we will show later in Example 5.1.

4 HARDNESS RESULTS FOR INTRACTABILITY

In this section, we provide various hardness results to show the challenges of BLO without LLSC.
We first explain why one can not manually regularize the LL function to ensure the LLSC condition.
Subsequently, we demonstrate that both the tasks of finding an LL optimal solution and finding a
UL stationary point can be intractable for BLO without LLSC.
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4.1 CAN REGULARIZATION HELP?

One natural way to tackle BLO without LLSC is to add some small quadratic terms and then apply an
algorithm designed under LLSC (Rajeswaran et al., 2019). However, we show that the regularization
transforms Y ∗(x) from a set to a singleton, thus breaking the original problem structure.
Proposition 4.1. Given a pivot ŷ, there exists a BLO instance, where both f(x, y) and g(x, y) are
convex in y, and the resulting hyper-objective φ(x) is a quadratic function, but for any λ > 0 the
regularized hyper-objective

φλ(x) = min
y∈Y ∗

λ (x)
f(x, y), Y ∗

λ (x) = argmin
y∈Y

g(x, y) + λ∥y − ŷ∥2

is a linear function with | infx∈Rdx φλ(x)− infx∈Rdx φ(x)| = ∞.

This example indicates that even if the regularization is arbitrarily small, the hyper-objective before
and after regularization can be completely different objectives. Consequently, BLO without LLSC
should be treated as a distinct research topic from BLO with LLSC.

4.2 CAN WE FIND AN LL OPTIMAL SOLUTION?

The goal of finding an LL optimal solution for a given x ∈ Rdx is to solve the following problem:

min
y∈Y ∗(x)

f(x, y), Y ∗(x) = argmin
y∈Y

g(x, y). (4)

This problem is usually called simple BLO (Beck & Sabach, 2014; Sabach & Shtern, 2017; Kaushik
& Yousefian, 2021) since it involves only one variable y. However, it is not a “simple” problem as
the following theorem shows its intractability for general convex objectives.
Proposition 4.2. Fix an x. For any K ∈ N+, there exists dy ∈ N+, such that for any y0 ∈ Rdy ,
there exists a pair of functions f(x, · ), g(x, · ) that are both convex and 1-gradient Lipschitz , for
any first-order algorithm A which initializes from y0 ∈ Y with dist (y0, y

∗(x)) ≤ 1 and generates
a sequence of test points {yk}Kk=0 with

yk ∈ y0 + Span{∇yf(x, y0),∇yg(x, y0), · · · ,∇yf(x, yk−1),∇yg(x, yk−1)}, k ≥ 1,

it holds that |f(x, yk)− φ(x)| ≥ 1/4, where y∗(x) is the unique solution to miny∈Y ∗(x) f(x, y).

The key idea in the proof is to construct the LL function using the worst-case convex zero chain
(Nesterov, 2018), such that any first-order algorithm will require a large number of steps to approach
the vicinity of the LL solution mapping Y ∗(x). The proof is provided in Appendix D

4.3 CAN WE FIND A UL STATIONARY POINT?

Besides the difficulty in finding an LL optimal solution, the goal of finding a UL stationary point is
also challenging. Below, we show that the hyper-objectiveφ(x) can be discontinuous without LLSC.
Since continuity is one of the basic assumptions for almost all numerical optimization schemes
(Nocedal & Wright, 1999), our hard instance indicates that φ(x) may be intrinsically intractable to
optimize for BLO without LLSC.
Example 4.1. Consider a BLO instance given by

min
x∈R,y∈Y ∗(x)

x2 + y, Y ∗(x) = arg min
y∈[−1,1]

−xy.

The resulting hyper-objective φ(x) = x2 + I[x > 0] is discontinuous at x = 0.

In the above example, the discontinuity of φ(x) comes from the discontinuity of Y ∗(x) = sign(x).
Below, we prove that this statement and its reverse generally holds.
Proposition 4.3. Suppose the solution mapping Y ∗(x) is non-empty and compact for any x ∈ Rdx .

a. If f(x, y) and Y ∗(x) are locally Lipschitz , then φ(x) is locally Lipschitz.

b. Conversely, if φ(x) is locally Lipschitz for any locally Lipschitz function f(x, y), then
Y ∗(x) is locally Lipschitz.
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c. If f(x, y) is Cf -Lipschitz and Y ∗(x) is κ-Lipschitz, then φ(x) is Cφ-Lipschitz with coeffi-
cient Cφ = (κ+ 1)Cf .

d. Conversely, if φ(x) is Cφ-Lipschitz for any Cf -Lipschitz function f(x, y) , then Y ∗(x) is
κ-Lipschitz with coefficient κ = Cφ/Cf .

Local Lipschitz continuity ensures UL stationary points (Definition 3.8) are well-defined, while
global Lipschitz continuity enables uniform complexity bounds for non-asymptotic analysis (as we
will use in Section 6.2). According to the above theorem, ensuring the continuity of Y ∗(x) is the
key to obtaining the desired continuity of φ(x). This motivates us to focus on well-behaved LL
functions that confer continuity of Y ∗(x).

5 SUFFICIENT CONDITIONS FOR TRACTABILITY

5.1 REGULARITY CONDITIONS FOR CONTINUITY

Since the constructions of the hard instances in the previous section all rely on very flat LL functions,
our results underscore that sharpness of LL functions is essential to ensure the tractability of BLO.
This observation inspires us to focus on more restricted function classes that possess sharpness to
circumvent the ill-conditioned nature of BLO without LLSC. Below, we introduce two conditions
that correspond to different degrees of sharpness.
Assumption 5.1 (Gradient Dominance). Suppose g(x, y) is L-gradient Lipschitz jointly in (x, y),
and there exists α > 0 such that for any x ∈ Rdx , y ∈ Y we have G1/L(y;x) ≥ αdist(y, Y ∗(x)).

Assumption 5.2 (Weak Sharp Minimum). Suppose g(x, y) is L-Lipschitz in x, and there exists
α > 0 such that for any x ∈ Rdx , y ∈ Y we have g(x, y)− g∗(x) ≥ 2αdist(y, Y ∗(x)).

Both conditions are widely used in convex optimization (Burke & Ferris, 1993; Drusvyatskiy &
Lewis, 2018). They are milder conditions than LLSC by allowing Y ∗(x) to be non-singleton. De-
spite being more relaxed, we demonstrate below that either of them can lead to the continuity of
Y ∗(x) and thus φ(x). The continuity of φ(x) is crucial for designing algorithms to optimize it.
Proposition 5.1. Under Assumption 5.1 or 5.2, Y ∗(x) is (L/α)-Lipschitz.
Furthermore, if f(x, y) is Cf -Lipschitz, then φ(x) is (L/α+ 1)Cf -Lipschtz.

Therefore, the introduced conditions can avoid discontinuous instances such as Example 4.1. It
is worth noting that these conditions fundamentally differ from LLSC, as φ(x) can be nonsmooth
under these conditions, as exemplified below. The potential nonsmoothness of φ(x) further justifies
the rationality of using Goldstein stationarity in Definition 3.8.
Example 5.1. Let f(x, y) = xy, g(x, y) = 0 and Y = [−1, 1]. We obtain a BLO instance satisfying
both Assumption 5.1 and 5.2. But the resulting φ(x) = −|x| is nonsmooth and nonconvex.

5.2 HOW TO VERIFY THE CONDITIONS?

One may wonder how to verify the introduced conditions in applications. It is non-trivial as the value
of dist(y, Y ∗(x)) is unknown. An easy case is Assumption 5.1 with Y = Rdy , which reduces to the
Polyak-Łojasiewicz condition (Polyak, 1963): ∥∇yg(x, y)∥2 ≥ 2α(g(x, y) − g∗(x)) by Theorem
2 in Karimi et al. (2016). This inequality allows us to identify the following examples that fall into
Assumption 5.1. Firstly, we can show that Assumption 5.1 strictly covers the LLSC condition.
Example 5.2. If g is L-gradient Lipschitz and α-strongly convex, then it satisfies Assumption 5.1.

Secondly, the following example that both AID and ITD fail to optimize satisfies Assumption 5.1.
Example 5.3. Consider the hard BLO instance proposed by Liu et al. (2020):

min
x∈R,y∈Y ∗(x)

(x− y[2])
2 + (y[1] − 1)2, Y ∗(x) = arg min

y∈R2
y2[1] − 2xy[1].

The LL function satisfies Assumption 5.1 with L = 2 and α = 2.

Thirdly, the BLO with least squares loss studied by Bishop et al. (2020) also satisfies Assumption
5.1. We leave more details of this model and its application in adversarial training in Section 7.1.
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Example 5.4. Consider the BLO with least squares loss:

min
x∈Rdx ,y∈Y ∗(x)

1

2n
∥Ax− y∥2, Y ∗(x) = arg min

y∈Rn

1

2n
∥Ax− y∥2M +

λ

2n
∥y − b∥2M ,

where A ∈ Rn×dx , b ∈ Rn represents the features and labels of the n samples in the dataset, λ > 0

and M is a positive semi-definite matrix that induces the norm ∥z∥M =
√
z⊤Mz. The LL function

satisfies Assumption 5.1 with L = (λ+ 1)σmax(M) and α = (λ+ 1)σ+
min(M).

6 THE PROPOSED METHODS

In this section, we propose novel polynomial time algorithms for BLO under Assumption 5.1 and
5.2. In Section 6.1, we borrow ideas from switching gradient methods to overcome the difficulty of
multiple LL minima. In Section 6.2 we propose a method motivated by zeroth-order optimization
that can provably converge to a UL stationary point.

6.1 FINDING AN LL OPTIMAL SOLUTION VIA SWITCHING GRADIENT METHOD

Algorithm 1 SGM (x, y0,K0,K, τ, θ)

1: I = ∅, ŷ0 = y0
2: for k = 0, 1, · · · ,K0 − 1
3: ŷk+1 = PY(ŷk − τ∂yg(x, ŷk))
4: end for
5: ĝ∗(x) = g(x, ŷK0)
6: for k = 0, 1, · · · ,K − 1
7: if g(x, yk)− ĝ∗(x) ≤ 2θ
8: yk+1 = PY(yk − τ∂yf(x, yk))
9: I = I ∪ {k}

10: else
11: yk+1 = PY(yk − τ∂yg(x, yk))
12: end for
13: yout =

1
|I|
∑

k∈I yk
14: return yout

In Equation 4, the LL constraint y ∈ Y ∗(x) is equivalent to an inequality constraint g(x, y) ≤ g∗(x).
Based on this observation, we generalize Polyak’s Switching Gradient Method (Polyak, 1967) for
functional constrained problems to Algorithm 1 when the following assumptions hold.

Assumption 6.1. Suppose that

a. both f(x, y) and g(x, y) are convex in y;

b. Y is compact with diameter R;

c. f(x, y) is Cf -Lipschitz on Rdx × Y;

d. g(x, · ) is Cg-Lipschitz on Y for any x ∈ Rdx ;

e. either Assumption 5.1 or 5.2 holds for g(x, y).

Under the above assumptions, we can prove the following result.

Theorem 6.1. Fix an x. Under Assumption 6.1, Algorithm 1 with appropriate parameters can
ouput a point yout satisfying |f(x, yout)−φ(x)| ≤ ζ and g(x, yout)−g∗(x) ≤ ζ with O(poly(1/ζ))
first-order oracle calls from g.

The corresponding proof and specific parameters of the algorithm can be found Appendix G.
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Algorithm 2 IGFM (x0, y0, η, T, δ,K0,K, τ, θ)

1: Require: Sub-routine A can estimate φ̃(x) ≈ φ(x) for any x ∈ Rdx

2: for t = 0, 1, · · · , T − 1
3: Sample ut ∈ Rdx uniformly from the unit sphere in Rdx .
4: Estimate φ̃(xt + δut) and φ̃(xt − δut) by sub-routine A.
5: ∇̂t =

dx

2δ (φ̃(xt + δut)− φ̃(xt − δut))ut
6: xt+1 = xt − η∇̂t

7: end for
8: return xout uniformly chosen from {xt}T−1

t=0

6.2 FINDING A UL STATIONARY POINT VIA ZEROTH-ORDER METHOD

Without LLSC, the hyper-gradient ∇φ(x) may not have an explicit form as Equation 3. To tackle
this challenge, we propose the Inexact Gradient-Free Method (IGFM) in Algorithm 2. The al-
gorithm is motivated by recent advances in nonsmooth nonconvex zeroth-order optimization (Lin
et al., 2022). Our zeroth-order oracle φ̃(x) ≈ φ(x) is “inexact” since it is an approximation from a
sub-routine A. Below, we show that when A can guarantee sufficient approximation precision, the
IGFM can provably find a Goldstein stationary point of a Lipschitz hyper-objective function φ(x).
Assumption 6.2. Suppose that

a. φ(x) is Cφ-Lipschitz.

b. A ensures |φ̃(x)− φ(x)| ≤ O(δε2/(dxCφ)) for any x ∈ Rdx .

Theorem 6.2. Given any ε ≲ Cf . Let ∆ = φ(x0)− φ∗. Under Assumption 6.2, set

T = O

(
d3/2x

(
C4

φ

ε4
+

∆C3
φ

δε4

))
, η = Θ

(√
δ(∆ + δCφ)

d
3/2
x C3

φT

)
. (5)

Then Algorithm 2 can output a point xout that satisfies Emin {∥s∥ : s ∈ ∂δφ(xout)} ≤ ε.

Now it remains to verify Assumption 6.2: Assumption 6.2a can be satisfied by Proposition 4.3,
while Assumption 6.2b can be satisfied by Theorem 6.1. Therefore, we have the following result.
Corollary 6.1. Suppose Assumption 6.1 holds. Set A as Algorithm 1. Then Algorithm 2 with
appropriate parameters can output a (δ, ϵ)-Goldstein stationary point of φ(x) in expectation within
O(poly(dx, 1/ε, 1/δ)) zeroth-order and first-order oracle calls from f and g.

To the best of our knowledge, it is the first theoretical analysis that shows the non-asymptotic con-
vergence to a UL stationary point for BLO without LLSC.

7 NUMERICAL EXPERIMENTS

Table 2: MSE (mean ± std) achieved by differ-
ent algorithms on the “abalone” dataset in ad-
versarial training.

Method MSE
AID 1.781± 0.418
ITD 0.982± 0.015
BGS 0.995± 0.259
BDA 0.976± 0.014

BOME 0.999± 0.140
IA-GM 0.992± 0.013

IGFM (Ours) 0.936± 0.015

Table 3: Test accuracy (%) achieved by different
algorithms on the MNIST dataset under different
corruption rates p in hyperparameter tuning.

Method p = 0.5 p = 0.3 p = 0.1

AID 75.8 87.5 91.3
ITD 75.8 87.5 91.3
BGS 75.8 87.5 91.3
BDA 81.2 89.3 91.5

BOME 86.7 88.9 89.3
IA-GM 86.9 90.3 90.5

IGFM (Ours) 88.4 91.0 91.8

In this section, we compare IGFM with different baselines, including AID with conjugate gradi-
ent (Maclaurin et al., 2015), ITD (Ji et al., 2021), BGS (Arbel & Mairal, 2022), BDA (Liu et al.,
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2020), BOME (Liu et al., 2022), and IA-GM (Liu et al., 2021) in the following two different appli-
cations of BLO without LLSC.

7.1 ADVERSARIAL TRAINING

Brückner & Scheffer (2011) proposed modeling adversarial training via BLO. In this model, the
learner aims at finding the optimal parameter x, subject to data y being modified by an adversar-
ial data provider. Like Bishop et al. (2020); Wang et al. (2021; 2022a), we use least squares loss
for both f and g as Example 5.4. In the LL loss, we use a diagonal matrix M to assign different
weights to each sample, and a ridge term ∥y − b∥2M to penalize the data provider when manipu-
lating the original labels b. We set half the diagonal elements of M evenly in [σ+

min, σmax] and
the rest zero. We let λ = 1, σmax = 1 and σ+

min = 10−9. For BDA, we choose su = sl = 1,
αk = µ/(k + 1) and tune µ from {0.1, 0.5, 0.9} as Liu et al. (2020). For BOME, we choose
the default option for ϕk and η from {0.9, 0.5, 0.1} as Liu et al. (2022). For IGFM, we choose
δ = 10−3 and tune θ from {10−1, 10−2, 10−3}. For all algorithms, we tune the learning rates in
{102, 101, 100, 10−1, 10−2, 10−3, 10−4, 10−5}. We run all the algorithms for 500 UL iterations,
with 10 LL iterations per UL iteration. Table 2 compares the mean squared error (MSE), measured
by the value of φ(x), achieved by the algorithms on the “abalone” dataset from LIBSVM (Chang &
Lin, 2011). AID has poor performance because it requires taking the inverse of ∇2

yyg(x, y), which
is ill-conditioned in this experiment. Among all the algorithms, the IGFM achieves the lowest mean
value of MSE, and its variance is also maintained at a relatively low level.

7.2 HYPERPARAMETER TUNING

We consider tuning the optimal ℓ2 regularization for logistic regression to avoid overfitting a noisy
training set Dtr, based on the performance on a clean validation set Dval. We let the UL variable
x be the log-transformed regularization coefficient to avoid the constraint x ≥ 0 (Pedregosa, 2016;
Bertrand et al., 2020), and the LL variable y be the weight of the model. The problem can be
formulated as BLO with:

f(x, y) =
1

|Dval|
∑

(ai,bi)∈Dval

ℓ(⟨ai, y⟩, bi),

g(x, y) =
1

|Dtr|
∑

(ai,bi)∈Dtr

ℓ(⟨ai, y⟩, bi) + exp(x)∥y∥2,

where (ai, bi) is the i-th feature-label pair in the dataset, and ℓ( · , · ) is the cross-entropy loss. We
use the MNIST dataset (LeCun, 1998) in this experiment. We use 40,000 images for Dtr and 20,000
images for Dval. We corrupt Dtr by assigning random labels with probability p (Liu et al., 2022).
We follow the same hyperparameter selection strategy as Section 7.1, and run all the algorithms with
100 UL iterations. Table 3 reports the accuracy evaluated on the testing set with 10,000 images under
different levels of p. It can be seen that IGFM achieves the highest accuracy among all algorithms.
Note that AID / ITD / BGS have similar performances since AID and ITD are proven to be consistent
under LLSC (Ji et al., 2021) and BGS is a combination of them.

8 CONCLUSIONS AND DISCUSSIONS

This paper gives a comprehensive study of BLO without the typical LLSC assumption. We provide
hardness results to show the intractability of this problem and introduce several key regularity con-
ditions that can confer tractability. Novel algorithms with non-asymptotic convergence are proposed
as well. Experiments on real-world datasets support our theoretical investigations.

Although this paper focuses primarily on the theoretical level, we expect our theory can shed light
on efficient algorithm design for BLO applications in practice. We also hope our work can be a good
starting point for non-asymptotic analysis for more challenging BLO problems, such as BLO with
nonconvex LL functions or BLO with intertwined inequality constraints h(x, y) ≤ 0.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Michael Arbel and Julien Mairal. Non-convex bilevel games with critical point selection maps. In
NeurIPS, 2022.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Amir Beck and Shoham Sabach. A first order method for finding minimal norm-like solutions of
convex optimization problems. Mathematical Programming, 147(1):25–46, 2014.

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, and
Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter optimization. In
ICML, 2020.

Nicholas Bishop, Long Tran-Thanh, and Enrico Gerding. Optimal learning from verified training
data. In NeurIPS, 2020.
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A LIMITATIONS OF VALUE-FUNCTION APPROACH

In contrast to the hyper-objective approach adopted in this paper that pursues a UL stationary point
such that ∥∇φ(x)∥ ≤ ε, existing non-asymptotic analysis (Liu et al., 2022; Sow et al., 2022) for
BLO without LLSC relies on following value-function reformulation for Problem 1:

min
x∈Rdx ,y∈Rdy

f(x, y) s.t. g(x, y)− g∗(x) ≤ 0. (6)

These value-function approaches show convergence to the following KKT points.
Definition A.1 (KKT point). Suppose that g∗(x) is Clarke subdifferentiable. We call (x, y) an
ε-KKT point of Problem 6 if there exists a scalar λ ≥ 0 such that we have

a. (Stationary in x) ∥∇xf(x, y) + λ(∇xg(x, y)− ∂g∗(x))∥ ≤ ε.

b. (Stationary in y) ∥∇yf(x, y) + λ∇yg(x, y)∥ ≤ ε.

c. (Feasibility) g(x, y)− g∗(x) ≤ ε.

d. (Complementary Slackness) |λ(g(x, y)− g∗(x))| ≤ ε.

We call (x, y) a KKT point if ε = 0.
Remark A.1. In Definition A.1 we assume that g∗(x) is Clarke differentiable. It can be easily
satisfied under some mild conditions. For instance, when g(x, y) is L-gradient Lipschitz, g∗(x)
is provably L-weakly concave, and thus Clarke differentiable (Rockafellar & Wets, 2009). In the
unconstrained case that Y = Rdy , under LLSC or more generally under Assumption 5.1, g∗(x) is
provably differentiable (Nouiehed et al., 2019) and the Clarke subdifferential ∂g∗(x) reduces to the
classical gradient ∇g∗(x).

Unfortunately, classical constraint qualifications provably fail for the value-function-based reformu-
lation (Ye & Zhu, 1995). For this reason, we can easily construct a BLO instance whose KKT points
do not contain the optimal solution even under LLSC.
Example A.1. Consider a BLO instance given by:

min
x∈R,y∈R

−xy, s.t. (x+ y − 2)2 ≤ 0,

where the lower-level function is strongly convex in y. For this example:

a. The stationary point of φ(x) is exactly the global solution x∗.

b. However, the KKT points by Definition A.1 do not include any solution to this problem.

Proof. We know that the lower-level constraint is y = 2 − x, so the problem is equivalent to
minx∈R x

2 − 2x with the unique solution (x∗, y∗) = (1, 1). However, if we rewrite the problem by:

min
x∈R,y∈R

−xy, s.t. (x+ y − 2)2 ≤ 0.

The KKT condition is 
y − 2λ(x+ y − 2) = 0;

x− 2λ(x+ y − 2) = 0;

λ(x+ y − 2)2 = 0;

(x+ y − 2)2 ≤ 0, λ ≥ 0.

When λ > 0 there is no (x, y) that satisfies the KKT condition. When λ = 0, the KKT condition is
only satisfied by (x, y) = (0, 0), but it is not the solution to this problem.

One may argue that when relaxing the goal into finding an ε-KKT point, Slater’s constraint quali-
fication can be satisfied since we allow the constraint g(x, y) − g∗(x) ≤ 0 to be violated slightly.
However, we give a concrete example indicating that an ε-KKT point may be far away from the
solution set, even when the hyper-objective φ(x) is strongly convex.
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Example A.2. Given 0 < ε ≤ 1. Suppose φ(x) is µ-strongly convex with a unique solution x∗.

a. Whenever a given point x satisfies ∥∇φ(x)∥ ≤ ε , we have ∥x− x∗∥ ≤ ε/µ.

b. However, there exists a BLO instance with a convex lower-level function such that the
resulting φ(x) is strongly convex, but there is an infinite number of 2ε-stationary points
(x, y) by Definition A.1 such that ∥x− x∗∥ = 1.

Proof. Below we prove the two parts separately.

a. Strong convexity ensures that µ∥x− x∗∥ ≤ ∥∇φ(x)∥.

b. Consider the bilevel problem given by:

min
x∈R,y∈R

x2 − 2εxy, s.t. y ∈ argmin
y∈R

ε3y2,

where the lower-level problem is convex in y and the global solution is x∗ = 0. It can be verified
that (x, y) = (1, ε−1) is an ε-KKT point with any multiplier satisfying 0 < λ ≤ 1 by

g(x, y)− g∗(x) = ε3y2 = ε;

|∇xf(x, y) + λ(∇xg(x, y)−∇g∗(x))| = 2(x− εy) = 0;

|∇yf(x, y) + λ∇yg(x, y)| = 2(εx− λε3y) ≤ 2ε.

But we know that ∥x− x∗∥ = 1.

B PROOFS IN SECTION 3

Proposition 3.1. Suppose f(x, · ) and g(x, · ) are convex, and φ(x) is locally Lipschitz. Then for
any locally optimistic optimal solution (x∗, y∗), we have ∂φ(x∗) = 0, f(x∗, y∗) = φ(x∗) and
g(x∗, y∗) = g∗(x∗).

Proof. By the definition that y∗ ∈ Y ∗(x), we know that g(x∗, y∗) = g∗(x∗). When g(x.· ) is con-
vex, we know that Y ∗(x) is also a convex set for any given x. Then the problem miny∈Y ∗(x) f(x, y)
is a convex problem with respect to y, where a local minimum is also a global minimum. This
indicates that φ(x∗) = f(x∗, y∗). Finally, the first-order necessary optimality condition for a local
minimum of φ(x) implies that ∂φ(x∗) = 0 (Theorem 8.4 by Clason (2017)).

C PROOFS IN SECTION 4.1

Proposition 4.1. Given a pivot ŷ, there exists a BLO instance, where both f(x, y) and g(x, y) are
convex in y, and the resulting hyper-objective φ(x) is a quadratic function, but for any λ > 0 the
regularized hyper-objective

φλ(x) = min
y∈Y ∗

λ (x)
f(x, y), Y ∗

λ (x) = argmin
y∈Y

g(x, y) + λ∥y − ŷ∥2

is a linear function with | infx∈Rdx φλ(x)− infx∈Rdx φ(x)| = ∞.

Proof. We distinguish two different cases by whether we have ŷ[1] = 0.

When ŷ[1] ̸= 0, we consider the problem given by

min
x∈R,y∈Y ∗(x)

y2[1] − 2xy[1], Y ∗(x) = arg min
y∈R2

(y[2] − ŷ[2])
2.

After adding regularization, we have Y ∗
λ (x) = {ŷ} and φλ(x) = ŷ2[1] − 2xŷ[1].

When ŷ[1] = 0, we instead consider the problem given by

min
x∈R,y∈Y ∗(x)

(y[1] + 1)2 − 2x(y[1] + 1), Y ∗(x) = arg min
y∈R2

(y[2] − ŷ[2])
2.
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And after adding regularization we have Y ∗
λ (x) = {0} and φλ(x) = 1− 2x.

However, for both the two cases the original hyper-objective is the quadratic function φ(x) = −x2.

D PROOFS IN SECTION 4.2

Our lower bound is based on the following first-order zero-chain (Nesterov, 2018).

Definition D.1 (Zero-Chain). We call function h(z) : Rq → R a first-order zero-chain if for any
sequence {zk}k≥1 satisfying

zi ∈ Span{∂h(z0), · · · , ∂h(zi−1)}, i ≥ 1; z0 = 0 (7)

it holds that zi,[j] = 0, i+ 1 ≤ j ≤ q.

We remark that in the construction of a zero chain, we can always assume z0 = 0 without loss of
generality. Otherwise, we can translate the function to h(z − z0). Below, we introduce the convex
zero-chain from Nesterov (2018), Section 2.1.2.

Since the subgradients may contain more than one element, we also say h(z)is zero-chain whenever
there exists some adversarial subgradient oracle. This would also provide a valid lower bound
(Nesterov, 2018).

Definition D.2 (Gradient Lipschitz Worse-Case Zero-Chain). Consider the family of functions:

hq(z) =
1

8
(z[1] − 1)2 +

1

8

q−1∑
j=1

(
z[j+1] − z[j]

)2
.

The following properties hold for any hq(z) with q ∈ N+:

a. It is a first-order zero-chain.

b. It has a unique minimizer z∗ = 1.

c. It is 1-gradient Lipschitz.

In bilevel problems, it is crucial to find a point y that is close to Y ∗(x), instead of just achieving
a small optimality gap g(x, y) − g∗(x). However, it is difficult for any first-order algorithms to
“locate” the minimizers of the function class in Definition D.2.

Proposition 4.2. Fix an x. For any K ∈ N+, there exists dy ∈ N+, such that for any y0 ∈ Rdy ,
there exists a pair of functions f(x, · ), g(x, · ) that are both convex and 1-gradient Lipschitz , for
any first-order algorithm A which initializes from y0 ∈ Y with dist (y0, y

∗(x)) ≤ 1 and generates
a sequence of test points {yk}Kk=0 with

yk ∈ y0 + Span{∇yf(x, y0),∇yg(x, y0), · · · ,∇yf(x, yk−1),∇yg(x, yk−1)}, k ≥ 1,

it holds that |f(x, yk)− φ(x)| ≥ 1/4, where y∗(x) is the unique solution to miny∈Y ∗(x) f(x, y).

Proof. Without loss of generality, we assume y0 = 0. Let dy = q = 2K, σ = 1/
√
q and

f(x, y) =
1

2

q∑
j=K+1

y2[j], g(x, y) = σ2hq(y/σ),

where hq(y) follows Definition D.2. It is clear from the construction that both f(x, · ), g(x, · ) are
convex and 1-gradient Lipschitz. Moreover, both of them are zero-chains. Then the property of
zero-chain leads to

yk,[j] = 0, ∀k + 1 ≤ j ≤ q, 0 ≤ k ≤ K.

Therefore f(x, yk) remains zero for all 0 ≤ k ≤ K.
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However, we know that Y ∗(x) = {σ1}. Therefore,

φ(x) =
1

2

q∑
j=K+1

σ2 =
Kσ2

2
=

1

4
,

which indicates that any first-order algorithm A has a constant sub-optimality gap.

Next, we prove similar a lower bound also holds for Lipschitz nonsmooth convex lower-level func-
tions, using the following function class, which appears in Nesterov (2018), Section 3.2.1.

Definition D.3 (Lipschitz Zero-Chain). Consider the family of functions:

hq(z) =

√
q

2 +
√
q

max
1≤j≤q

z[j] +
1

2
(
2 +

√
q
)∥z∥2,

The following properties hold for any hq(z) with q ∈ N+:

a. It is a first-order zero-chain.

b. It has a unique minimizer z∗ = −1/
√
q.

c. It is 1-Lipschitz in the unit Euclidean ball B(z∗) ≜ {z : ∥z − z∗∥ ≤ 1}.

Analogous to Proposition 4.2, we can show the following result.

Proposition D.1. Fix an x. For any K ∈ N+, there exists dy ∈ N+, such that for any y0 ∈ Rdy ,
there exist there exists a pair of functions f(x, · ), g(x, · ) that are both convex and 1-Lipschitz
on B(y∗(x)), such that for any first-order algorithm A which initializes from y0 ∈ B(y∗(x)), and
generates a sequence of test points {yk}Kk=0 with

yk ∈ y0 + Span{∂yf(x, y0), ∂yg(x, y0), · · · , ∂yf(x, yk−1), ∂yg(x, yk−1)}, k ≥ 1,

there exists some subgradients sequence {∂yf(x, y0), ∂yg(x, y0), · · · , ∂yg(x, yk−1)} to make
|f(x, yk)− φ(x)| ≥ 1/4 for all k, where y∗(x) is the unique solution to miny∈Y ∗(x) f(x, y).

Proof. Without loss of generality, we assume y0 = 0. Let dy = q = 2K and

f(x, y) =

q∑
j=K+1

ψ(y[j]), g(x, y) = hq(y),

where hq(y) follows Definition D.3 and ψ(y) the Huber function defined by

ψ(y) =


βy − 1

2y
2, y ≥ β;

1
2y

2, −β < y < β;

−βy + 1
2y

2, y ≤ −β.

Since |ψ′(y)| ≤ β, we know f(x, · ) is (
√
qβ)-Lipschitz since∣∣∣∣∣∣

q∑
j=K+1

ψ(y[j])−
q∑

j=K+1

ψ(y′[j])

∣∣∣∣∣∣
≤

q∑
j=K+1

∣∣∣ψ(y[j])− ψ(y′[j])
∣∣∣

≤ β

q∑
j=K+1

∣∣∣y[j] − y′[j]

∣∣∣
≤ β

√
q∥y − y′∥

Let β = 1/
√
q then f(x, · ) is 1-Lipschitz. And g(x, · ) is 1-Lipschitz on B(y∗(x)).
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Note that f always returns a zero subgradient at the origin, while g is a zero-chain. We have

yk,[j] = 0, ∀k + 1 ≤ j ≤ q, 0 ≤ k ≤ K.

Therefore f(x, yk) remains zero for all 0 ≤ k ≤ K.

However, we know that Y ∗(x) = {−1/
√
q}. So it can be calculated that

φ(x) =

q∑
j=K+1

ψ(−1/
√
q) = −K

2q
= −1

4
,

which indicates that any first-order algorithm A has a constant sub-optimality gap.

We remark that projection onto the ball centered at the origin B(0) will not produce additional
nonzero entries. Therefore, the possible projection operation in the algorithm will not distort the
zero-chain structure.

E PROOFS IN SECTION 4.3

Proposition 4.3. Suppose the solution mapping Y ∗(x) is non-empty and compact for any x ∈ Rdx .

a. If f(x, y) and Y ∗(x) are locally Lipschitz , then φ(x) is locally Lipschitz.

b. Conversely, if φ(x) is locally Lipschitz for any locally Lipschitz function f(x, y), then
Y ∗(x) is locally Lipschitz.

c. If f(x, y) is Cf -Lipschitz and Y ∗(x) is κ-Lipschitz, then φ(x) is Cφ-Lipschitz with coeffi-
cient Cφ = (κ+ 1)Cf .

d. Conversely, if φ(x) is Cφ-Lipschitz for any Cf -Lipschitz function f(x, y) , then Y ∗(x) is
κ-Lipschitz with coefficient κ = Cφ/Cf .

Proof. Note that we can replace sup and inf with max and min in Definition 3.3 due to the compact-
ness of Y ∗(x). Below we prove each part of the proposition, separately.

a. Since Y ∗(x1), Y
∗(x2) are nonempty compact sets, we can pick

y1 ∈ argmin
y∈Y ∗(x1)

f(x1, y), y2 ∈ argmin
y∈Y ∗(x2)

f(x2, y).

Then the Lipschitz continuity of Y ∗(x) implies there exist y′1 ∈ Y ∗(x1) and y′2 ∈ Y ∗(x2) such that

φ(x1)− φ(x2) ≤ f(x1, y
′
1)− f(x2, y2) ≤ Cf (∥x1 − x2∥+ ∥y2 − y′1∥) ≤ (κ+ 1)Cf∥x1 − x2∥,

φ(x2)− φ(x1) ≤ f(x2, y
′
2)− f(x1, y1) ≤ Cf (∥x1 − x2∥+ ∥y1 − y′2∥) ≤ (κ+ 1)Cf∥x1 − x2∥,

This establishes the Lipschitz continuity of φ.

b. It suffices to bound the following term for any x1, x2:

max

 max
y2∈Y ∗(x2)

min
y1∈Y ∗(x1)

∥y1 − y2∥︸ ︷︷ ︸
(I)

, max
y1∈Y ∗(x1)

min
y2∈Y ∗(x2)

∥y1 − y2∥︸ ︷︷ ︸
(II)

 . (8)

Without loss of generality, we assume Cf = 1, otherwise we can scale f(x, y) by Cf to prove the
result. We let f(x, y) = −miny1∈Y ∗(x1) ∥y − y1∥, then

(I) = φ(x1)− φ(x2) ≤ Cφ∥x1 − x2∥.

Next, we let f(x, y) = maxy1∈Y ∗(x1) ∥y − y1∥, then

(II) ≤ φ(x2)− φ(x1) ≤ Cφ∥x1 − x2∥.
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Together, recalling the definition of (I) and (II) in Equation 8, we know that

dist(Y ∗(x1), Y
∗(x2)) ≤ Cφ∥x1 − x2∥, ∀x1, x2 ∈ Rd.

Proposition 4.3c and Proposition 4.3d replace the global Lipschitz continuity with local Lipschitz
continuity. The proofs are similar, with additional care for the local argument.

c. We use Nδ( · ) to denote the open neighbourhood ball with radius δ. For a vector z, we define
Nδ(z) ≜ {z′ : ∥z′ − z∥ < δ}. For a set S, we define Nδ(S) ≜ {z′ : dist(z′, S) < δ}. For a
given x1 ∈ Rd and any y ∈ Y ∗(x1), the local Lipschitz continuity of f( · , · ) implies that there
exists δy > 0 and Ly > 0 such that f( · , · ) is Ly-Lipschitz in Nδy (x1) × Nδy (y). Note that the
set S ≜ ∪y

{
Nδy (x1)×Nδy (y)

}
forms an open cover of the set x1 × Y ∗(x1). The compactness of

set Y ∗(x1) guarantees the existence of a finite subcover ∪n
k=0

{
Nδyk

(x1)×Nδyk
(yk)

}
. Therefore,

we can conclude that there exists δ1 > 0, such that f( · , · ) is L1-Lipschitz in the neighborhood
Nδ1(x1)×Nδ1(Y

∗(x1)), where L1 = maxk Lyk
.

Next, the local Lipschitz continuity of Y ∗( · ) implies the existence of δ2 > 0 and L2 > 0 such
that Y ∗( · ) is L2-Lipschitz in Nδ2(x1). Take δ = min{δ1, δ2, δ1/L2}. The choice of δ ensures
(x2, y2) ∈ Nδ1(x1)×Nδ1(Y

∗(x1)) for any x2 ∈ Nδ(x1) and y2 ∈ Y ∗(x2). For any x2 ∈ Nδ(x1),
we pick

y1 ∈ argmin
y∈Y ∗(x1)

f(x1, y), y2 ∈ argmin
y∈Y ∗(x2)

f(x2, y).

The Lipschitz continuity of f( · , · ) in Nδ1(x1) × Nδ1(Y
∗(x1)) and the Lipschitz continuity of

Y ∗( · ) in Nδ2(x1) implies there exist y′1 ∈ Y ∗(x1) and y′2 ∈ Y ∗(x2) such that

φ(x1)− φ(x2) ≤ f(x1, y
′
1)− f(x2, y2) ≤ L1 (∥x1 − x2∥+ ∥y2 − y′1∥) ≤ (L2 + 1)L1∥x1 − x2∥.

φ(x2)− φ(x1) ≤ f(x2, y
′
2)− f(x1, y1) ≤ L1 (∥x1 − x2∥+ ∥y1 − y′2∥) ≤ (L2 + 1)L1∥x1 − x2∥.

hold for any x2 ∈ Nδ(x1), implying the locally Lipschitz property of φ( · ).
d. We again use the function f(x, y) in the proof of b. to bound (I) and (II) defined in Equation 8.
Let f(x, y) = −miny1∈Y ∗(x1) ∥y − y1∥, then there exist δ1 > 0 and L1 > 0 such that

(I) = φ(x1)− φ(x2) ≤ L1∥x1 − x2∥, ∀∥x1 − x2∥ ≤ δ1.

Let f(x, y) = maxy1∈Y ∗(x1) ∥y − y1∥, then there exist δ2 > 0 and L2 > 0 such that

(II) ≤ φ(x2)− φ(x1) ≤ L2∥x1 − x2∥, ∀∥x1 − x2∥ ≤ δ2.

Together, taking δ = min{δ1, δ2} and L = max{L1, L2} and recalling the definition of (I) and (II)
in Equation 8, we can show that there exists some δ > 0 such that it holds

dist(Y ∗(x1), Y
∗(x2)) ≤ L∥x1 − x2∥, , ∀∥x1 − x2∥ ≤ δ,

which implies the local Lipschitz property of Y ∗( · ).

F PROOFS IN SECTION 5

Proposition 5.1. Under Assumption 5.1 or 5.2, Y ∗(x) is (L/α)-Lipschitz.
Furthermore, if f(x, y) is Cf -Lipschitz, then φ(x) is (L/α+ 1)Cf -Lipschtz.

Proof. We show that Y ∗(x) is Lipschitz, and then φ(x) is also Lipschitz by Proposition 4.3.

Under Assumption 5.1, for any y1 ∈ Y ∗(x1), there exists y2 ∈ Y ∗(x2) such that

α∥y1 − y2∥
≤ ∥G1/L(y1;x2)− G1/L(y1;x1)∥

= L

∥∥∥∥PY

(
y1 −

1

L
∇yg(x2, y1)

)
− PY

(
y1 −

1

L
∇yg(x1, y1)

)∥∥∥∥
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≤ ∥∇yg(x2, y1)−∇yg(x1, y1)∥
≤ L∥x1 − x2∥,

where we use G1/L(y1;x1) = 0 (Drusvyatskiy & Lewis, 2018) and Assumption 5.1 in the second
line; the third line follows from the definition of the generalized gradient; the fourth line uses the
non-expansiveness of projection operator by Corollary 2.2.3 in Nesterov (2018); and the last line
uses the smoothness property of the lower-level function.

Under Assumption 5.2, for any y1 ∈ Y ∗(x1), there exists y2 ∈ Y ∗(x2) such that

2α∥y1 − y2∥
≤ g(x2, y1)− g(x2, y2)

≤ g(x1, y1)− g(x1, y2) + 2L∥x1 − x2∥
≤ 2L∥x1 − x2∥,

where the last line uses g(x1, y2) ≤ g(x1, y2).

G PROOFS IN SECTION 6.1

First of all, we prove that the proposed Switching (sub)Gradient Method (SGM) in Algorithm 1 can
find an LL optimal solution under the following Hölderian error bound condition.
Assumption G.1. We suppose the lower-level function g(x, · ) satisfies the r-th order Hölderian
error bound condition on set Y with some coefficient ν > 0, that is,

ν

r
dist(y, Y ∗(x))r ≤ g(x, y)− g∗(x), ∀y ∈ Y.

Note that this condition is also used by Jiang et al. (2023) and they show the following result.
Lemma G.1 (Proposition 1 (i) in Jiang et al. (2023)). Suppose that Assumption G.1 holds, f(x, · )
is convex and f(x, y) is Cf -Lipschitz. If a point y satisfies

f(x, y)− φ(x) ≤ ζ, g(x, y)− g∗(x) ≤ ν

r

(
ζ

Cf

)r

, (9)

then we have |f(x, y)− φ(x)| ≤ ζ.

Equation 9 can be achieved by the SGM, then we can show the following result for finding an LL
optimal solution the Hölderian error bound condition.
Theorem G.1. Under Assumption 6.1 and G.1, if we let

θ = min

{
ζ,
ν

4r

(
ζ

Cf

)r}
, K0 = K =

⌈
4R2 max{C2

f , C
2
g}

θ2

⌉
, τ =

R

max{Cf , Cg}
√
K
.

(10)

then Algorithm 1 can output a point yout satisfying |f(x, yout) − φ(x)| ≤ ζ within

O

(
r2 max{C2

f , C
2
g}C2r

f R2

ν2ζ2r

)
first-order oracle complexity.

Proof. Combine Lemma G.1 and Lemma G.3.

Next, we prove Lemma G.3, which relies on the following standard lemma for subgradient descent.
Lemma G.2 (Subgradient Descent). Suppose h is a L-Lipschitz convex function. For any y, z ∈ Y ,
if we let y+ = P(y − τ∂h(y)), then it holds that

h(y)− h(z) ≤ 1

2τ
(∥y − z∥2 − ∥y+ − z∥2) + τL2

2
.

Proof. See Theorem 3.2 in Bubeck et al. (2015).
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Using this lemma, we then show the following result.
Lemma G.3. Under the setting of Theorem G.1, the output of Algorithm 1 satisfies:

f(x, yout)− φ(x) ≤ θ, g(x, yout)− g∗(x) ≤ 4θ.

Proof. By Theorem 3.2 in Bubeck et al. (2015), the initialization step ensures ĝ∗(x)− g∗(x) ≤ 2θ.

Pick any y∗(x) ∈ argminy∈Y ∗(x) f(x, y) and denote C = max{Cf , Cg}.

According to Lemma G.2 we obtain

f(x, yk)− φ(x) ≤ 1

2τ
(∥yk − y∗(x)∥2 − ∥yk+1 − y∗(x)∥2) + τC2

2
, k ∈ I;

g(x, yk)− g∗(x) ≤ 1

2τ
(∥yk − y∗(x)∥2 − ∥yk+1 − y∗(x)∥2) + τC2

2
, k /∈ I;

Combing them together yields
1

K

∑
k∈I

f(x, yk)− φ(x) +
1

K

∑
k/∈I

g(x, yk)− g∗(x) ≤ R2

2τK
+
τC2

2
=
RC√
K
. (11)

With Equation 11 in hand, it suffices to show the result.

Firstly, we show that I ≠ ∅, and thus yout is well-defined. Otherwise, we would have the following
contradiction:

2θ ≤ 1

K

K−1∑
k=0

g(x, yk)− ĝ∗(x) ≤ 1

K

K−1∑
k=0

g(x, yk)− g∗(x) ≤ RC√
K

≤ θ

2
.

Secondly, we show that the output will not violate the constraint too much by:

g(x, yout)− g∗(x) ≤ 1

|I|
∑
k∈I

(g(x, yk)− ĝ∗(x)) + (ĝ∗(x)− g∗(x)) ≤ 4θ.

Thirdly, we show that f(x, yout) − φ(x) ≤ θ. It is trivial when
∑

k∈I f(x, yk) − φ(x) ≤ 0 since
it is an immediate result of Jensen’s inequality. Therefore we can only focus on the case when∑

k∈I f(x, yk)− φ(x) > 0. In this case, we can show that |I| ≥ K/2, otherwise we would have

θ <
1

K

∑
k/∈I

g(x, yk)− ĝ∗(x) ≤ 1

K

∑
k/∈I

g(x, yk)− g∗(x) ≤ RC√
K

≤ θ

2
,

which also leads to a contradiction. Hence we must have |I| ≥ K/2, therefore, we obtain

f(x, yout)− φ(x) ≤ 1

|I|
∑
k∈I

f(x, yk)− φ(x) ≤ 2

K

∑
k∈I

f(x, yk)− φ(x) ≤ 2RC√
K

≤ θ.

This completes our proof.

We want to use Theorem G.1 to prove Theorem 6.1. Their only difference between them is the as-
sumption. The following proposition shows that both Assumption 5.1 and 5.2 imply Assumption G.1
when g(x, y) is convex in y. Therefore, the function class studied in Theorem 6.1 is contained in the
function class studied in Theorem G.1.
Proposition G.1. If g(x, · ) is convex, then either Assumption 5.1 or 5.2 implies Assumption G.1.

Proof. According to Corollary 3.6 in Drusvyatskiy & Lewis (2018), Assumption 5.1 implies As-
sumption G.1 with any ν < α under the convexity of g(x, · ) For Assumption 5.2, it is clear that it
is equivalent to Assumption G.1 with r = 1.

Now we can easily prove Theorem 6.1.
Theorem 6.1. Fix an x. Under Assumption 6.1, Algorithm 1 with appropriate parameters can
ouput a point yout satisfying |f(x, yout)−φ(x)| ≤ ζ and g(x, yout)−g∗(x) ≤ ζ with O(poly(1/ζ))
first-order oracle calls from g.

Proof. Combine Theorem G.1 and Proposition G.1.
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H PROOFS IN SECTION 6.2

Theorem 6.2. Given any ε ≲ Cf . Let ∆ = φ(x0)− φ∗. Under Assumption 6.2, set

T = O

(
d3/2x

(
C4

φ

ε4
+

∆C3
φ

δε4

))
, η = Θ

(√
δ(∆ + δCφ)

d
3/2
x C3

φT

)
. (5)

Then Algorithm 2 can output a point xout that satisfies Emin {∥s∥ : s ∈ ∂δφ(xout)} ≤ ε.

Proof. First of all, we let

φδ = Ev∼Pv [φ(x+ δv)],

where Pv is a uniform distribution on a unit ball in ℓ2-norm. Then, we define

∇t =
dx
2δ

(φ(xt + δut)− φ(xt − δut))ut. (12)

According to Lemma D.1 in Lin et al. (2022), ∇t satisfies the following properties:

Eut [∇t | xt] = ∇φδ(xt), Eut

[
∥∇t∥2 | xt

]
≤ 16

√
2πdxC

2
φ,

Then we know that

Eut

[
∥∇t − ∇̂t∥ | xt

]
≤ dxζ

δ
Eut

∥ut∥ =
dxζ

δ
≤ c4ε

2

Cφ
(13)

and

Eut

[
∥∇̂t∥2 | xt

]
≤ 2Eut

[
∥∇t∥2 | xt

]
+ 2Eut

[
∥∇t − ∇̂t∥2 | xt

]
≤ 2Eut

[
∥∇t∥2 | xt

]
+

2d2xζ
2

δ2
Eut

∥ut∥2

≤ 32
√
2πdxC

2
φ +

2d2xζ
2

δ2

≤ c1dxC
2
φ

(14)

for some positive constant c1, c4 > 0. Then we use the results of Equation 13, Equation 14 as well
as the standard analysis of gradient descent to obtain

E [φδ(xt+1) | xt] ≤ φδ(xt)− η⟨ ∇φδ(xt), E[∇̂t | xt] ⟩+
c2η

2Cφ

√
dx

2δ
E
[
∥∇̂t∥2 | xt

]
≤ φδ(xt)− η∥∇φδ(xt)∥2 +

ηCφdxζ

δ
+
c2η

2Cφ

√
dx

2δ
E
[
∥∇̂t∥2 | xt

]
≤ φδ(xt)− η∥∇φδ(xt)∥2 +

c3η
2C3

φd
3/2
x

δ
+ ηc4ε

2,

where we use Proposition 2.3 in Lin et al. (2022) that φδ is differentiable and Cφ-Lipschitz with the
(c2Cφ

√
dx/δ)-Lipschitz gradient where c2 > 0 is a positive constant and we define c3 = 2c1c2.

Telescoping for t = 0, 1, · · · , T , we obtain

E∥∇φδ(xout)∥2 ≤ ∆+ δCφ

ηT
+
c3ηC

3
φd

3/2

δ
+ c4ε

2,

where we use |φδ(x)− φ(x)| ≤ δCφ for any x ∈ Rdx by Proposition 2.3 in Lin et al. (2022).

Lastly, plugging the value of η, T with a sufficiently small constant c4 and noting that ∇φ(xout) ∈
∂δφ(xout) by Theorem 3.1 in Lin et al. (2022), we arrive at the conclusion.
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