
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DERIVATIVE-FREE GUIDANCE IN CONTINUOUS AND
DISCRETE DIFFUSION MODELS WITH SOFT VALUE-
BASED DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models excel at capturing the natural design spaces of images, molecules,
DNA, RNA, and protein sequences. However, rather than merely generating designs
that are natural, we often aim to optimize downstream reward functions while
preserving the naturalness of these design spaces. Existing methods for achieving
this goal often require “differentiable” proxy models (e.g., classifier guidance) or
involve computationally expensive fine-tuning of diffusion models (e.g., classifier-
free guidance, RL-based fine-tuning). In our work, we propose a new method
to address these challenges. Our algorithm is an iterative sampling method that
integrates soft value functions, which looks ahead to how intermediate noisy states
lead to high rewards in the future, into the standard inference procedure of pre-
trained diffusion models. Notably, our approach avoids fine-tuning generative
models and eliminates the need to construct differentiable models. This enables
us to (1) directly utilize non-differentiable features/reward feedback, commonly
used in many scientific domains, and (2) apply our method to recent discrete
diffusion models in a principled way. Finally, we demonstrate the effectiveness
of our algorithm across several domains, including image generation, molecule
generation (optimization of docking scores, QED, SA), and DNA/RNA generation
(optimization of activity levels).

1 INTRODUCTION

Diffusion models have gained popularity as powerful generative models. Their applications extend
beyond image generation to include natural language generation (Sahoo et al., 2024; Shi et al.,
2024; Lou et al., 2023), molecule generation (Jo et al., 2022; Vignac et al., 2022), and biological
(DNA, RNA, protein) sequence generation (Avdeyev et al., 2023; Stark et al., 2024), and in each of
these domains diffusion models have been shown to be very effective at capturing complex natural
distributions. However, in practice, we might not only want to generate realistic samples, but to
produce samples that optimize specific downstream reward functions while preserving naturalness by
leveraging pre-trained models. For example, in computer vision, we might aim to generate natural
images with high aesthetic and alignment scores (Black et al., 2023; Fan et al., 2023). In drug
discovery, we may seek to generate valid molecules with high QED/SA/docking scores (Lee et al.,
2023; Jin et al., 2018) or natural RNAs (such as mRNA vaccines (Cheng et al., 2023)) with high
translational efficiency and stability (Castillo-Hair and Seelig, 2021; Asrani et al., 2018), and natural
DNAs with high cell-specificity (Gosai et al., 2023; Taskiran et al., 2024; Lal et al., 2024).

The optimization of downstream reward functions using pre-trained diffusion models has been
approached in various ways. In our work, we focus on non-fine-tuning-based methods because
fine-tuning generative models (e.g., when using classifier-free guidance (Ho et al., 2020) or RL-based
fine-tuning (Black et al., 2023; Fan et al., 2023; Uehara et al., 2024; Clark et al., 2023; Prabhudesai
et al., 2023)) often becomes computationally intensive, especially as pre-trained generative models
grow larger in the era of “foundation models”. Although classifier guidance and its variants (e.g.,
Dhariwal and Nichol (2021); Song et al. (2020); Chung et al. (2022); Bansal et al. (2023); Ho et al.
(2022)) have shown some success as non-fine-tuning methods in these settings, they face significant
challenges. Firstly, as they would require constructing differentiable proxy models, they cannot
directly incorporate useful non-differentiable features (e.g., molecular/protein descriptors (van Westen

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: A comparison of our method with prior approaches. “Non-differentiable” refers to the
method’s capability to operate without requiring differentiable proxy models. “No Training” means
that no additional training of the diffusion model is required as long as we have access to the reward
feedback. We will defer the comparison to SMC-based methods in Section 6.

No fine-tuning Non-differentiable No Training

Classifier guidance ✓
DPS (Chung et al., 2022) ✓ ✓

Classifier-free ✓
RL fine-tuning ✓

SVDD-MC (Ours) ✓ ✓
SVDD-PM (Ours) ✓ ✓ ✓

et al., 2013; Ghiringhelli et al., 2015; Gainza et al., 2020)) or non-differentiable reward feedback (e.g.,
physics-based simulations such as Vina and Rosetta (Trott and Olson, 2010; Alhossary et al., 2015;
Alford et al., 2017)), which are particularly important in molecule design to optimize docking scores,
stability, etc. This limitation also hinders the application of current classifier guidance methods to
recently developed discrete diffusion models (Austin et al., 2021; Campbell et al., 2022; Sahoo et al.,
2024; Shi et al., 2024; Lou et al., 2023) in a principled manner (i.e., without transforming the discrete
space into the Euclidean space).

A C C G U

A M C G M

A M M G Mxt

xt−1

xT

x0

v(xt−1) := E[r(x0) |xt−1]

M M M M M A M M G M

A M G M A M M G MCA M G MU

2.4 4.2 3.5

 RNA Translational efficiency

r(x0)

Figure 1: Summary of SVDD. The notation v de-
notes value functions that predict reward r(x0) (at
time 0) from states at time t− 1. SVDD involves
two steps: (1) generating multiple noisy states from
pre-trained models and (2) selecting the state with
the highest value according to the value function.

We propose a novel method, SVDD (Soft Value-
based Decoding in Diffusion models), for opti-
mizing downstream reward functions in diffu-
sion models (summarized in Figure 1) to address
the aforementioned challenges. Inspired by re-
cent literature on RL-based fine-tuning (Uehara
et al., 2024), we first introduce soft value func-
tions that serve as look-ahead functions, indicat-
ing how intermediate noisy samples lead to high
rewards in the future of the diffusion denoising
process. After learning (or approximating) these
value functions, we present a new inference-
time technique, SVDD, which obtains multiple
noisy states from the policy (i.e., denoising map)
of pre-trained diffusion models and selects the
sample with the highest value function at each
time step. Specifically, we introduce two algo-
rithms (SVDD-MC and SVDD-PM) depending
on how we estimate value functions. Notably,
the SVDD-PM approach, leveraging the charac-
teristics of diffusion models (e.g., utilizing the forward process in diffusion models to directly map t
to 0 in terms of expectation in Figure 1), requires no additional training as long as we have access to
the reward feedback.

Our contributions are summarized as follows (also see Table 1). We propose a novel technique for
optimizing downstream reward functions in pre-trained diffusion models that eliminates the need to
construct differentiable proxy models and avoids the need to fine-tune the generative model itself.
The first property allows for the use of non-differentiable reward feedback, which is common in
many scientific fields, and makes our method applicable to recent discrete diffusion models without
any modification. The second property addresses the high computational cost associated with fine-
tuning diffusion models. We demonstrate the effectiveness of our methods across diverse domains,
including image generation, molecule generation (optimization of docking scores, QED, and SA),
and DNA/RNA generation (optimization of activity levels).

2 RELATED WORKS

Here, we summarize related work. We first outline methods relevant to our goal, categorizing them
based on whether they involve fine-tuning. We then discuss related directions, such as discrete
diffusion models, where our method excels. We defer other relevant works (e.g., decoding in LLMs)
to Section A due to space constraints.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Non-fine-tuning methods. We discuss two main methods for optimizing rewards in diffusion
models without fine-tuning. We further cover closely relevant methods based on sequential Monte
Carlo (SMC) in Section 6 and Appendix B, after presenting our method.

• Classifier guidance (Dhariwal and Nichol, 2021; Song et al., 2020): It has been widely used
to condition pre-trained diffusion models without fine-tuning. Although these methods do not
originally focus on optimizing reward functions, they can be applied for this purpose (Uehara
et al., 2024, Section 6.2). In this approach, an additional derivative of a certain value function is
incorporated into the drift term (mean) of pre-trained diffusion models during inference. Subsequent
variants (e.g., Chung et al. (2022); Ho et al. (2022); Bansal et al. (2023); Guo et al. (2024); Wang
et al. (2022); Yu et al. (2023)) have been proposed to simplify the learning of value functions.
However, these methods require constructing differentiable models, which limits their applicability
to non-differentiable features/reward feedbacks commonly encountered in scientific domains as
mentioned in Section 1. Additionally, this approach cannot be directly extended to discrete diffusion
models (e.g., (Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024)) in a principle way. Our approach
aims to address these challenges.

• Best-of-N: The naive way is to generate multiple samples and select the top samples based on
the reward functions, known as best-of-N in the literature on (autoregressive) LLMs (Stiennon
et al., 2020; Nakano et al., 2021; Touvron et al., 2023; Beirami et al., 2024; Gao et al., 2023).
This approach is significantly less efficient than ours, as our method uses soft-value functions
that predict how intermediate noisy samples lead to high rewards in the future. We validate this
experimentally in Section 7.

Fine-tuning of diffusion models. Several methods exist for fine-tuning generative models to
optimize downstream reward functions, such as classifier-free guidance (Ho and Salimans, 2022) and
RL-based fine-tuning (Fan et al., 2023; Black et al., 2023)/its variants (Dong et al., 2023; Wallace
et al., 2024). However, these approaches often come with caveats, including high computational
costs and the risk of easily forgetting pre-trained models. In our work, we propose an inference-time
technique that eliminates the need for fine-tuning generative models.

Discrete diffusion models. Based on seminal works Austin et al. (2021); Campbell et al. (2022),
recent work on masked diffusion models (Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024)
has demonstrated their strong performance in natural language generation. Additionally, they have
been applied to biological sequence generation (e.g., DNA, protein sequences in Campbell et al.
(2024); Sarkar et al. (2024)). In these cases, the use of diffusion models over autoregressive models
is particularly apt, given that many biological sequences ultimately adopt complex three-dimensional
structures. We also note that ESM3 (Hayes et al., 2024), a widely recognized foundational model in
protein sequence generation, bears similarities to masked diffusion models. Despite its significance,
it cannot be integrated with standard classifier guidance because adding a continuous gradient to a
discrete objective is not inherently valid. Unlike standard classifier guidance, our algorithm can be
seamlessly applied to discrete diffusion models.

A notable exception has been recently proposed by Nisonoff et al. (2024). However, our method can
be applied to both continuous and discrete diffusion models in a unified manner. Furthermore, their
practical method requires the differentiability of proxy models, unlike our proposal. Regarding more
details, refer to Section C. We compare its performance with our method in Section 7.

3 PRELIMINARIES AND GOAL

We describe the standard method for training diffusion models and outline the objective of our work:
optimizing downstream reward functions given pre-trained diffusion models.

3.1 DIFFUSION MODELS

In diffusion models (Ho et al., 2020; Song et al., 2020), our goal is to learn a sampler p(x) ∈ ∆(X)
given data consisting of x ∈ X . The training process for a standard diffusion model is summarized
as follows. First, we introduce a (fixed) forward process qt : X → ∆(X). Now, after introducing
the forward process, we aim to learn a backward process: {pt} where each pt is X → ∆(X) so that
the distributions induced by the forward process and backward process match marginally. For this
purpose, by parametrizing the backward processes with θ ∈ Rd, we typically use the following loss

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

function:

Ex1,··· ,xT∼q(·|x0)

[
− log p0(x0|x1) +

T∑
t=1

KL(qt(· | xt−1)∥pt(· | xt+1; θ)) + KL(qT (·)∥pT (·))

]
,

which is derived from the variational lower bound of the negative likelihood (i.e., ELBO).

Here are two examples of concrete parameterizations. Let αt ∈ R be a noise schedule.
Example 1 (Continuous space). When X is Euclidean space, we typically use the Gaussian distribu-
tion qt(· | x) = N (

√
αtx, (1− αt)). Then, the backward process is parameterized as

N
(√

αt(1− ᾱt+1)xt +
√
αt−1(1− αt)x̂0(xt; θ)

1− ᾱt
,
(1− αt)(1− ᾱt−1)

1− ᾱt

)
,

where ᾱt =
∏t

i=1 αi. Here, x̂0(xt; θ) is a neural network that predicts x0 from xt (Eq[x0|xt]).
Example 2 (Discrete space in Sahoo et al. (2024); Shi et al. (2024)). Let X be a space of one-hot
column vectors {x ∈ {0, 1}K :

∑K
i=1 xi = 1}, and Cat(π) be the categorical distribution over K

classes with probabilities given by π ∈ ∆K where ∆K denotes the K-simplex. A typical choice is
qt(· | x) = Cat(αtx + (1 − αt)m) where m = [0, · · · , 0,Mask]. Then, the backward process is
parameterized as {

Cat(xt), if xt ̸= m

Cat
(

(1−αt−1)m+(αt−1−αt)x̂0(xt;θ)
1−αt

)
, if xt = m.

Here, x̂0(xt; θ) is a neural network that predicts x0 from xt. Note that when considering a sequence
of L tokens (x1:L), we use the direct product: pt(x1:L

t |x1:L
t+1) =

∏L
l=1 pt(x

l
t|x1:L

t+1).

After learning the backward process, we can sample from a distribution that emulates training data
distribution (i.e., p(x)) by sequentially sampling {pt}0t=T from t = T to t = 0.

Notation. The notation δa denotes a Dirac delta distribution centered at a. The notation ∝ indicates
that the distribution is equal up to a normalizing constant. With slight abuse of notation, we often
denote pT (·|·, ·) by pT (·).

3.2 OBJECTIVE: GENERATING SAMPLES WITH HIGH REWARDS WHILE PRESERVING
NATURALNESS

We consider a scenario where we have a pre-trained diffusion model, which is trained using the
loss function explained in Section 3.1. These pre-trained models are typically designed to excel
at characterizing the natural design space (e.g., image space, biological space, or chemical space)
by emulating the extensive training dataset. Our work focuses on obtaining samples that also
optimize downstream reward functions r : X → R (e.g., QED and SA in molecule generation) while
maintaining the naturalness by leveraging pre-trained diffusion models. We formalize this goal as
follows.

Given a pre-trained model {ppret }0t=T , we denote the induced distribution by ppre ∈ ∆(X) (i.e.,
ppre(x0) =

∫
{
∏1

t=T+1 p
pre
t−1(xt−1|xt)}dx1:T). We aim to sample from the following distribution:

p(α)(x) := argmax
p∈[∆(X)]

Ex∼p(·)[r(x)]︸ ︷︷ ︸
term (a)

−αKL(p(·)∥ppre(·))︸ ︷︷ ︸
term(b)

∝ exp(r(x)/α)ppre(x).

Here, the term (a) is introduced to optimize reward function, while the term (b) is used to maintain
the naturalness of the generated samples.

Existing methods. Several existing approaches target this goal (or its variant), as discussed in
Section 2, including classifier guidance, fine-tuning (RL-based or classifier-free), and Best-of-N. In
our work, we focus on non-fine-tuning-based methods; specifically, we aim to address the limitations
of these methods: the requirement for differentiable proxy models in classifier guidance and the
inefficiency of Best-of-N.

Finally, we note that all results discussed in this paper can be easily extended to cases where the pre-
trained model is a conditional diffusion model. For example, in our image experiments (Section 7),
the pre-trained model is a conditional diffusion model conditioned on text (e.g., Stable Diffusion).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 SOFT VALUE-BASED DECODING IN DIFFUSION MODELS

Firstly, we present the motivation behind developing our new algorithm. We then introduce our
algorithm, which satisfies desired properties, i.e., the lack of need for fine-tuning or constructing
differentiable models.

4.1 KEY OBSERVATION

We introduce several key concepts. First, we define the soft value function:

t ∈ [T + 1, · · · , 1]; vt−1(·) := α logEx0∼ppre(x0|xt−1)

[
exp

(
r(x0)
α

)
|xt−1 = ·

]
,

where E{ppre}[·] is induced by {ppret (·|xt+1)}0t=T . This value function represents the expected future
reward at t = 0 from the intermediate noisy state at t− 1. Next, we define the following soft optimal
policy (denoising process) p⋆,αt−1 : X → ∆(X) weighted by value functions vt−1 : X → R:

p⋆,αt−1(·|xt) =
ppret−1(·|xt) exp(vt−1(·)/α)∫
ppret−1(x|xt) exp(vt−1(x)/α)dx

.

Here, we refer to vt as soft value functions, p⋆,αt as soft optimal policies, respectively, because they
literally correspond to soft value functions and soft optimal policies where we embed diffusion
models into entropy-regularized MDPs, as demonstrated in Uehara et al. (2024).

With this preparation in mind, we utilize the following key observation:

Theorem 1 (From Theorem 1 in Uehara et al. (2024)). The distribution induced by {p⋆,αt (·|xt+1)}0t=T

is the target distribution p(α)(x), i.e.,

p(α)(x0) =
∫ {∏1

t=T+1 p
⋆,α
t−1(xt−1|xt)

}
dx1:T .

While Uehara et al. (2024) presents this theorem, they use it primarily to interpret RL-based fine-
tuning methods in Fan et al. (2023); Black et al. (2023). In contrast, our work explores how to convert
this into a new fine-tuning-free optimization algorithm.

Our motivation for a new algorithm. Theorem 1 states that if we can hypothetically sample from
{p⋆,αt }0t=T , we can sample from the target distribution p(α). However, there are two challenges in
sampling from each p⋆,αt−1: (1) the soft-value function vt−1 in p⋆,αt−1 is unknown, (2) it is unnormalized
(i.e., calculating the normalizing constant is often hard).

We address the first challenge later in Section 4.3. Assuming the first challenge is resolved, we
consider how to tackle the second challenge. A natural approach is to use importance sampling (IS):

p⋆,αt−1(·|xt, c) ≈
M∑

m=1

w
⟨m⟩
t−1∑M

j=1 w
⟨j⟩
t−1

δ
x
⟨m⟩
t−1

, {x⟨m⟩
t−1}Mm=1 ∼ ppret−1(· | xt),

where w⟨m⟩
t−1 := exp(vt(x

⟨m⟩
t−1)/α). Thus, we can approximately sample from p⋆,αt−1(·|xt) by obtaining

multiple (M) samples from pre-trained diffusion models and selecting the sample based on an index,
which is determined by sampling from the categorical distribution with mean {w⟨m⟩

t−1/
∑

j w
⟨j⟩
t−1}

⟨M⟩
m=1.

Note Best-of-N, which generates multiple samples and selects the highest reward sample, is tech-
nically considered IS where the proposal distribution is the entire ppre(x0) =

∫ ∏
t{p

pre
t (xt−1 |

xt)}dx1:T . However, the use of importance sampling in our algorithm differs significantly, as we
apply it at each time step to approximate each soft-optimal policy.

4.2 INFERENCE-TIME ALGORITHM

Now, we introduce our algorithm, which leverages the observation, in Algorithm 1. Our algorithm is
an iterative sampling method that integrates soft value functions into the standard inference procedure
of pre-trained diffusion models. Each step is designed to approximately sample from a value-weighted
policy {p⋆,αt }0t=T .

We have several important things to note.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 SVDD (Soft Value-Based Decoding in Diffusion Models)

1: Require: Estimated soft value function {v̂t}0t=T (refer to Algorithm 2 or Algorithm 3), pre-
trained diffusion models {ppret }0t=T , hyperparameter α ∈ R

2: for t ∈ [T + 1, · · · , 1] do
3: Get M samples from pre-trained polices {x⟨m⟩

t−1}Mm=1 ∼ ppret−1(·|xt), and for each m, calculate
w

⟨m⟩
t−1 := exp(v̂t−1(x

⟨m⟩
t−1)/α)

4: xt−1 ← x
⟨ζt−1⟩
t−1 after selecting an index: ζt−1 ∼ Cat

({
w

⟨m⟩
t−1∑M

j=1 w
⟨j⟩
t−1

}M

m=1

)
,

5: end for
6: Output: x0

• When α = 0, Line 4 corresponds to ζt−1 = argmaxm∈[1,··· ,M] v̂t−1(x
⟨m⟩
t−1). In practice, we often

recommend this choice. This is the default choice in Section 7.
• A typical choice we recommend for M is from 5 to 20. The performance with varying M values

will be discussed in Section 7.
• Line 3 can be computed in parallel at the cost of additional memory (scaled by M). If Line 3 is not

computed in parallel, the computational time in SVDD would be approximately M times that of
the standard inference procedure. We will check it in Section 7.

• In special cases where the normalizing constant can be calculated relatively easily (e.g., in discrete
diffusion with small K,L), we can directly sample from {p⋆,αt }0t=T .

• A proposal distribution different from ppret−1 in line 3 can be applied (see Section D). For instance,
classifier guidance or its variants can be used to obtain better proposal distributions than those from
the pure pre-trained model.

The remaining question is how to obtain the soft value function, which we address in the next section.

4.3 LEARNING SOFT VALUE FUNCTIONS

Next, we describe how to obtain soft value functions vt(x) in practice. We propose two main
approaches: Monte Carlo regression approach and posterior mean approximation approach.

Monte Carlo regression. Here, we use the following approximation v′t as vt where

v′t(·) := Ex0∼ppre(x0|xt)[r(x0)|(xt) = ·].
This is based on

vt(xt) = α logEx0∼ppre(·|xt)[exp(r(x0)/α|xt] ≈ log(exp(Ex0∼ppre(xt)[r(x0)|xt])) = v′t(xt). (1)

By regressing r(x0) onto xt, we can learn v′t as in Algorithm 2. Combining this with Algorithm 1,
we refer to the entire optimization approach as SVDD-MC.

Algorithm 2 Value Function Estimation Using Monte Carlo Regression

1: Require: Pre-trained diffusion models, reward r : X → R, function class Φ : X × [0, T]→ R.
2: Collect datasets {x(s)

T , · · · , x(s)
0 }Ss=1 by rolling-out {ppret }0t=T from t = T to t = 0.

3: v̂′ = argminf∈Φ

∑T
t=0

∑S
s=1{r(x

(s)
0)− f(x

(s)
t , t)}2.

4: Output: v̂′

Note that technically, without approximation introduced in (1), we can estimate vt by regressing
exp(r(x0)/α) onto xt based on the original definition. This approach may work in many cases.
However, when α is very small, the scaling of exp(r(·)/α) tends to be excessively large. Due to this
concern, we generally recommend using Algorithm 2.
Remark 1 (Another way of learning value functions). Technically, another method for learning value
functions is available such as soft-Q-learning (Section E), by leveraging soft-Bellman equations in
diffusion models Uehara et al. (2024, Section 3) However, since we find Monte Carlo approaches to
be more stable, we recommend them over soft-Q-learning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Posterior mean approximation. Here, recalling we use x̂0(xt) (approximation of
Ex0∼ppre(xt)[x0|xt]) when training pre-trained diffusion models in Section 3.1, we perform the
following approximation:

vt(x) := α logEx0∼ppre(x0|xt)[exp(r(x0)/α)|xt] ≈ α log(exp(r(x̂0(xt))/α) = r(x̂0(xt)).

Then, we can use r(x̂0(xt)) as the estimated value function.

The advantage of this approach is that no additional training is required as long as we have r. When
combined with Algorithm 1, we refer to the entire approach as SVDD-PM.

Algorithm 3 Value Function Estimation using Posterior Mean Approximation

1: Require: Pre-trained diffusion models, reward r : X → R
2: Set v̂⋄(·, t) := r(x̂0(xt = ·), t)
3: Output: v̂⋄

Remark 2 (Relation with DPS). In the context of classifier guidance, similar approximations have
been employed (e.g., DPS in Chung et al. (2022)). However, the final inference-time algorithms differ
significantly, as these methods compute gradients at the end.

5 ADVANTAGES, EXTENSIONS, LIMITATIONS OF SVDD
We discuss the advantages, extensions, and limitations of SVDD.

5.1 ADVANTAGES

No fine-tuning (or no training in SVDD-PM). Unlike classifier-free guidance or RL-based fine-
tuning, SVDD does not require any fine-tuning of the generative models. In particular, when using
SVDD-PM, no additional training is needed as long as we have r.

No need for constructing differentiable models. Unlike classifier guidance, SVDD does not
require differentiable proxy models, as there is no need for derivative computations. For example, if
r is non-differentiable feedback (e.g., physically-based simulations for docking scores in molecule
generation), our method SVDD-PM can directly utilize such feedback without constructing differen-
tiable proxy models. In cases where non-differentiable computational feedback is costly to obtain, the
usage of proxy reward models may still be preferred, but they do not need to be differentiable; thus,
non-differentiable features or non-differentiable models based on scientific knowledge (e.g., molecule
fingerprints, GNNs) can be leveraged. Similarly, when using SVDD-MC, while a value function
model is required, it does not need to be differentiable, unlike classifier guidance. Additionally,
compared to approaches that involve derivatives (like classifier guidance or DPS), our algorithm can
be directly applied to discrete diffusion models mentioned in Example 2.

5.2 EXTENSIONS

Using a likelihood/classifier as a reward. While we primarily consider scenarios where reward
models are regression models, by adopting a similar strategy in Zhao et al. (2024), they can be
readily replaced with classifiers or likelihood functions in the context of solving inverse problems or
conditioning (Chung et al., 2022; Bansal et al., 2023).

Fine-tuning by distilling SVDD. The inference-time cost may become slow as M increases in
SVDDas we acknowledge it. This issue has been mitigated by further fine-tuning diffusion models to
align them closely with policies from SVDD, a way widely known as policy distillation. We leave
this aspect for future work.

5.3 POTENTIAL LIMITATIONS

Memory and computational complexity in inference time. Our approach requires more com-
putational resources (if not parallelized) or memory (if parallelized), approximately M times more
than standard inference methods, as we mention in Section 4.2. Taking this aspect into account,
we compare SVDD, with baselines such as best-of-N in our experimental section (Section 7). For
gradient-based approaches like classifier guidance and DPS, while a direct comparison with SVDD is
challenging, it is important to note that these methods incur additional computational and memory
complexity due to the backward pass, which SVDD avoids. Lastly, it is important to note that this
additional inference-time burden can be alleviated through distillation, as discussed in Section 5.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Proximity to pre-trained models. The proximity to pre-trained models might be a disadvantage if
significant changes to the pre-trained models are desired. We acknowledge that RL-based fine-tuning
(Black et al., 2023; Fan et al., 2023) could be more effective for this purpose in certain scenarios
than our algorithm, like in image examples. However, this proximity to pre-trained models could
also be advantageous in the sense that it is robust against reward optimization, which conventional
fine-tuning methods often suffer from by exploiting these out-of-distribution regions (Uehara et al.,
2024). Lastly, it is important to note that in cases where reward backpropagation (Prabhudesai et al.,
2023; Clark et al., 2023; Uehara et al., 2024) is not applicable, particularly in scientific domains
for RL-based fine-tuning, we may need to rely on PPO. However, PPO is often mode-seeking and
unstable, highlighting the challenges of RL-based fine-tuning in certain scenarios.

6 COMPARISON BETWEEN SVDD AND SMC-BASED METHODS

SMC-based methods for diffusion models are closely related to SVDD. These approaches (Wu et al.,
2024; Trippe et al., 2022; Dou and Song, 2024; Phillips et al., 2024; Cardoso et al., 2023) use SMC
(Del Moral and Doucet, 2014) for sampling from diffusion models. While they are originally designed
for conditioning (by setting rewards as classifiers), they can also be applied to reward maximization.
Notably, similar to our work, these methods do not require differentiable models.

However, these SMC methods are not tailored to reward maximization. Most importantly, they
involve resampling across the “entire” batch, which complicates parallelization. Additionally, when
batch sizes are small, as is often the case with recent large diffusion models, performance may be
suboptimal since the SMC theoretical guarantees hold primarily with large batch sizes. Even with
larger batch sizes, using SMC for reward maximization can result in a loss of diversity across the
entire batch, since the effective sample size based on weights, which is a standard diversity measure
in SMC, does not ensure “real” diversity in the generated samples. In contrast, our method is highly
parallelizable, performs well even with small batch sizes (as low as 1), and maintains diversity with
larger batch sizes, as sampling is conducted on a “per-sample basis” (Line 4). We empirically validate
this in Section 7. For further details and experiments, including experiments, refer to Appendix B.

7 EXPERIMENTS

We conduct experiments to assess the performance of our algorithm relative to baselines and its
sensitivity to various hyperparameters. We start by outlining the experimental setup, including
baselines and models, and then present the results.

7.1 SETTINGS

Methods to compare. We compare several representative methods capable of performing reward
maximization during inference, discussed in Section 2, with our method.

• Pre-trained models: We generate samples using pre-trained models.

• Best-of-N: We generate samples from pre-trained models and select the top 1/N samples. This
selection is made to ensure that the computational time during inference is approximately equivalent
to that of our proposal, SVDD.

• DPS (Chung et al., 2022): It is a widely used training-free version of classifier guidance. For
discrete diffusion, we combine it with the state-of-the-art approach (Nisonoff et al., 2024).

• SMC-Based Methods (SMC): Methods discussed in Appendix B and Section 6, which do not
require differentiable models, like our proposal.

• SVDD (Ours): We implement SVDD-MC and SVDD-PM. We generally set M = 20 for images
and M = 10 for other domains, and α = 0. Recall M is the duplication size in the IS part.

Datasets and reward models. We provide details on the pre-trained diffusion models and
downstream reward functions used. For further information, refer to Section F.

• Images: We use Stable Diffusion v1.5 as the pre-trained diffusion model (T = 50). For downstream
reward functions, we use compressibility and aesthetic scores (LAION Aesthetic Predictor V2 in
Schuhmann (2022)), as employed by Black et al. (2023); Fan et al. (2023). Note that compressibility
is non-differentiable reward feedback.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• Molecules: We use GDSS (Jo et al., 2022), trained on ZINC-250k (Irwin and Shoichet, 2005),
as the pre-trained diffusion model (T = 1000). For downstream reward functions, we use drug-
likeness (QED) and synthetic accessibility (SA) calculated by RDKit, as well as docking score
(DS) calculated by QuickVina 2 (Alhossary et al., 2015), which are all non-differentiable feedback.
Here, we renormalize SA to (10 − SA)/9 and docking score to max(−DS, 0), so that a higher
value indicates better performance. The docking scores measure binding affinity regarding four
target proteins, parp1, 5ht1b, jak2, and braf following Yang et al. (2021). These tasks are critical
for drug discovery.

• DNAs (Enhancers) and RNAs (5’UTRs): We use the discrete diffusion model (Sahoo et al.,
2024), trained on datasets from Gosai et al. (2023) for enhancers, and from Sample et al. (2019)
for 5’UTRs, as our pre-trained diffusion model (T = 128). For the reward functions, we use an
Enformer model (Avsec et al., 2021) to predict activity of enhancers in the HepG2 cell line, and a
ConvGRU model that predicts the mean ribosomal load (MRL) of 5’UTRs measured by polysome
profiling, respectively (Sample et al., 2019). These tasks are highly relevant for cell and RNA
therapies, respectively (Taskiran et al., 2024; Castillo-Hair and Seelig, 2021).

7.2 RESULTS
Table 2: Top 10 and 50 quantiles of the generated samples for each algorithm. Higher is better. Our
approach consistently outperforms the baseline methods.

Domain Quantile Pre-Train Best-N DPS SMC SVDD-MC SVDD-PM
Image: Compress 50% -101.4 ± 0.22 -71.2 ± 0.46 -60.1 ± 0.44 -59.7 ± 0.4 -54.3 ± 0.33 -51.1 ± 0.38

10% -78.6 ± 0.13 -57.3 ± 0.28 -61.2 ± 0.28 -49.9 ± 0.24 -40.4 ± 0.2 -38.8 ± 0.23

Image: Aesthetic 50% 5.62 ± 0.003 6.11 ± 0.007 5.61 ± 0.009 6.02 ± 0.004 5.70 ± 0.008 6.14 ± 0.007
10% 5.98 ± 0.002 6.34 ± 0.004 6.00 ± 0.005 6.28 ± 0.003 6.05 ± 0.005 6.47 ± 0.004

Molecule: QED 50% 0.656 ± 0.008 0.835 ± 0.009 0.679 ± 0.024 0.667 ± 0.016 0.852 ± 0.011 0.848 ± 0.014
10% 0.812 ± 0.005 0.902 ± 0.006 0.842 ± 0.014 0.722 ± 0.009 0.925 ± 0.007 0.928 ± 0.008

Molecule: SA 50% 0.652 ± 0.007 0.834 ± 0.014 0.693 ± 0.022 0.786 ± 0.004 0.935 ± 0.010 0.925 ± 0.016
10% 0.803 ± 0.004 0.941 ± 0.008 0.844 ± 0.013 0.796 ± 0.003 1.000 ± 0.006 1.000 ± 0.010

Molecule: Docking parp1 50% 7.15 ± 0.52 10.00 ± 0.17 7.35 ± 0.43 6.90 ± 0.60 12.00 ± 0.26 11.40 ± 0.22
10% 8.59 ± 0.31 10.67 ± 0.10 9.31 ± 0.26 9.37 ± 0.36 13.25 ± 0.16 12.41 ± 0.13

Molecule: Docking 5ht1b 50% 7.20 ± 0.53 9.65 ± 0.17 7.30 ± 0.48 6.80 ± 0.35 10.50 ± 0.46 10.50 ± 0.53
10% 8.69 ± 0.32 10.28 ± 0.10 9.21 ± 0.29 9.00 ± 0.21 12.87 ± 0.28 12.30 ± 0.32

Molecule: Docking jak2 50% 7.05 ± 0.45 8.85 ± 0.17 7.30 ± 0.43 6.80 ± 0.46 10.65 ± 0.35 10.30 ± 0.45
10% 8.20 ± 0.27 9.59 ± 0.10 8.70 ± 0.26 10.00 ± 0.28 11.80 ± 0.21 11.91 ± 0.27

Molecule: Docking braf 50% 7.20 ± 0.40 9.20 ± 0.11 7.50 ± 0.23 6.90 ± 0.46 10.00 ± 0.37 9.65 ± 0.33
10% 8.59 ± 0.24 10.29 ± 0.07 9.20 ± 0.14 8.74 ± 0.28 11.30 ± 0.22 11.40 ± 0.20

Enhancers 50% 0.121 ± 0.033 1.807 ± 0.214 3.782 ± 0.299 4.28± 0.02 5.074 ± 0.096 5.353 ± 0.231
10% 1.396 ± 0.020 3.449 ± 0.128 4.879 ± 0.179 5.95± 0.01 5.639 ± 0.057 6.980 ± 0.138

5’UTR 50% 0.406 ± 0.028 0.912 ± 0.023 0.426 ± 0.073 0.76± 0.02 1.042 ± 0.008 1.214 ± 0.016
10% 0.869 ± 0.017 1.064 ± 0.014 0.981 ± 0.044 0.91± 0.01 1.117 ± 0.005 1.383 ± 0.010

We compare the baselines with our two proposed methods regarding rewards r (Table 2). To
demonstrate the generated samples’ validity (i.e., naturalness), we present several examples in
Figure 2. In Section F.3, we also include metrics for the validity of samples.

Overall, our proposal outperforms the baseline methods (Best-of-N, SMC, DPS, SMC), as evidenced
by higher quantiles. Furthermore, for both molecules and images, it has been observed that the
samples generated by SVDD, are valid. This suggests that our algorithm is capable of generating
high-reward valid samples that Best-of-N, DPS, and SMC often struggle to generate or, in some
cases, nearly fail to do.

The relative performance of our two proposed methods (SVDD-MC or SVDD-PM) appears to be
domain-dependent. Generally, SVDD-PM may be more robust since it does not require additional
learning (i.e., it directly utilizes reward feedback). The performance of SVDD-MC depends on the
success of value function learning discussed in Section F.

Ablation studies in terms of the duplication size M . We plot the performance of SVDD-
PM,(when calculating value functions in Line 3 in a non-parallel manner) along with the com-
putational and memory complexity as M varies. First, the performance gradually plateaus as M
increases, as shown in Figure 3a. This trend is consistent across all domains. Second, regarding
computational complexity, as observed in Figure 3d, it increases linearly with M , while memory
complexity remains nearly constant. This behavior is expected, as previously mentioned when

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Images: compressibility (b) Images: aesthetic scores

(c) Molecules: QED scores (d) Molecules: SA scores (Normal-
ized as (10− SA)/9)

(e) Molecules (by SVDD): high
docking scores to parp1

(f) Molecules (by SVDD): high
docking scores to 5ht1b

(g) Molecules (by SVDD): high
docking scores to jak2

(h) Molecules (by SVDD): high
docking scores to braf

Figure 2: Generated samples from our proposal. For more samples, refer to Section F.3. Note
that objects in green in (e) or yellow in (f) correspond to the target proteins. The generated small
molecules are shown in the center.

(a) Performance of SVDD as M varies, for image
generation while optimizing aesthetic score.

(b) Performance of SVDD as M varies, for molecule
generation while optimizing the QED score.

(c) GPU time and max memory of SVDD as M varies,
for image generation (aesthetic scores).

(d) GPU time and max memory of SVDD as M varies,
for molecule generation (QED).

Figure 3: Ablation studies with respect to M for SVDD. Figures (b) and (c) indicate that the
computational time does not scale linearly with M , whereas memory usage scales linearly.

presenting our algorithm in Section 4.2. The comparison with Best-of-N in Table 2 is made with this
consideration in mind.

8 CONCLUSION

We propose a novel inference-time algorithm, SVDD, for optimizing downstream reward functions in
pre-trained diffusion models that eliminate the need to construct differentiable proxy models. Future
works include applications in other domains, such as protein sequence optimization (Gruver et al.,
2023; Alamdari et al., 2023; Watson et al., 2023) and 3D molecule generation (Xu et al., 2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we provide full details for the experiments including all
the training setup, architecture, hyper-parameter searching spaces and metrics in Appendix F. We
also provide an anonymous code link containing the implementation of our method and baselines:
https://anonymous.4open.science/r/SVDD/.

REFERENCES

Alamdari, S., N. Thakkar, R. van den Berg, A. X. Lu, N. Fusi, A. P. Amini, and K. K. Yang (2023).
Protein generation with evolutionary diffusion: sequence is all you need. bioRxiv, 2023–09.

Alford, R. F., A. Leaver-Fay, J. R. Jeliazkov, M. J. O’Meara, F. P. DiMaio, H. Park, M. V. Shapovalov,
P. D. Renfrew, V. K. Mulligan, K. Kappel, et al. (2017). The rosetta all-atom energy function
for macromolecular modeling and design. Journal of chemical theory and computation 13(6),
3031–3048.

Alhossary, A., S. D. Handoko, Y. Mu, and C.-K. Kwoh (2015). Fast, accurate, and reliable molecular
docking with quickvina 2. Bioinformatics 31(13), 2214–2216.

Asrani, K. H., J. D. Farelli, M. R. Stahley, R. L. Miller, C. J. Cheng, R. R. Subramanian, and J. M.
Brown (2018). Optimization of mrna untranslated regions for improved expression of therapeutic
mrna. RNA biology 15(6), 756–762.

Austin, J., D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg (2021). Structured denoising
diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems 34,
17981–17993.

Avdeyev, P., C. Shi, Y. Tan, K. Dudnyk, and J. Zhou (2023). Dirichlet diffusion score model for
biological sequence generation. arXiv preprint arXiv:2305.10699.

Avsec, Ž., V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael,
J. Jumper, P. Kohli, and D. R. Kelley (2021). Effective gene expression prediction from sequence
by integrating long-range interactions. Nature methods 18(10), 1196–1203.

Bansal, A., H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Goldstein
(2023). Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 843–852.

Beirami, A., A. Agarwal, J. Berant, A. D’Amour, J. Eisenstein, C. Nagpal, and A. T. Suresh (2024).
Theoretical guarantees on the best-of-n alignment policy. arXiv preprint arXiv:2401.01879.

Black, K., M. Janner, Y. Du, I. Kostrikov, and S. Levine (2023). Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301.

Campbell, A., J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet (2022).
A continuous time framework for discrete denoising models. Advances in Neural Information
Processing Systems 35, 28266–28279.

Campbell, A., J. Yim, R. Barzilay, T. Rainforth, and T. Jaakkola (2024). Generative flows on discrete
state-spaces: Enabling multimodal flows with applications to protein co-design. arXiv preprint
arXiv:2402.04997.

Cardoso, G., Y. J. E. Idrissi, S. L. Corff, and E. Moulines (2023). Monte carlo guided diffusion for
bayesian linear inverse problems. arXiv preprint arXiv:2308.07983.

Castillo-Hair, S. M. and G. Seelig (2021). Machine learning for designing next-generation mrna
therapeutics. Accounts of Chemical Research 55(1), 24–34.

Cheng, F., Y. Wang, Y. Bai, Z. Liang, Q. Mao, D. Liu, X. Wu, and M. Xu (2023). Research advances
on the stability of mrna vaccines. Viruses 15(3), 668.

Chorowski, J. and N. Jaitly (2016). Towards better decoding and language model integration in
sequence to sequence models. arXiv preprint arXiv:1612.02695.

11

https://anonymous.4open.science/r/SVDD/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chung, H., J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye (2022). Diffusion posterior sampling
for general noisy inverse problems. arXiv preprint arXiv:2209.14687.

Clark, K., P. Vicol, K. Swersky, and D. J. Fleet (2023). Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400.

Dathathri, S., A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, and R. Liu (2019).
Plug and play language models: A simple approach to controlled text generation. arXiv preprint
arXiv:1912.02164.

Del Moral, P. and A. Doucet (2014). Particle methods: An introduction with applications. In ESAIM:
proceedings, Volume 44, pp. 1–46. EDP Sciences.

Dey, R. and F. M. Salem (2017). Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE.

Dhariwal, P. and A. Nichol (2021). Diffusion models beat gans on image synthesis. Advances in
neural information processing systems 34, 8780–8794.

Dong, H., W. Xiong, D. Goyal, R. Pan, S. Diao, J. Zhang, K. Shum, and T. Zhang (2023). Raft: Reward
ranked finetuning for generative foundation model alignment. arXiv preprint arXiv:2304.06767.

Dou, Z. and Y. Song (2024). Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations.

Fan, Y., O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and
K. Lee (2023). DPOK: Reinforcement learning for fine-tuning text-to-image diffusion models.
arXiv preprint arXiv:2305.16381.

Ferreira DaSilva, L., S. Senan, Z. M. Patel, A. J. Reddy, S. Gabbita, Z. Nussbaum, C. M. V. Cordova,
A. Wenteler, N. Weber, T. M. Tunjic, et al. (2024). Dna-diffusion: Leveraging generative models
for controlling chromatin accessibility and gene expression via synthetic regulatory elements.
bioRxiv, 2024–02.

Gainza, P., F. Sverrisson, F. Monti, E. Rodola, D. Boscaini, M. M. Bronstein, and B. E. Correia
(2020). Deciphering interaction fingerprints from protein molecular surfaces using geometric deep
learning. Nature Methods 17(2), 184–192.

Gao, L., J. Schulman, and J. Hilton (2023). Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR.

Ghiringhelli, L. M., J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler (2015). Big data of
materials science: critical role of the descriptor. Physical review letters 114(10), 105503.

Gosai, S. J., R. I. Castro, N. Fuentes, J. C. Butts, S. Kales, R. R. Noche, K. Mouri, P. C. Sabeti, S. K.
Reilly, and R. Tewhey (2023). Machine-guided design of synthetic cell type-specific cis-regulatory
elements. bioRxiv.

Gruver, N., S. Stanton, N. C. Frey, T. G. Rudner, I. Hotzel, J. Lafrance-Vanasse, A. Rajpal,
K. Cho, and A. G. Wilson (2023). Protein design with guided discrete diffusion. arXiv preprint
arXiv:2305.20009.

Guo, Y., H. Yuan, Y. Yang, M. Chen, and M. Wang (2024). Gradient guidance for diffusion models:
An optimization perspective. arXiv preprint arXiv:2404.14743.

Haarnoja, T., H. Tang, P. Abbeel, and S. Levine (2017). Reinforcement learning with deep energy-
based policies. In International conference on machine learning, pp. 1352–1361. PMLR.

Han, S., I. Shenfeld, A. Srivastava, Y. Kim, and P. Agrawal (2024). Value augmented sampling for
language model alignment and personalization. arXiv preprint arXiv:2405.06639.

Hayes, T., R. Rao, H. Akin, N. J. Sofroniew, D. Oktay, Z. Lin, R. Verkuil, V. Q. Tran, J. Deaton,
M. Wiggert, et al. (2024). Simulating 500 million years of evolution with a language model.
bioRxiv, 2024–07.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ho, J., A. Jain, and P. Abbeel (2020). Denoising diffusion probabilistic models. Advances in neural
information processing systems 33, 6840–6851.

Ho, J. and T. Salimans (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Ho, J., T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet (2022). Video diffusion
models. Advances in Neural Information Processing Systems 35, 8633–8646.

Inoue, F., A. Kreimer, T. Ashuach, N. Ahituv, and N. Yosef (2019). Identification and massively
parallel characterization of regulatory elements driving neural induction. Cell stem cell 25(5),
713–727.

Irwin, J. J. and B. K. Shoichet (2005). ZINC- a free database of commercially available compounds
for virtual screening. Journal of chemical information and modeling 45(1), 177–182.

Jin, W., R. Barzilay, and T. Jaakkola (2018). Junction tree variational autoencoder for molecular
graph generation. In International conference on machine learning, pp. 2323–2332. PMLR.

Jo, J., S. Lee, and S. J. Hwang (2022). Score-based generative modeling of graphs via the system of
stochastic differential equations. In International Conference on Machine Learning, pp. 10362–
10383. PMLR.

Lal, A., D. Garfield, T. Biancalani, and G. Eraslan (2024). reglm: Designing realistic regulatory dna
with autoregressive language models. bioRxiv, 2024–02.

Landrum, G. et al. (2016). Rdkit: Open-source cheminformatics software, 2016. URL http://www.
rdkit. org/, https://github. com/rdkit/rdkit.

Leblond, R., J.-B. Alayrac, L. Sifre, M. Pislar, J.-B. Lespiau, I. Antonoglou, K. Simonyan,
and O. Vinyals (2021). Machine translation decoding beyond beam search. arXiv preprint
arXiv:2104.05336.

Lee, S., J. Jo, and S. J. Hwang (2023). Exploring chemical space with score-based out-of-distribution
generation. In International Conference on Machine Learning, pp. 18872–18892. PMLR.

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909.

Lew, A. K., T. Zhi-Xuan, G. Grand, and V. K. Mansinghka (2023). Sequential monte carlo steering
of large language models using probabilistic programs. arXiv preprint arXiv:2306.03081.

Lou, A., C. Meng, and S. Ermon (2023). Discrete diffusion language modeling by estimating the
ratios of the data distribution. arXiv preprint arXiv:2310.16834.

Mudgal, S., J. Lee, H. Ganapathy, Y. Li, T. Wang, Y. Huang, Z. Chen, H.-T. Cheng, M. Collins,
T. Strohman, et al. (2023). Controlled decoding from language models. arXiv preprint
arXiv:2310.17022.

Naesseth, C., F. Lindsten, and T. Schon (2015). Nested sequential monte carlo methods. In
International Conference on Machine Learning, pp. 1292–1301. PMLR.

Naesseth, C. A., F. Lindsten, T. B. Schön, et al. (2019). Elements of sequential monte carlo.
Foundations and Trends® in Machine Learning 12(3), 307–392.

Nakano, R., J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders,
et al. (2021). Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint
arXiv:2112.09332.

Nisonoff, H., J. Xiong, S. Allenspach, and J. Listgarten (2024). Unlocking guidance for discrete
state-space diffusion and flow models. arXiv preprint arXiv:2406.01572.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Phillips, A., H.-D. Dau, M. J. Hutchinson, V. De Bortoli, G. Deligiannidis, and A. Doucet (2024).
Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320.

Prabhudesai, M., A. Goyal, D. Pathak, and K. Fragkiadaki (2023). Aligning text-to-image diffusion
models with reward backpropagation. arXiv preprint arXiv:2310.03739.

Qin, L., S. Welleck, D. Khashabi, and Y. Choi (2022). Cold decoding: Energy-based constrained
text generation with langevin dynamics. Advances in Neural Information Processing Systems 35,
9538–9551.

Sahoo, S. S., M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. T. Chiu, A. Rush, and V. Kuleshov
(2024). Simple and effective masked diffusion language models. arXiv preprint arXiv:2406.07524.

Sample, P. J., B. Wang, D. W. Reid, V. Presnyak, I. J. McFadyen, D. R. Morris, and G. Seelig
(2019). Human 5’utr design and variant effect prediction from a massively parallel translation
assay. Nature biotechnology 37(7), 803–809.

Sarkar, A., Z. Tang, C. Zhao, and P. Koo (2024). Designing dna with tunable regulatory activity using
discrete diffusion. bioRxiv, 2024–05.

Schuhmann, C. (2022, Aug). LAION aesthetics.

Shi, J., K. Han, Z. Wang, A. Doucet, and M. K. Titsias (2024). Simplified and generalized masked
diffusion for discrete data. arXiv preprint arXiv:2406.04329.

Song, J., C. Meng, and S. Ermon (2020). Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Stark, H., B. Jing, C. Wang, G. Corso, B. Berger, R. Barzilay, and T. Jaakkola (2024). Dirichlet flow
matching with applications to dna sequence design. arXiv preprint arXiv:2402.05841.

Stiennon, N., L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano (2020). Learning to summarize with human feedback. Advances in Neural Information
Processing Systems 33, 3008–3021.

Taskiran, I. I., K. I. Spanier, H. Dickmänken, N. Kempynck, A. Pančı́ková, E. C. Ekşi, G. Hulselmans,
J. N. Ismail, K. Theunis, R. Vandepoel, et al. (2024). Cell-type-directed design of synthetic
enhancers. Nature 626(7997), 212–220.

Touvron, H., L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. (2023). Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Trippe, B. L., J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. Jaakkola (2022).
Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem.
arXiv preprint arXiv:2206.04119.

Trott, O. and A. J. Olson (2010). Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry 31(2), 455–461.

Uehara, M., Y. Zhao, T. Biancalani, and S. Levine (2024). Understanding reinforcement learning-
based fine-tuning of diffusion models: A tutorial and review. arXiv preprint arXiv:2407.13734.

Uehara, M., Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, T. Bian-
calani, and S. Levine (2024). Fine-tuning of continuous-time diffusion models as entropy-
regularized control. arXiv preprint arXiv:2402.15194.

Uehara, M., Y. Zhao, E. Hajiramezanali, G. Scalia, G. Eraslan, A. Lal, S. Levine, and T. Biancalani
(2024). Bridging model-based optimization and generative modeling via conservative fine-tuning
of diffusion models. arXiv preprint arXiv:2405.19673.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

van Westen, G. J., R. F. Swier, I. Cortes-Ciriano, J. K. Wegner, J. P. Overington, A. P. IJzerman, H. W.
van Vlijmen, and A. Bender (2013). Benchmarking of protein descriptor sets in proteochemo-
metric modeling (part 2): modeling performance of 13 amino acid descriptor sets. Journal of
cheminformatics 5, 1–20.

Vignac, C., I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard (2022). Digress: Discrete
denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734.

Wallace, B., M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,
S. Joty, and N. Naik (2024). Diffusion model alignment using direct preference optimization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8228–8238.

Wang, Y., J. Yu, and J. Zhang (2022). Zero-shot image restoration using denoising diffusion null-space
model. arXiv preprint arXiv:2212.00490.

Watson, J. L., D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst,
R. J. Ragotte, L. F. Milles, et al. (2023). De novo design of protein structure and function with
rfdiffusion. Nature 620(7976), 1089–1100.

Wu, L., B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham (2024). Practical and asymptotically
exact conditional sampling in diffusion models. Advances in Neural Information Processing
Systems 36.

Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. (2016). Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144.

Xu, K., W. Hu, J. Leskovec, and S. Jegelka (2018). How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826.

Xu, M., A. S. Powers, R. O. Dror, S. Ermon, and J. Leskovec (2023). Geometric latent diffusion
models for 3d molecule generation. In International Conference on Machine Learning, pp. 38592–
38610. PMLR.

Yang, K. and D. Klein (2021). Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218.

Yang, S., D. Hwang, S. Lee, S. Ryu, and S. J. Hwang (2021). Hit and lead discovery with explorative rl
and fragment-based molecule generation. Advances in Neural Information Processing Systems 34,
7924–7936.

Yu, J., Y. Wang, C. Zhao, B. Ghanem, and J. Zhang (2023). Freedom: Training-free energy-guided
conditional diffusion model. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 23174–23184.

Zhao, S., R. Brekelmans, A. Makhzani, and R. Grosse (2024). Probabilistic inference in language
models via twisted sequential monte carlo. arXiv preprint arXiv:2404.17546.

Zhao, Y., M. Uehara, G. Scalia, T. Biancalani, S. Levine, and E. Hajiramezanali (2024). Adding con-
ditional control to diffusion models with reinforcement learning. arXiv preprint arXiv:2406.12120.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A FURTHER RELATED WORKS

Decoding in autoregressive models with rewards. The decoding strategy, which dictates how
sentences are generated from the model, is a critical component of text generation in autoregressive
language models (Wu et al., 2016; Chorowski and Jaitly, 2016; Leblond et al., 2021). Recent studies
have explored inference-time techniques for optimizing downstream reward functions Dathathri et al.
(2019); Yang and Klein (2021); Qin et al. (2022); Mudgal et al. (2023); Zhao et al. (2024); Han et al.
(2024). While there are similarities between these works and ours, to the best of our knowledge,
no prior work has extended such methodologies to diffusion models. Furthermore, our approach
leverages characteristics unique to diffusion models that are not present in autoregressive models
such as SVDD-PM.

B DIFFERENCE BETWEEN SVDD AND “STANDARD” SMC-METHODS

In this section, we compare our algorithm with the SMC-based methods (Wu et al., 2024; Trippe
et al., 2022; Dou and Song, 2024; Phillips et al., 2024; Cardoso et al., 2023) for guidance. While they
originally aim to solve a conditioning problem, which is different from reward maximization, they
algorithms can be converted to reward maximization. First, we will explain this converted algorithm.
We then elaborate on the differences between SVDD, and them in the context of reward maximization.
Notably, our SVDD is an instantiation of nested-IS SMC (Naesseth et al., 2019, Algorithm 5) in the
literature on computational statistics, whereas these SMC-based Methods rely on standard sequential
Monte Carlo.

B.1 SMC-BASED METHODS

Algorithm 4 Guidance with “Standard” SMC (for reward maximization)

1: Require: Estimated value functions {v̂t(x)}0t=T , pre-trained diffusion models {ppret }0t=T , hyper-
parameter α ∈ R, Batch size N

2: for t ∈ [T + 1, · · · , 0] do
3: IS step:
4:

i ∈ [1, · · · , N];x
[i]
t−1 ∼ ppret−1(·|x

[i]
t), w

[i]
t−1 :=

exp(v̂t−1(x
[i]
t−1)/α)

exp(v̂t(x
[i]
t)/α)

5: Selection step: select new indices with replacement

6: {x[i]
t−1}Ni=1 ← {x

ζ
[i]
t−1

t−1 }Ni=1, {ζ [i]t−1}Ni=1 ∼ Cat

({
w

[i]
t−1∑N

j=1 w
[j]
t−1

}N

i=1

)
7: end for
8: Output: x0

The complete algorithm of TDS in our setting is summarized in Algorithm 4. Since our notation and
their notations are slightly different, we first provide a brief overview. It consists of two steps. Since
our algorithm is iterative, at time point t, consider we have N samples (particles) {x[i]

t }Ni=1.

IS step (line 3). We generate a set of samples {x[i]
t−1}Ni=1 following a policy from a pre-trained

model ppret−1(·|·). In other words,

∀i ∈ [1, · · · , N];x
[i]
t−1 ∼ ppret−1(·|x

[i]
t).

Now, we denote the importance weight for the next particle xt−1 given the current particle xt as
w(xt−1, xt), expressed as

w(xt−1, xt) :=
exp(vt−1(xt−1)/α)∫

exp(vt−1(xt−1)/α)p
pre
t−1(xt−1|xt)dxt−1

=
exp(vt−1(xt−1)/α)

exp(vt(xt)/α)
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

and define
∀i ∈ [1, · · · , N]; w

[i]
t−1 := w(x

[i]
t−1, x

[i]
t).

Note here we have used the soft Bellman equation:

exp(vt(xt)/α) =

∫
exp(vt−1(xt−1)/α)p

pre
t−1(xt−1|xt)dxt−1.

Hence, by denoting the target marginal distribution at t− 1, we have the following approximation:

ptart−1 ≈︸︷︷︸
IS

N∑
i=1

w
[i]
t−1∑N

j=1 w
[j]
t−1

δ
x
[i]
t−1

.

Selection step (line 5). Finally, we consider a resampling step. The resampling indices are
determined by the following:

{ζ [i]t−1}Ni=1 ∼ Cat

{ w
[i]
t−1∑N

j=1 w
[j]
t−1

}N

i=1

 .

To summarize, we conduct

ptart−1 ≈︸︷︷︸
IS

N∑
i=1

w
[i]
t−1∑N

j=1 w
[j]
t−1

δ
x
[i]
t−1

≈︸︷︷︸
Resampling

1

N

N∑
i=1

δ
x
ζ
[i]
t−1

t−1

.

Finally, we give several important remarks.

• In SMC, resampling is performed across the entire batch. However, in the algorithm,
sampling is done within a single batch. Therefore, the algorithms differ significantly. We
will discuss the implications in the next section.

• All of existing works Wu et al. (2024); Cardoso et al. (2023); Phillips et al. (2024); Dou and
Song (2024) actually consider a scenario where the reward r is a classifier. In Algorithm 4,
we tailor the algorithm for reward maximization. Vice verisa, as we mentioned in Section 5.2,
our SVDD can also operate effectively when r is a classifier.

• In Wu et al. (2024); Cardoso et al. (2023); Phillips et al. (2024), the proposal distribution
is not limited to the pre-trained model. Likewise, in our SVDD, we can select an arbitrary
proposal distribution, as discussed in Section D.

• In the context of autoregressive (language) models, Zhao et al. (2024); Lew et al. (2023)
proposed a similar algorithm.

B.2 COMPARISON OF SVDD WITH “STANDARD” SMC-BASED METHODS (SSM) FOR
REWARD MAXIMIZATION

We now compare our SVDD with “standard” SMC-Based Methods (SSM). Here, we write a batch
size of SVDD in G. Importantly, we note that our implementation is analogous to nested-IS SMC in
the literature in computational statistics; hence, many differences between nested-IS SMC (Naesseth
et al., 2019; 2015) and pure SMC in computational statistics are translated here.

We first reconsider the fundamental assumptions of each algorithm. SVDD’s performance, in terms of
rewards, depends on the size of M but is independent of the batch size G. In contrast, the performance
of SSM depends on the batch size N . With this in mind, we compare the advantages of SVDD over
SSM from various perspectives.

Tailored to optimization in SVDD. SVDDis considered more suitable for optimization than SMC.
This is because, when using SMC for reward maximization, we must set α very low, leading to a lack
of diversity. This is expected, as when α approaches 0, the effective sample size reduces to 1. This
effect is also evident in our image experiments, as shown in Figure 4. Although SMC performs well
in terms of reward functions, there is a significant loss of diversity. Some readers might think this
could be mitigated by calculating the effective sample size based on weights (i.e., value functions)
and resampling when the effective size decreases; however, this is not the case, as the effective sample
size does not directly translate into greater diversity in the generated samples. In contrast, SVDD,
maintains much higher diversity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Samples from SMC (b) Samples from SVDD-PM

(c) Aesthetic scores from SMC (d) Aesthetic scores from SVDD-PM

Figure 4: Examples of generated samples from SMC (left) and SVDD (right), when the prompt is
“cat.” The histogram of generated samples in terms of the reward function is shown below. Here,
the pre-trained models are based on stable diffusion, and we optimize for aesthetic scores. In SMC,
we set the batch size N = 60, and in SVDD, we set the duplication size M = 20. It is observed
that most samples generated by SMC are similar, although diversity in terms of reward functions is
roughly maintained. This suggests that the effective sample size in terms of value functions (i.e.,
weights) does not directly translate to real diversity in the generated samples. On the other hand, in
SVDD, the generated samples are much more diverse while still achieving high reward functions.

Ease of parallelization in SVDD. SVDD is significantly easier to parallelize across multiple nodes.
In contrast, SSM requires interaction between nodes for parallelization. This advantage is also
well-documented in the context of nested-IS SMC versus standard SMC (Naesseth et al., 2019).

High performance of SVDD under memory constraints. Now, consider a scenario where the
batch size is small, which often occurs due to memory constraints in large pre-trained diffusion
models. In this case, while SSM may exhibit suboptimal performance, SVDD-PM can still achieve
high performance by choosing a sufficiently large M .

In SSM, the “ratio” is approximated. In SVDD, we approximate each exp(vt−1(xt−1)/α) as a
weight. However, in standard SMC, the ratio is approximated as a weight:

exp(vt−1(xt−1)/α)

exp(vt(xt)/α)
.

The key difference is that in SSM, both the numerator and the denominator are approximated, which
could lead to greater error propagation.

C COMPARISON AGAINST DG (NISONOFF ET AL., 2024) AND DIGRESS
(VIGNAC ET AL., 2022) IN DISCRETE DIFFUSION MODELS

Our method is closely related to guidance methods used in DG (Nisonoff et al., 2024) and DiGress
(Vignac et al., 2022). However, we emphasize that our approach is more general, as it operates on any

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

domain, including continuous spaces including Riemannian spaces and discrete spaces, in a unified
manner. In this sense, a strict comparison is not feasible. With this in mind, we provide a comparison
focusing on cases where all domains are discrete.

Comparison with Nisonoff et al. (2024). In this continuous framework, following the notation in
(Lou et al., 2023), they propose the use of the following rate matrix:

Q⋆
x,y(t) = Qpre

x,y(t)
exp(vt(y)/α)

exp(vt(x)/α)
.

where Qpre
x,y(t) is a rate matrix in the pre-trained model. This suggests that, with standard discretization,

the optimal policy at each time step is:
p(xt+δt = y|xt = x) = I(x ̸= y) +Q⋆

x,y(t)(δt) (2)
where δt is step size. Asymptotically, this is equivalent to sampling from the optimal policy in
Theorem 1, as we will show in Remark 3. However, as Nisonoff et al. (2024) note, sampling from the
optimal policy requires O(KL) computation, where K is the vocabulary size and L is the sequence
length, which is computationally expensive for large K and L. To address this issue, they propose
using a Taylor approximation by computing the gradient once. However, this is a heuristic in the sense
that there is no theoretical guarantee for this approximation. In contrast, we avoid this computational
overhead in a different manner, i.e., through importance sampling and resampling. Our algorithm
has an asymptotic guarantee as M goes to infinity. Empirically, we have compared two methods in
Section 7.
Remark 3 (Asymptotic equivalence between formula in Nisonoff et al. (2024) and Theorem 1). The
informal reasoning is as follows. Recall that the pre-trained policy can be written as

p(xt+δt = y|xt = x) = I(x ̸= y) +Qpre
x,y(t)(δt).

Then, Theorem 1 states that the optimal policy is
{I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)∑
z{I(x ̸= z) +Qpre

x,z(t)(δt)} exp(vt(z)/α)
.

Now, we have
{I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)∑
z{I(x ̸= z) +Qpre

x,z(t)(δt)} exp(vt(z)/α)

=
I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)
exp(vt(x)/α)

× {1 +O(δt)}

≈
{I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)
exp(vt(x)/α)

= I(x ̸= y) +
Qpre

x,y(t)(δt) exp(vt(y)/α)

exp(vt(x)/α)
.

Thus, this recovers the formula (2).

Comparison with DiGress in Vignac et al. (2022). Vignac et al. (2022) proposed a diffusion
model for graphs where each sampling and denoising step operates directly on the discrete structure,
avoiding continuous relaxation. They discuss how to implement guidance by treating rewards as a
classifier. To bypass the exponential computational cost of sampling from the optimal policy (p(α) in
Theorem 1), they employ a Taylor expansion. While it requires the calculation of gradients for value
functions, then it mitigates the exponential blow-up in computational time. In contrast, we avoid
this computational blow-up through importance sampling (IS) and resampling. A detailed empirical
comparison between our method and theirs is left for future work.
Remark 4. Note that in our molecule generation experiment in Section 7, we use GDSS (Jo et al.,
2022), which operates in continuous space and differs from DiGress.

D EXTENSION WITH ARBITRARY PROPOSAL DISTRIBUTION

Here, we describe the algorithm where the proposal distribution is not necessarily derived from
the policy of the pre-trained model, as summarized in Algorithm 5. Essentially, we only adjust the
importance weight. In practice, we can use the gradient of a differentiable proxy model, such as DPS,
as the proposal distribution qt−1. Even if the differentiable proxy (value function) models are not
highly accurate, our method will still perform effectively since other value function models v̂t−1 can
be non-differentiable.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 5 SVDD (Soft Value-Based Decoding in Diffusion Models)

1: Require: Estimated soft value function {v̂t}0t=T (refer to Algorithm 2 or Algorithm 3), pre-
trained diffusion models {ppret }0t=T , hyperparameter α ∈ R, proposal distribution {qt}0t=T

2: for t ∈ [T + 1, · · · , 1] do
3: Get M samples from pre-trained polices {x⟨m⟩

t−1}Mm=1 ∼ qt−1(·|xt), and for each m, and
calculate

w
⟨m⟩
t−1 := exp(v̂t−1(x

⟨m⟩
t−1)/α)×

ppret−1(x
⟨m⟩
t−1|xt)

qt−1(x
⟨m⟩
t−1|xt)

.

4: xt−1 ← x
⟨ζt−1⟩
t−1 after selecting an index: ζt−1 ∼ Cat

({
w

⟨m⟩
t−1∑M

j=1 w
⟨j⟩
t−1

}M

m=1

)
,

5: end for
6: Output: x0

E SOFT Q-LEARNING

In this section, we explain soft value iteration to estimate soft value functions, which serves as an
alternative to Monte Carlo regression.

Soft Bellman equation. Here, we use the soft Bellman equation:

exp(vt(xt)/α) =

∫
exp(vt−1(xt−1)/α)p

pre
t−1(xt−1|xt)dxt−1,

as proved in Section 4.1 in (Uehara et al., 2024). In other words,

vt(xt) = α log{Ext−1∼ppre(·|xt) [exp(vt−1(xt−1)/α)|xt]}.

Algorithm. Based on the above, we can estimate soft value functions recursively by regressing
vt−1(xt−1) onto xt. This approach is often referred to as soft Q-learning in the reinforcement
learning literature (Haarnoja et al., 2017; Levine, 2018).

Algorithm 6 Value Function Estimation Using Soft Q-learning

1: Require: Pre-trained diffusion models {ppret }0t=T , value function model v(x; θ)
2: Collect datasets {x(s)

T , · · · , x(s)
0 }Ss=1 by rolling-out {ppret }0t=T from t = T to t = 0.

3: for j ∈ [0, · · · , J] do
4: Update θ by running regression:

θ′j ← argmin
θ

T∑
t=0

S∑
s=1

{
v(x

(s)
t ; θ)− v(x

(s)
t−1; θ

′
j−1)

}2

.

5: end for
6: Output: v(x; θ′J)

In our context, due to the concern of scaling of α, as we have done in Algorithm 2, we had better use

vt(xt) = Ext−1∼ppre(·|xt) [vt−1(xt−1)|xt] .

With the above recursive equation, we can estimate soft value functions as in Algorithm 6.

F ADDITIONAL EXPERIMENTAL DETAILS

We further add additional experimental details.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F.1 ADDITIONAL SETUPS FOR EXPERIMENTS

F.1.1 SETTINGS

Images. We define compressibility score as the negative file size in kilobytes (kb) of the image
after JPEG compression following (Black et al., 2023). We define aesthetic scorer implemented as a
linear MLP on top of the CLIP embeddings, which is trained on more than 400k human evaluations.
As pre-trained models, we use Stable Diffusion, which is a common text-to-image diffusion model.
As prompts to condition, we use animal prompts following (Black et al., 2023) such as [Dog, Cat,
Panda, Rabbit, Horse,...].

Molecules. We calculate QED and SA scores using the RDKit (Landrum et al., 2016) library. We
use the docking program QuickVina 2 (Alhossary et al., 2015) to compute the docking scores follow-
ing Yang et al. (2021), with exhaustiveness as 1. Note that the docking scores are initially negative
values, while we reverse it to be positive and then clip the values to be above 0, i.e.. We compute
DS regarding four proteins, parp1 (Poly [ADP-ribose] polymerase-1), 5ht1b (5-hydroxytryptamine
receptor 1B), braf (Serine/threonine-protein kinase B-raf), and jak2 (Tyrosine-protein kinase JAK2),
which are target proteins that have the highest AUROC scores of protein-ligand binding affinities for
DUD-E ligands approximated with AutoDock Vina.

DNA, RNA sequences. We examine two publicly available large datasets: enhancers (n ≈ 700k)
(Gosai et al., 2023) and UTRs (n ≈ 300k) (Sample et al., 2019), with activity levels measured by
massively parallel reporter assays (MPRA) (Inoue et al., 2019). These datasets have been widely
used for sequence optimization in DNA and RNA engineering, particularly in advancing cell and
RNA therapies (Castillo-Hair and Seelig, 2021; Lal et al., 2024; Ferreira DaSilva et al., 2024; Uehara
et al., 2024). In the Enhancers dataset, each x is a DNA sequence of length 200, while y ∈ R is the
measured activity in the Hep cell line. In the 5’UTRs dataset, x is a 5’UTR RNA sequence of length
50, and y ∈ R is the mean ribosomal load (MRL) measured by polysome profiling.

F.1.2 BASELINES AND PROPOSALS

We will explain in more detail how to implement baselines and our proposal. We use A100 GPUs for
all the tasks.

SVDD-MC. In SVDD-MC, we require value function models. For images, we use standard CNNs
for this purpose, with the same architecture as the reward model. For molecular tasks, we use a
Graph Isomorphism Network (GIN) model (Xu et al., 2018) as the value function model. Notably,
this model is not differentiable w.r.t. inputs. For GIN, we use mean global pooling and the RELU
activation function, and the dimension of the hidden layer is 300. The number of convolutional layers
in the GIN model is selected from the set {3, 5}; and we select the maximum number of iterations
from {300, 500, 1000}, the initial learning rate from {1e-3, 3e-3, 5e-3, 1e-4}, and the batch size from
{32, 64, 128}. For the Enhancer task, we use the Enformer model (Avsec et al., 2021) as the value
function model. The Enformer trunk has 7 convolutional layers, each having 1536 channels. as well
as 11 transformer layers, with 8 attention heads and a key length of 64. Dropout regularization is
applied across the attention mechanism, with an attention dropout rate of 0.05, positional dropout of
0.01, and feedforward dropout of 0.4. The convolutional head for final prediction has 2*1536 input
channels and uses average pooling, without an activation function. The model is trained using a batch
size selected from {32, 64, 128, 256}, the learning rate from {1e-4, 5e-4, 1e-3}, and the maximum
number of iterations from {5k, 10k, 20k}. For the 5’UTR task, we adopt the ConvGRU model
(Dey and Salem, 2017). The ConvGRU trunk has a stem input with 4 channels and a convolutional
stem that outputs 64 channels using a kernel size of 15. The model contains 6 convolutional layers,
each initialized with 64 channels and a kernel size of 5. The convolutional layers use ReLU as the
activation function, and a residual connection is applied across layers. Batch normalization is applied
to both the convolutional and GRU layers. A single GRU layer with dropout of 0.1 is added after the
convolutional layers. The convolutional head for final prediction uses 64 input channels and average
pooling, without batch normalization. For training, the batch size is selected from {16, 32, 64, 128},
the learning rate from {1e-4, 2e-4, 5e-4}, and the maximum number of iterations from {2k, 5k, 10k}.
All function models are trained to converge in the learning process using MSE loss.

21

https://github.com/jacobkimmel/pytorch_convgru?tab=readme-ov-filea

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

SVDD-PM. For this proposal, we directly use the reward feedback to evaluate. We remark when
the reward feedback is also learned from offline data, technically, it would be better to use techniques
mitigating over-optimization as discussed in Uehara et al. (2024). However, since this point is
tangential in our work, we don’t do it.

DPS. We require differentiable models. For this task, for images, enhancers, and 5’UTRs, we use
the same method as SVDD-MC. For molecules, we follow the implementation in Lee et al. (2023),
and we use the same GNN model as the reward model. Note that we cannot compute derivatives
with respect to adjacency matrices when using the GNN model. Regarding α, we choose several
candidates and report the best one. For image tasks we select from [5.0, 10.0] and for bio-sequence
tasks we select from [1.0, 2.0]. For molecule QED task we select from {0.2, 0.3, 0.4, 0.5}, for
molecule SA task {0.1, 0.2, 0.3}, and for molecule docking tasks we select from {0.4, 0.5, 0.6}.

SMC. For value function models, we use the same method as SVDD-PM. Regarding α, we choose
several candidates and report the best one. For image tasks we select from [10.0, 40.0]. For Enhancer
and 5’UTR tasks as well as molecule QED and SA tasks we select from {0.1, 0.2, 0.3, 0.4}, while for
molecule docking tasks we select from {1.5, 2.0, 2.5}.

F.2 SOFTWARE AND HARDWARE

Our implementation is under the architecture of PyTorch (Paszke et al., 2019). The deployment
environments are Ubuntu 20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB
RAM, and graphics cards NVIDIA RTX 2080Ti. Each of our experiments is conducted on a single
NVIDIA RTX 2080Ti or RTX A6000 GPU.

F.3 ADDITIONAL RESULTS

Histograms. In the main text, we present several quantiles. Here, we plot the reward score
distributions of generated samples as histograms in Figure 5.

Performance of value function training. We report the performance of value function learning
using Monte Carlo regression as follows in SVDD-MC. In Figure 6, we plot the Pearson correlation
on the test dataset for the Enhancer and 5’UTR tasks, as well as the test MSE for the molecular task
of parp1 docking score.

Validity metrics for molecule generation. To evaluate the validity of our method in molecule
generation, we report several key metrics that capture different aspects of molecule quality and
diversity in Table 3 on page 22.

Table 3: Comparison of the generated molecules of pre-trained GDSS model and SVDD applied on
various metrics.

Method Valid Unique Novelty FCD SNN Frag/Test Scaf NSPDK MMD Mol Stable Atm Stable
Pre-trained 1.0 1.0 1.0 22.2799 0.2992 0.8274 0.0033 0.0260 0.2903 0.9256
SVDD 1.0 0.9375 1.0 21.5671 0.3441 0.7803 0.0838 0.0772 0.4783 0.9095

The validity of a molecule indicates its adherence to chemical rules, defined by whether it can be
successfully converted to SMILES strings by RDKit. Uniqueness refers to the proportion of generated
molecules that are distinct by SMILES string. Novelty measures the percentage of the generated
molecules that are not present in the training set. Fréchet ChemNet Distance (FCD) measures the
similarity between the generated molecules and the test set. The Similarity to Nearest Neighbors
(SNN) metric evaluates how similar the generated molecules are to their nearest neighbors in the
test set. Fragment similarity measures the similarity of molecular fragments between generated
molecules and the test set. Scaffold similarity assesses the resemblance of the molecular scaffolds
in the generated set to those in the test set. The neighborhood subgraph pairwise distance kernel
Maximum Mean Discrepancy (NSPDK MMD) quantifies the difference in the distribution of graph
substructures between generated molecules and the test set considering node and edge features. Atom
stability measures the percentage of atoms with correct bond valencies. Molecule stability measures

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) Images: compressibility (b) Images: aesthetic score

(c) Molecules: QED (d) Molecules: SA (e) Molecules: DS - parp1

(f) Molecules: DS - 5ht1b (g) Molecules: DS - jak2 (h) Molecules: DS - braf

(i) Enhancers (j) 5’UTRs: MRL

Figure 5: We show the histogram of generated samples in terms of reward functions. We consistently
observe that SVDD demonstrates strong performances.

the fraction of generated molecules that are chemically stable, i.e., whose all atoms have correct bond
valencies. Specifically, atom and molecule stability are calculated using conformers generated by
RDKit and optimized with UFF (Universal Force Field) and MMFF (Merck Molecular Force Field).

We compare the metrics using 512 molecules generated from the pre-trained GDSS model and from
SVDD optimizing SA, as shown in Table 3. Overall, our method achieves comparable performances
with the pre-trained model on all metrics, maintaining high validity, novelty, and uniqueness while
outperforming on several metrics such as molecule stability, FCD, SNN, and scaffold similarity. These
results indicate that our approach can generate a diverse set of novel molecules that are chemically
plausible and relevant.

More Ablation Studies. We provide several more ablation studies regarding M on top of the
results in the main text, as plotted in Figure 7. The results are consistent with what we have observed
in Figure 3.

Visualization of more generated samples. We provide additional generated samples in this section.
Figure 8 and Figure 9 show comparisons of generated images from baseline methods and SVDD with
different M values regarding compressibility and aesthetic score, respectively. Figure 10 and Figure 11
presents the comparisons of visualized molecules generated from the baseline model and SVDD
regarding QED and SA, respectively. The visualizations validate the strong performances of SVDD.
Given that SVDD can achieve optimal SA for many molecules, we also visualize some molecules
with optimal SA generated by SVDD, as shown in Figure 12. In Figure 13, Figure 14, Figure 15, and
Figure 16 we visualizes the docking of SVDD-generated molecular ligands to proteins parp1, 5ht1b,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) 5’UTR MRL (b) Enhancers

(c) Molecules

Figure 6: Training curve of value functions

(a) Performance of SVDD as M varies. (b) GPU time and max memory of SVDD as M varies.

Figure 7: Abltation Studies (for image generation while optimizing the compressibility)

jak2, and braf, respectively. Docking scores presented above each column quantify the binding affinity
of the ligand-protein interaction, while the figures include various representations and perspectives of
the ligand-protein complexes. We aim to provide a complete picture of how each ligand is situated
within both the local binding environment and the larger structural framework of the protein. First
rows show close-up views of the ligand bound to the protein surface, displaying the topography and
electrostatic properties of the protein’s binding pocket and providing insight into the complementarity
between the ligand and the pocket’s surface. Second rows display distant views of the protein using
the surface representation, offering a broader perspective on the ligand’s spatial orientation within the
global protein structure. Third rows provide close-up views of the ligand interaction using a ribbon
diagram, which represents the protein’s secondary structure, such as alpha-helices and beta-sheets,
to highlight the specific regions of the protein involved in binding. Fourth rows show distant views
of the entire protein structure in ribbon diagram, with ligands displayed within the context of the
protein’s full tertiary structure. Ligands generally fit snugly within the protein pocket, as evidenced

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

by the close-up views in both the surface and ribbon diagrams, which show minimal steric clashes
and strong surface complementarity.

-39 -20 -39 -31 -43-37

-74 -61 -73-68-81-79

Best-of-N

SVDD-PM

(M=20)

-112 -130

Pre-trained

-103 -155 -97 -103

SVDD-PM

(M=80)
-22 -27 -29-16-26

Monkey Panda Rabbit Cat Dog Horse

-32
Figure 8: Additional generated samples (Domain: images, Reward: Compressibility)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

6.4 6.5 6.6 6.9 6.56.5

6.0 5.8 5.95.76.16.1

5.5 5.65.7 5.5 5.6 5.3

Monkey Panda Rabbit Cat Dog Horse

Best-of-N

SVDD-PM

(M=20)

Pre-trained

SVDD-PM

(M=80)
7.3 7.17.06.7 6.4 6.7

Figure 9: Additional generated samples (Domain: Images, Reward: Aesthetic score)

Figure 10: Additional generated samples (Domain: Molecules, Reward: QED score)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 11: Additional generated samples (Domain: Molecules, Reward: SA score, normalized as
(10− SA)/9)

Figure 12: Additional generated samples from SVDD-MC (Domain: Molecules, Reward: SA score =
1.0 (normalized as (10− SA)/9))

Figure 13: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
parp1 (normalized as max(−DS, 0)))

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 14: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
5ht1b (normalized as max(−DS, 0)))

Figure 15: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
jak2 (normalized as max(−DS, 0)))

Figure 16: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
braf (normalized as max(−DS, 0)))

28

	Introduction
	Related Works
	Preliminaries and Goal
	Diffusion Models
	Objective: Generating Samples with High Rewards While Preserving Naturalness

	Soft Value-Based Decoding in Diffusion Models
	Key Observation
	Inference-Time Algorithm
	Learning Soft Value Functions

	Advantages, Extensions, Limitations of SVDD
	Advantages
	Extensions
	Potential Limitations

	Comparison between SVDD and SMC-Based Methods
	Experiments
	Settings
	Results

	Conclusion
	Further Related Works
	Difference Between SVDD and ``Standard'' SMC-Methods
	SMC-Based Methods
	Comparison of SVDD with ``Standard'' SMC-Based Methods (SSM) for Reward Maximization

	Comparison against DG nisonoff2024unlocking and DiGress vignac2022digress in Discrete Diffusion Models
	Extension with Arbitrary Proposal Distribution
	Soft Q-learning
	Additional Experimental Details
	Additional Setups for Experiments
	Settings
	Baselines and Proposals

	Software and Hardware
	Additional Results

