
Appendix

A More Background on Topological Data Analysis

Topological data analysis (TDA) [19] is a recent and emerging field of data science that relies on
topological tools to infer relevant features for possibly complex data. A key object in TDA is
persistent homology, which quantifies salient topological features of data by observing them in
multi-resolutions.

A.1 Persistent Homology

Persistent homnology. Persistent homology is a multiscale approach to represent the topological
features. For a filtration F and for each k ∈ N0 = N ∪ {0}, the associated k-th persistent homology
PHkF is a collection of k-th dimensional homologies {HkFδ}δ∈R equipped with homomorphisms
{ıa,bk : HkFa → HkFb}a≤b induced by the inclusion Fa ⊂ Fb.

Persistence diagram. For the k-th persistent homology PHkF , the set of filtration levels at which
a specific homology appears is always an interval [b, d) ⊂ [−∞,∞]. The corresponding k-th
persistence diagram is a multiset of points (R ∪ {∞})2, consisting of all pairs (b, d) where [b, d) is
the interval of filtration values for which a specific homology appears in PHkF .

A.2 Statistical Inference of Persistent Homology

As discussed above, a homological feature with a long life-length is important information in topology
while the homology with a short life-length can be treated as non-significant information or noise.
The confidence band estimator provides the confidence set from the features that only include
topologically and statistically significant (statistically considered as elements in the population set)
under a certain level of confidence. And to build a confidence set, we first need to endow a metric on
the space of persistence diagrams.

Bottleneck distance. The most fundamental metric to measure the distance between two persistence
diagrams is the bottleneck distance.

Definition A.1. The bottleneck distance between two persistence diagrams D1 and D2 is defined by

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

∥p− γ(p)∥∞,

where the set Γ consists of all the bijections γ : D1 ∪Diag → D2 ∪Diag, and Diag is the diagonal
{(x, x) : x ∈ R} ⊂ R2 with infinite multiplicity.

One way of constructing the confidence set uses the superlevel filtration of the kernel density
estimator and the bootstrap confidence band. Let X = {X1, X2, ..., Xn} as given points cloud,
then the probability for the distribution of points can be estimated via KDE defined as following:
p̂h(x) :=

1
nhd

∑n
i=1K

(
x−Xi

h

)
where h is the bandwidth and d as a dimension of the space. We

compute p̂h and p̂∗h, which are the KDE of X and the KDE of bootstrapped samples X ∗, respectively.
Now, given the significance level α and h > 0, let confidence band qX be bootstrap bandwidth of
a Gaussian Empirical Process [32, 33],

√
n||p̂h − p̂∗h||∞. Then it satisfies P (

√
n||p̂h − ph||∞ <

qX ) ≥ 1−α, as in Proposition D.2 in Section D. Then BdB
(P̂h, cX ) , the ball of persistent homology

centered at P̂h and radius cX = qX /
√
n in the bottleneck distance dB , is a valid confidence set as

lim infn→∞ P
(
P ∈ BdB

(P̂h, cX )
)
≥ 1− α. This confidence set has further interpretation that in

the persistence diagram, homological features that are above twice the radius 2cX from the diagonal
are simultaneously statistically significant.

B Johnson-Lindenstrauss Lemma

Johnson-Lindenstrass Lemma is stated as follows:

Lemma B.1 (Johnson-Lindenstrauss Lemma). [34, Lemma 1]
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Let 0 < ϵ < 1 and X ⊂ RD be a set of points with size n. Then for d = O
(
min

{
n,D, ϵ−2 log n

})
,

there exists a linear map f : RD → Rd such that for all x, y ∈ X ,

(1− ϵ) ∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ϵ) ∥x− y∥2 . (5)

Remark B.2. This Johnson-Lindenstrass Lemma is optimal for linear maps, and nearly-optimal even
if we allow non-linear maps: there exists a set of points X ⊂ RD with size n, such that d should
satisfy: (a) d = Ω

(
ϵ−2 log n

)
for a linear map f : RD → Rd satisfying (5) to exist [35, Theorem 3],

and (b) d = Ω
(
ϵ−2 log(ϵ2n)

)
for a map f : RD → Rd satisfying (5) to exist [36, Theorem 1].

C Denoising topological features from outliers

Using the bootstrap bandwidth cX as the threshold is the key part of our estimators TopP&R for
robustly estimating supp(P ). When the level set p̂−1

h [cX ,∞) is used, the homology of p̂−1
h [cX ,∞)

consists of homological features whose (birth) ≥ cX and (death) ≤ cX , which are the homological
features in skyblue area in Figure A1. In this example, we consider three types of homological noise,
though there can be many more corresponding to different homological dimensions.

• There can be a 0-dimensional homological noise of (birth) < cX and (death) < cX , which
is the red point in the persistence diagram of Figure A1. This noise corresponds to the
orange connected component on the left. As in the figure, this type of homological noise
usually corresponds to outliers.

• There can be a 0-dimensional homological noise of (birth) > cX and (death) > cX , which
is the green point in the persistence diagram of Figure A1. This noise corresponds to the
connected component surrounded by the green line on the left. As in the figure, this type of
homological noise lies within the estimated support, not like the other two.

• There can be a 1-dimensional homological noise of (birth) < cX and (death) < cX , which
is the purple point in the persistence diagram of Figure A1. This noise corresponds to the
purple loop on the left.

These homological noises satisfy either their (birth) < cX and (death) < cX or their (birth) > cX
and (death) > cX simultaneously with high probability, so those homological noises are removed in
the estimated support p̂−1

h [cX ,∞), which is the blue area in the left and the skyblue area in the right
in Figure A1.

We would like to further emphasize that homological noises are not restricted to 0-dimension
lying outside the estimated support (red point in the persistence diagram of Figure A1). 0-
dimensional homological noise inside the estimated support (green point in the persistence diagram
of Figure A1), 1-dimensional homological noise can also arise, and the bootstrap bandwidth cX
allows to simultaneously filter them.

D Assumptions on distributions and kernels

For distributions, we assume that the order of probability volume decay P (B(x, r)) is at least rd.
Assumption A1. For all x ∈ supp(P ) and y ∈ supp(Q),

lim inf
r→0

P (B(x, r))
rd

> 0, lim inf
r→0

Q (B(y, r))
rd

> 0.

Remark D.1. Assumption A1 is analogous to Assumption 2 of Kim et al. [37], but is weaker since the
condition is pointwise on each x ∈ Rd. And this condition is much weaker than assuming a density
on Rd: for example, a distribution supported on a low-dimensional manifold satisfies Assumption A1.
This provides a framework suitable for high dimensional data, since many times high dimensional
data lies on a low dimensional structure hence its density on Rd cannot exist. See Kim et al. [37] for
a more detailed discussion.

For kernel functions, we assume the following regularity conditions:
Assumption A2. Let K : Rd → R be a nonnegative function with ∥K∥1 = 1, ∥K∥∞ , ∥K∥2 <∞,
and satisfy the following:
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Figure A1: To robustly estimate the support, we use the bootstrap bandwidth cα to filter out topological
noise (orange) and keep topological signal (skyblue). Then TopP&R is computed on this support.

(i) K(0) > 0.

(ii) K has a compact support.

(iii) K is Lipschitz continuous and of second order.

Assumption A2 allows to build a valid bootstrap confidence band for kernel density estimator (KDE).
See Theorem 12 of [26] or Theorem 3.4 of [38]

Proposition D.2 (Theorem 3.4 of [38]). Let X = {X1, . . . , Xn} be IID from a distribution P . For
h > 0, let p̂h, p̂∗h be kernel density estimator for X and its bootstrap X ∗, respectively, and for
α ∈ (0, 1), let cX be the α bootstrap quantile from

√
nhd ∥p̂h − p̂∗h∥∞. For hn → 0,

P
(√

nhdn ∥p̂hn − phn∥∞ > cX

)
= α+

(
log n

nhdn

) 4+d
4+2d

.

Assumption A1, A2 ensures that, when the bandwidth hn → 0, average KDEs are bounded away
from 0.

Lemma D.3. Let P be a distribution satisfying Assumption A1. Suppose K is a nonnegative function
satisfying K(0) > 0 and continuous at 0. Suppose {hn}n∈N is given with hn ≥ 0 and hn → 0. Then
for all x ∈ supp(P ),

lim inf
n→∞

phn(x) > 0.

Proof. Since K(0) > 0 and K is continuous at 0, there is r0 > 0 such that for all y ∈ B(0, r0),
K(y) ≥ 1

2K(0) > 0. And hence

ph(x) =

∫
1

hd
K

(
x− y

h

)
dP (y) ≥

∫
K(0)

2hd
1

(
x− y

h
∈ B(0, r0)

)
dP (y)

≥ K(0)

2hd
P (B(x, r0h)) .

Hence as hn → 0,
lim inf
n→∞

phn
(x) > 0.
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Before specifying the rate of convergence, we introduce the concept of reach. First introduced by
[39], the reach is a quantity expressing the degree of geometric regularity of a set. Given a closed
subset A ⊂ Rd, the medial axis of A, denoted by Med(A), is the subset of Rd consisting of all the
points that have at least two nearest neighbors on A.

Med(A) =
{
x ∈ Rd \A : ∃q1 ̸= q2 ∈ A, ||q1 − x|| = ||q2 − x|| = d(x,A)

}
,

where d(x,A) = infq∈A ||q − x|| denotes the distance from a generic point x ∈ Rd to A, The reach
of A is then defined as the minimal distance from A to Med(A).

Definition D.4. The reach of a closed subset A ⊂ Rd is defined as

reach(A) = inf
q∈A

d (q,Med(A)) = inf
q∈A,x∈Med(A)

||q − x||.

Now, for specifying the rate of convergence, we first assume that distributions have densities away
from 0 and ∞.
Assumption A3. P and Q have Lebesgue densities p and q that, there exists 0 < pmin ≤ pmax <∞,
0 < qmin ≤ qmax <∞ with for all x ∈ supp(P ) and y ∈ supp(Q),

pmin ≤ p(x) ≤ pmax, qmin ≤ q(x) ≤ qmax.

We also assume weak geometric assumptions on the support of the distributions supp(P ) and
supp(Q), being bounded and having positive reach.
Assumption A4. We assume supp(P ) and supp(Q) are bounded. And the support of P and Q have
positive reach, i.e. reach(supp(P )) > 0 and reach(supp(Q)) > 0.

Sets with positive reach ensure that the volume of its tubular neighborhood grows in polynomial
order, which is Theorem 26 from [40] and originally from [39].
Proposition D.5. Let A be a set with reach(A) > 0. Let Ar := {x ∈ Rd : d(x,A) ≤ r}. Then for
r < reach(A), there exists a0, . . . , ad ∈ R ∪ {∞} that satisfies

λd(Ar) =

d−1∑
k=0

akr
k,

where λd is the usual Lebesgue measure of Rd.

E Details and Proofs for Section 4

For a random variable X and α ∈ (0, 1), let qX,α be upper α-quantile of X , i.e., P(X ≥ qα) = α, or
equivalently, P(X < qα) = 1− α. Let p̃h be the KDE on X 0. For a finite set X , we use the notation
cX ,α for α-bootstrap quantile satisfying P

(∥∥p̂X ,hn
− p̂X b,hn

∥∥
∞ < cX ,α|X

)
= 1− α, where X b is

the bootstrap sample from X . For a distribution P , we use the notation cP,α for α-quantile satisfying
P (∥p̂hn − phn∥∞ < cP,α) = 1− α, where p̂hn is kernel density estimator of IID samples from P .
Hence when X is not IID samples from P , the relation of Proposition D.2 may not hold.
Claim E.1. Let Z ∼ N (0, 1) be a sample from standard normal distribution, then for α ∈ (0, 1),

qZ,α = Θ
(√

log(1/α)
)
.

And for 0 ≤ δ < α < 1,
qZ,α − qZ,α+δ =

(
δα
√

log(1/α)
)

Proof. Let Z ∼ N (0, 1), then for all x > 2,

1

2x
exp

(
−x

2

2

)
≤ P(Z > x) ≤ 1

x
exp

(
−x

2

2

)
.

Then x = C
√
log(1/α) gives

αC/2

2C
√
log(1/α)

≤ P(Z > x) ≤ αC/2

C
√
log(1/α)

.

16



And hence
qZ,α = Θ

(√
log(1/α)

)
,

and in particular,

exp

(
−
q2Z,α

2

)
= Θ

(
α
√

log(1/α)
)
.

Now for 0 ≤ δ < α < 1,

(qZ,α − qZ,α+δ) exp

(
−
q2Z,α

2

)
≤
∫ qZ,α

qZ,α+δ

exp

(
− t

2

2

)
dt = δ

≤ (qZ,α − qZ,α+δ) exp

(
−
q2Z,α+δ

2

)
.

And hence

qZ,α − qZ,α+δ ≤ δ exp

(
−
q2Z,α+δ

2

)
= Θ

(
δ(α+ δ)

√
log(1/α)

)
,

and

qZ,α − qZ,α+δ ≥ δ exp

(
−
q2Z,α

2

)
= Θ

(
δα
√

log(1/(α+ δ))
)
.

Then from δ < α,
qZ,α − qZ,α+δ = Θ

(
δα
√
log(1/α)

)
.

Claim E.2. Let X,Y be random variables, and 0 ≤ δ < α < 1. Suppose there exists c > 0 satisfying

P (|X − Y | > c) ≤ δ. (6)

Then,
qX,α+δ − c ≤ qY,α ≤ qX,α−δ + c.

Proof. Note that qX,a−δ satisfies P(X > qX,α−δ) = α− δ. Then from (6),

P (Y > qX,α−δ + c) ≤ P (Y > qX,α−δ + c, |X − Y | ≤ c) + P (|X − Y | > c)

≤ P (X > qX,α−δ) + δ = α.

And hence
qY,α ≤ qX,α−δ + c.

Then changing the role of X and Y gives

qX,α+δ − c ≤ qY,α.

Lemma E.3. (i) Under Assumption 1, 2 and A2,

∥p̂h − p̃h∥∞ ≤
ρn ∥K∥∞

hd
.

(ii) Under Assumption 1, 2 and A2, with probability 1− δ,

cX 0,α+δ −O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
≤ cX ,α ≤ cX 0,α−δ +O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
.

(iii) Suppose Assumption 1, 2, A2 hold, and let α, δn ∈ (0, 1). Suppose nhdn → ∞, δ−1
n =

O

((
logn
nhd

n

) 4+d
4+2d

)
and nh−d

n ρ2nδ
−2
n → 0. Then with probability 1− α− 4δn,

∥p̂h − ph∥∞ < cX ,α ≤ cP,α−3δn .
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Proof. (i)

First, note that

p̂h(x)− p̃h(x) =
1

nhd

n∑
i=1

(
K

(
x−Xi

h

)
−K

(
x−X0

i

h

))
.

Then under Assumption A2,

∥p̂h − p̃h∥∞ ≤ 1

nhd

n∑
i=1

∥∥∥∥K ( · −Xi

h

)
−K

(
· −X0

i

h

)∥∥∥∥
∞

≤ 1

nhd

n∑
i=1

∥K∥∞ I
(
Xi ̸= X0

i

)
.

Then from Assumption 2,
∑n

i=1 I
(
Xi ̸= X0

i

)
≤ nρn, and hence

∥p̂h − p̃h∥∞ ≤
∥K∥∞ ρn

hd
.

(ii)

Let Xb, X 0
b be bootstrapped samples of X , X 0 with the same sampling with replacement process.

Let p̂bh, p̃
b
h be KDE of Xb and X 0

b , respectively. And, note that∣∣∥∥p̂h − p̂bh
∥∥
∞ −

∥∥p̃h − p̃bh
∥∥
∞

∣∣ ≤ ∥p̂h − p̃h∥∞ +
∥∥p̂bh − p̃bh

∥∥
∞ .

Let Lb be the number of elements where Xb and X 0
b differ, i.e., Lb =

∣∣Xb\X 0
b

∣∣ = ∣∣X 0
b \Xb

∣∣, then
Lb ∼ Binomial(n, ρn), and ∥∥p̂bh − p̃bh

∥∥
∞ ≤

∥K∥∞ Lb

nhd
.

And hence, ∣∣∥∥p̂h − p̂bh
∥∥
∞ −

∥∥p̃h − p̃bh
∥∥
∞

∣∣ ≤ ∥K∥∞ (nρn + Lb)

nhd
. (7)

Then by Hoeffding’s inequality, with probability 1− δ,

Lb ≤ nρn +

√
n log(1/δ)

2
.

by applying this to (7), with probability 1− δ,∣∣∥∥p̂h − p̂bh
∥∥
∞ −

∥∥p̃h − p̃bh
∥∥
∞

∣∣ ≤ O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
.

Hence applying Claim E.2 ‘implies that, with probability 1− δ,

cX 0,α+δ −O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
≤ cX ,α ≤ cX 0,α−δ +O

(
ρn
hd

+

√
ρn log(1/δ)

nh2d

)
.

(iii)

Let δ̃n := O

((
logn
nhd

n

) 4+d
4+2d

)
be from RHS of Proposition D.2, then for large enough n, δn ≥ δ̃n.

Note that Proposition D.2 implies that for all α ∈ (0, 1),

cP,α+δn ≤ cX0,α ≤ cP,α−δn . (8)

Now, nhdn → ∞ implies that
√
nhdn(p̃hn

−phn
) converges to a Gaussian process, and then Claim E.2

implies that cP,α = Θ
(√

log(1/α)
nhd

n

)
and
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cP,α − cP,α+δn = Θ

(
δnα

√
log(1/α)

nhdn

)
. (9)

Then under Assumption 2, since nh−d
n ρ2nδ

−2
n = o(1) and nρn ≥ 1 implies h−d

n ρnδ
−2
n = o(1), and

then

ρn
hdn

+

√
ρn log(1/δ)

nh2dn
= O

(
δnα

√
log(1/α)

nhdn

)
. (10)

Then (8), (9), (10) implies that

cP,α+3δn ≤ cP,α+2δn −O

(
δnα

√
log(1/α)

nhdn

)
≤ cX 0,α+δn −O

(
ρn
hdn

+

√
ρn log(1/δ)

nh2dn

)
, (11)

and

cX 0,α−δn +O

(
ρn
hdn

+

√
ρn log(1/δ)

nh2dn

)
≤ cP,α−2δn +O

(
δnα

√
log(1/α)

nhdn

)
≤ cP,α−3δn . (12)

Now, from the definition of cP,α+3δn , with probability 1− α− 3δn,

∥p̂h − ph∥∞ ≤ cP,α+3δn . (13)

And (ii) implies that, with probability 1− δn,

cX 0,α+δn −O

(
ρn
hdn

+

√
ρn log(1/δ)

nh2dn

)
≤ cX ,α ≤ cX 0,α−δn +O

(
ρn
hdn

+

√
ρn log(1/δ)

nh2dn

)
. (14)

Hence by combining (11), (12), (13), (14), with probability 1− α− 4δn,

∥p̂h − ph∥∞ ≤ cP,α+3δn

≤ cX 0,α+δn −O

(
ρn
hdn

+

√
ρn log(1/δ)

nh2dn

)
≤ cX ,α

≤ cX 0,α−δn +O

(
ρn
hdn

+

√
ρn log(1/δ)

nh2dn

)
≤ cP,α−3δn .

Corollary E.4. Suppose Assumption 1, 2, A2 hold, and let α ∈ (0, 1). Suppose δ−1
n =

O

((
logn
nhd

n

) 4+d
4+2d

)
and nh−d

n ρ2nδ
−2
n → 0. Then with probability 1− α− 4δn,

(i) Let δn ∈ (0, 1) and suppose nhdn → ∞, δ−1
n = O

((
logn
nhd

n

) 4+d
4+2d

)
and nh−d

n ρ2nδ
−2
n → 0.

Then with probability 1− α− 4δn,

p−1
hn

[2cP,α−3δn ,∞) ⊂ p̂−1
hn

[cX ,α,∞) ⊂ supp(Phn
).

(ii) Let δm ∈ (0, 1) and suppose mhdm → ∞, δ−1
m = O

((
logm
mhd

m

) 4+d
4+2d

)
and mh−d

m ρ2mδ
−2
m →

0. Then with probability 1− α− 4δm,

q−1
hm

[2cQ,α−3δm ,∞) ⊂ q̂−1
hm

[cY,α,∞) ⊂ supp(Qhm
).
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Proof. (i)

Lemma E.3 (iii) implies that with probability 1 − α − 4δn, ∥p̂h − ph∥ < cX ,α ≤ cP,α−3δn . This
implies

p−1
hn

[2cP,α−3δn ,∞) ⊂ p̂−1
hn

[cX ,α,∞) ⊂ supp(Phn
).

(ii)

This can be proven similarly to (i).

Claim E.5. For a nonnegative measure µ and sets A,B,C,D,
µ(A ∩B)− µ(C ∩D) ≤ µ(A\C) + µ(B\D).

Proof.

µ(A ∩B)− µ(C ∩D) ≤ µ((A ∩B)\(C ∩D)) = µ((A ∩B) ∩ (C∁ ∪D∁))

= µ((A ∩B) ∩ C∁) ∪ (A ∩B) ∩D∁))

≤ µ((A ∩B)\C) + µ(A ∩B)\D)

≤ µ(A\C) + µ(B\D).

From here, let Pn and Qm be the empirical measures on X and Y , respectively, i.e., Pn =
1
n

∑n
i=1 δXi

and Qm = 1
m

∑m
j=1 δYj

.

Lemma E.6. Suppose Assumption 1, 2 hold. Let A ⊂ Rd. Then with probability 1− δ,

|Pn − P | (A) ≤ ρn +

√
log(2/δ)

2n
,

and in particular,

Pn(A) ≤ P (A) + ρn +

√
log(2/δ)

n
.

Proof. Let P 0
n be the empirical measure on X 0, i.e., P 0

n = 1
n

∑n
i=1 δX0

i
. By using Hoeffding’s

inequality,
P
(∣∣(P 0

n − P
)
(A)
∣∣ ≥ t

)
≤ 2 exp

(
−2nt2

)
,

and hence with probability 1− δ, ∣∣P 0
n − P

∣∣ (A) ≤√ log(2/δ)

2n
.

And
∣∣Pn − P 0

n

∣∣ (A) is expanded as∣∣Pn − P 0
n

∣∣ (A) = 1

n

n∑
i=1

∣∣I(Xi ∈ A)− I(X0
i ∈ A)

∣∣ .
Under Assumption 2 ,

∑n
i=1 I

(
Xi ̸= X0

i

)
≤ nρn, and hence∣∣Pn − P 0

n

∣∣ (A) = 1

n

n∑
i=1

∣∣I(Xi ∈ A)− I(X0
i ∈ A)

∣∣
≤ 1

n

n∑
i=1

I
(
Xi ̸= X0

i

)
= ρn.

Therefore, with probability 1− δ,

|Pn − P | (A) ≤ ρn +

√
log(2/δ)

2n
.
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Claim E.7. Suppose Assumption 1, 2, A1, A2 hold, and let δn, δm ∈ (0, 1). Suppose nhdn →

∞, mhdm → ∞, δ−1
n = O

((
logn
nhd

n

) 4+d
4+2d

)
, δ−1

m = O

((
logm
mhd

m

) 4+d
4+2d

)
, nh−d

n ρ2nδ
−2
n → 0, and

nh−d
m ρ2mδ

−2
m → 0. Let

Bn,m :=
(
supp(P )\p−1

hn
[2cP ,∞)

)
∪ q−1

hm
(0, 2cQ) ∪ supp(Phn

)\supp(P ). (15)

(i) With probability 1− 2α− 4δn − 8δm,∣∣Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

∣∣
≤ C

(
Q(Bn,m) + ρm +

√
log(1/δ)

m

)
.

(ii) With probability 1− 2α− 8δm,∣∣Qm

(
q̂−1
hm

[cY ,∞)
)
−Qm (supp(Q))

∣∣ ≤ C

(
Q
(
q−1
hm

(0, 2cQ)
)
+ ρm +

√
log(1/δ)

m

)
.

(iii) With probability 1− 2α− 4δn − 9δm,∣∣Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Q (supp(P ))

∣∣
≤ C

(
Q(Bn,m) + ρm +

√
log(1/δ)

m

)
.

(iv) With probability 1− 2α− 9δm,∣∣Qm

(
q̂−1
hm

[cY ,∞)
)
− 1
∣∣ ≤ C

(
Q
(
q−1
hm

(0, 2cQ)
)
+ ρm +

√
log(1/δ)

m

)
.

(v) As n,m→ ∞, Bn,m → ∅. And in particular,

Q(Bn,m) → 0.

Proof. (i)

From Corollary E.4 (i) and (ii), with probability 1− 2α− 4(δn + δm),

Qm

(
p−1
hn

[2cP ,∞) ∩ q−1
hm

[2cQ,∞)
)
≤ Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)

≤ Qm (supp(Phn
) ∩ supp(Qhm

)) . (16)

Then from the first inequality of (16), combining with Claim E.5 gives

Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

≥ Qm

(
p−1
hn

[2cP ,∞) ∩ q−1
hm

[2cQ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

≥ −
(
Qm

(
supp(P )\p−1

hn
[2cP ,∞)

)
+Qm

(
supp(Q)\q−1

hm
[2cQ,∞)

))
. (17)

And from the second inequality of (16), combining with Claim E.5 gives

Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

≤ Qm (supp(Phn) ∩ supp(Qhm))−Qm (supp(P ) ∩ supp(Q))

≤ Qm (supp(Phn
)\supp(P )) +Qm (supp(Qhm

)\supp(Q)) . (18)

And hence combining (17) and (18) gives that, with probability 1− 2α− 4(δn + δm),∣∣Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

∣∣
≤ max

{
Qm

(
supp(P )\p−1

hn
[2cP ,∞)

)
+Qm

(
supp(Q)\q−1

hm
[2cQ,∞)

)
, Qm (supp(Phn

)\supp(P )) +Qm (supp(Qhm
)\supp(Q))} . (19)
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Now we further bound the upper bound of (19). From Lemma E.6, with probability 1− δm,

Qm

(
supp(P )\p−1

hn
[2cP ,∞)

)
≤ Q

(
supp(P )\p−1

hn
[2cP ,∞)

)
+ ρm +

√
log(2/δ)

2m
. (20)

And similarly, with probability 1− δm,

Qm

(
supp(Q)\q−1

hm
[2cQ,∞)

)
≤ Q

(
supp(Q)\q−1

hm
[2cQ,∞)

)
+ ρm +

√
log(2/δ)

2m

= Q
(
q−1
hm

(0,∞)
)
+ ρm +

√
log(2/δ)

2m
. (21)

And similarly, with probability 1− δm,

Qm (supp(Phn
)\supp(P )) ≤ Q (supp(Phn

)\supp(P )) + ρm +

√
log(2/δ)

2m
. (22)

And similarly, with probability 1− δm,

Qm (supp(Qhm
)\supp(Q)) ≤ Q (supp(Qhm

)\supp(Q)) + ρm +

√
log(2/δ)

2m

= ρm +

√
log(2/δ)

2m
. (23)

Hence by applying (20), (21), (22), (23) to (19), with probability 1− 2α− 4δn − 8δm,∣∣Qm

(
p̂−1
hn

[cX ,∞) ∩ q̂−1
hm

[cY ,∞)
)
−Qm (supp(P ) ∩ supp(Q))

∣∣
≤ C

(
Q
((
supp(P )\p−1

hn
[2cP ,∞)

)
∪ q−1

hm
(0, 2cQ) ∪ supp(Phm

)\supp(P )
)

+ρm +

√
log(1/δ)

m

)

= C

(
Q(Bn,m) + ρm +

√
log(1/δ)

m

)
,

where Bn,m is from (15).

(ii)

This can be done similarly to (i).

(iii)

Lemma E.6 gives that with probability 1− δm,

|Qm (supp(P ) ∩ supp(Q))−Q (supp(P ))| ≤ ρm +

√
log(2/δ)

2m
.

Hence combining this with (i) gives the desired result.

(iv)

Lemma E.6 gives that with probability 1− δm,

|Qm (supp(Q))− 1| ≤ ρm +

√
log(2/δ)

2m
.

Hence combining this with (ii) gives the desired result.

(v)

Note that Lemma D.3 implies that for all x ∈ supp(P ), lim infn→∞ phn(x) > 0, so phn(x) > 2cP
for large enough n. And hence as n→ ∞,

supp(P )\p−1
hn

[2cP ,∞) → ∅. (24)
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And similar argument holds for supp(Q)\q−1
hm

[2cQ,∞), so as m→ ∞,

supp(Q)\q−1
hm

[2cQ,∞) → ∅. (25)

Also, sinceK has compact support, for any x /∈ supp(P ), x /∈ supp(Phn
) once hn < d(x, supp(P )).

Hence as n→ ∞,
supp(Phn

)\supp(P ) → ∅. (26)

And similarly, as m→ ∞,
supp(Qhm)\supp(Q) → ∅. (27)

Hence by applying (24), (25), (26), (27) to the definition of Bn,m in (15) gives that as n,m→ ∞,

Bn,m → ∅.

And in particular,
Q(Bn,m) → 0.

Below we state a more formal version of Proposition 4.1.

Proposition E.8. Suppose Assumption 1,2,A1,A2 hold. Suppose α → 0, δn → 0, δ−1
n =

O

((
logn
nhd

n

) 4+d
4+2d

)
, hn → 0, nhdn → ∞, and nh−d

n ρ2nδ
−2
n → 0, and similar relations hold for

hm, ρm. Then there exists some constant C > 0 not depending on anything else such that

|TopPX (Y)− precisionP (Y)| ≤ C

(
Q(Bn,m) + ρm +

√
log(1/δ)

m

)
,

∣∣TopRY(X )− recallQ(X )
∣∣ ≤ C

(
P (An,m) + ρn +

√
log(1/δ)

n

)
,

where

An,m :=
(
supp(Q)\q−1

hm
[2cQ,∞)

)
∪ p−1

hn
(0, 2cP ) ∪ supp(Qhm

)\supp(Q),

Bn,m :=
(
supp(P )\p−1

hn
[2cP ,∞)

)
∪ q−1

hm
(0, 2cQ) ∪ supp(Phn)\supp(P ).

And as n,m→ ∞, P (An,m) → 0 and Q(Bn,m) → 0 hold.

Proof of Proposition E.8. Now this is an application of Claim E.7 (i) (ii) (v) to the definitions of
precisionP (Y) and recallQ(X ) in (1) and (2) and the definitions of TopPX (Y) and TopRY(X ) in (3)
and (4).

Similarly, we state a more formal version of Theorem 4.2.

Theorem E.9. Suppose Assumption 1,2,A1,A2 hold. Suppose α → 0, δn → 0, δ−1
n =

O

((
logn
nhd

n

) 4+d
4+2d

)
, hn → 0, nhdn → ∞, and nh−d

n ρ2nδ
−2
n → 0, and similar relations hold for

hm, ρm. Then there exists some constant C > 0 not depending on anything else such that

|TopPX (Y)− precisionP (Q)| ≤ C

(
Q(Bn,m) + ρm +

√
log(1/δ)

m

)
,

∣∣TopRY(X )− recallQ(P )
∣∣ ≤ C

(
P (An,m) + ρn +

√
log(1/δ)

n

)
,

where An,mand Bn,m are the same as in Proposition E.8. Again as n,m→ ∞, P (An,m) → 0 and
Q(Bn,m) → 0 hold.
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Proof of Theorem E.9. Now this is an application of Claim E.7 (iii) (iv) (v) to the definitions of
precisionP (Q) and recallQ(P ) and the definitions of TopPX (Y) and TopRY(X ) in (3) and (4).

Proof of Lemma 4.3. Recall that Bn,m is defined in (15) as

Bn,m =
(
supp(P )\p−1

hn
[2cP ,∞)

)
∪ q−1

hm
(0, 2cQ) ∪ supp(Phn

)\supp(P ),

and hence Q(Bn,m) can be upper bounded as

Q(Bn,m) ≤ Q
(
supp(P )\p−1

hn
[2cP ,∞)

)
+Q

(
q−1
hm

(0, 2cQ)
)
+Q (supp(Phn

)\supp(P )) . (28)

For the first term of RHS of (28), suppose supp(K) ⊂ BRd(0, 1) for convenience, and let
A−hn

:=
{
x ∈ supp(P ) : d(x,Rd\supp(P )) ≥ hn

}
. Then from Assumption A3, for all x ∈ A−hn

,
phn(x) ≥ pmin holds. Hence for large enough N such that for n ≥ N , cP < pmin, then
phn(x) ≥ pmin for all x ∈ A−hn , and hence

Q
(
supp(P )\p−1

hn
[2cP ,∞)

)
≤ Q (supp(P )\A−hn) . (29)

Also, supp(P) being bounded implies that all the coefficients a0, . . . , ad−1 in Proposition D.5 for
supp(P ) are in fact finite. Then q ≤ qmax from Assumption A3 and Proposition D.5 implies

Q (supp(P )\A−hn
) = O(hn). (30)

And hence combining (29) and (30) gives that

Q
(
supp(P )\p−1

hn
[2cP ,∞)

)
= O(hn). (31)

For the second term of RHS of (28), with a similar argument,

Q
(
q−1
hm

(0, 2cQ)
)
= O(hm). (32)

Finally, for the third term of RHS of (28), Proposition D.5 implies

Q (supp(Phn
)\supp(P )) = O(hn). (33)

Hence applying (31), (32), (33) to (28) gives that

Q(Bn,m) = O(hn + hm).

F Related Work

Improved Precision & Recall (P&R). Existing metrics such as IS and FID assess the performance of
generative models with a single score while showing usefulness in determining performance rankings
between models and are still widely used. These evaluation metrics have problems that they cannot
provide detailed interpretations of the evaluation in terms of fidelity and diversity. Sajjadi et al. [12]
tried to solve this problem by introducing the original Precision and Recall, which however has a
limitation as it is inaccurate due to the simultaneous approximation of real support and fake support
through “k-means clustering”. For example, if we evaluate the fake images having high fidelity
and large value of k, many fake features can be classified in a small cluster with no real features,
resulting in a low fidelity score (precisionP := Q(supp(P ))). Kynkäänniemi et al. [13] focuses
on the limitation from the support estimation and presents an P&R that allows us to more accurately
assess fidelity and diversity by approximating real support and fake support separately:

precision(X ,Y) :=
1

M

M∑
i

f(Yi,X ), recall(X ,Y) :=
1

N

N∑
j

f(Xj ,Y),

where f(Yi,X ) =

{
1, if Yi ∈ supp(P ),

0, otherwise.

Here, supp(P ) is defined as the union of spheres centered on each real feature Xi and whose radius
is the distance between kth nearest real features of Xi
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Density & Coverage (D&C). Naeem et al. [14] has reported that P&R cannot stably provide accurate
fidelity and diversity when real or fake features are present through experiment. This limitation
of P&R is that it has a problem with approximating overestimated supports by outliers due to the
use of "k-nearest neighborhood" algorithm. For a metric that is robust to outlying features, Naeem
et al. [14] proposes a new evaluation metric that only relies on the real support, based on the fact
that a generative model often generates artifacts which possibly results in outlying features in the
embedding space:

density(X ,Y) :=
1

M

M∑
j

N∑
i

1Yj∈ f(Xi), coverage(X ,Y) :=
1

N

N∑
i

1∃j s.t. Yj∈ f(Xi),

where f(Xi) = B(Xi, NNDk(Xi))

In the equation, NNDk(Xi) means the kth-nearest neighborhood distance of Xi and
B(Xi, NNDk(Xi)) denotes the hyper-sphere centered at Xi with radius NNDk(Xi). However,
D&C is only a partial solution because it still gives an inaccurate evaluation when a real outlying
feature exists. Unlike coverage, density is not upper-bounded which makes it unclear exactly which
ideal score a generative model should achieve.

Geometric Evaluation of Data Representations (GCA). Poklukar et al. [27] proposes a metric
called GCM that assesses the fidelity and diversity of fake images. GCM uses the geometric and
topological properties of connected components formed by vertex V (feature) and edge E (connection).
Briefly, when the pairwise distance between vertices is less than a certain threshold ϵ, a connected
component is formed by connecting two vertices with an edge. This set of connected components can
be thought of as a graph G = (V, E), and each connected component separated from each other in G
is defined as a subgraph Gi (i.e., G = ∪iGi). GCA uses the consistency c(Gi) and the quality q(Gi) to
select the important subgraph Gi that is formed on both real vertices and fake vertices (V = X ∪ Y).
c(Gi) evaluates the ratio of the number of real vertices and fake vertices and q(Gi) computes the ratio
of the number of edges connecting real vertices and fake vertices to the total number of edges in
Gi. Given the consistency threshold ηc and quality threshold ηq, the set of important subgraphs is
defined as S(ηc, ηq) = ∪q(Gi)>ηq, c(Gi)>ηc

Gi. Based on this, GCA precision and recall are defined as
follows:

GCA precision =
|SY |V
|GY |V

, GCA recall =
|SX |V
|GX |V

,

In above, SY and GY represent a subset (V = Y, E) of each graph S and G, respectively. One of the
drawbacks is that the new hyper-parameters ϵ, ηc, and ηq need to be set arbitrarily according to the
image dataset in order to evaluate fake images well. In addition, even if we use the hyper-parameters
that seem most appropriate, it is difficult to verify that the actual evaluation results are correct because
they do not approximate the underlying feature distribution.

Manifold Topology Divergence (MTD). Barannikov et al. [28] proposes a new metric that uses the
life-length of the k-dimensional homology of connected components between real features and fake
features formed through Vietoris-Rips filtration [41]. MTD is simply defined as the sum of the life-
length of homologies and is characterized by an evaluation trend consistent with the FID. Specifically,
MTD constructs the graph G by connecting edges between features with a distance smaller than
the threshold ϵ. Then the birth and death of the k-dimensional homologies in G are recorded by
adjusting the threshold ϵ from 0 to ∞. The life-length li(h) is obtained through deathi − birthi of
any k-dimensional homology h, and let life-length set of all homologies as L(h). MTD repeats the
process of obtaining L(h) on randomly sampled subsets X ′ ∈ X and Y ′ ∈ Y at each iteration, and
defined as the following:

MTD(X ,Y) =
1

n

n∑
i

Li(h), where Li(h) is the life-length set defined at ith iteration.

However, MTD has a limitation of only considering a fixed dimensional homology for evaluation. In
addition, MTD lacks interpretability as it evaluates the model with a single assessment score.
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G Philosophy of our metric & Practical Scenarios

G.1 Philosophy of our metric

All evaluation metrics have different resolutions and properties. The philosophy of our metric is to
propose a reliable evaluation metric based on statistically and topologically certain things. In a real
situation, the data often contain outliers or noise, and these data points come from a variety of sources
(e.g. human error, feature embedding network). These errors may play as outliers, which leads to
an overestimation of the data distribution, which in turn leads to a false impression of improvement
when developing generative models. As discussed in Section 2, P&R and its variants have different
ways to estimate the supports, which overlook the possible presence and effect of noise. Naeem
et al. [14] revealed that previous support estimation approaches may inaccurately estimate the true
support under noisy conditions, and partially solved this problem by proposing to only use the real
support. However, this change goes beyond the natural definition of precision and recall, and results
in losing some beneficial properties like boundedness. Moreover, this is still a temporary solution
since real data can also contain outliers. We propose a solution to the existing problem by minimizing
the effects of noise, using topologically significant data points and retaining the natural definition of
precision and recall.

G.2 Practical Scenarios

From this perspective, we present two examples of realistic situations where outliers exist in the
data and filtering out them can have a significant impact on proper model analysis and evaluation.
With real data, there are many cases where outliers are introduced into the data due to human error
[17, 18]. Taking the simplest MNIST as an example, suppose our task of interest is to generate 4.
Since image number 7 is included in data set number 4 due to incorrect labeling (see Figure 1 of
[17]), the support of the real data in the feature space can be overestimated by such outliers, leading
to an unfair evaluation of generative models (as in Section 5.1.2 and 5.2.2); That is, the sample
generated with weird noise may be in the overestimated support, and existing metrics without taking
into account the reliability of the support could not penalize this, giving a good score to a poorly
performing generator.

A similar but different example is when noise or distortions in the captured data (unfortunately)
behave adversely on the feature embedding network used by the current evaluation metrics (as in
Section 5.1.2 and 5.2.2); e.g., visually it is the number 7, but it is mismapped near the feature space
where there are usually 4 and becomes an outlier. Then the same problem as above may occur. Note
that in these simple cases, where the definition of outliers is obvious with enough data, one could
easily examine the data and exclude outliers a priori to train a generative model. In the case of more
complicated problems such as the medical field [18], however, it is often not clear how outliers are to
be defined. Moreover, because data are often scarce, even outliers are very useful and valuable in
practice for training models and extracting features, making it difficult to filter outliers in advance
and decide not to use them.

On the other hand, we also provide an example where it is very important to filter out outliers in
the generator sample and then evaluate them. To evaluate the generator, samples are generated by
sampling from the preset latent space (typically Gaussian). Even after training is complete and the
generators’ outputs are generally fine, there’s a latent area where generators aren’t fully trained.
Note that latent space sampling may contain samples from regions that the generator does not cover
well during training ("unfortunate outlier"). When unfortunate outliers are included, the existing
evaluation metrics may underestimate or overestimate the generator’s performance than its general
performance. (To get around this, it is necessary to try this evaluation several times to statistically
stabilize it, but this requires a lot of computation and becomes impractical, especially when the latent
space dimension is high.)

Especially considering the evaluation scenario in the middle of training, the above situation is likely
to occur due to frequent evaluation, which can interrupt training or lead to wrong conclusions. On
the other hand, we can expect that our metric will be more robust against the above problem since it
pays more attention to the core (samples that form topologically meaningful structures) generation
performance of the model.
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G.3 Details of the noise framework in the experiments

We have assessed the robustness of TopP&R against two types of non-IID noise perturbation through
toy data experiments (in Section 5.1.3) and real data experiments (in Section 5.2.2). The scatter noise
we employed consists of randomly extracted noise from a uniform distribution. This noise, even when
extensively added to our data, does not form a data structure with any significant signal (topological
feature). In other words, from the perspective of TopP&R, the formation of topologically significant
data structures implies that data samples should possess meaningful probability values in the feature
space. However, noise following a uniform distribution across all feature dimensions holds very
small probability values, and thus, it does not constitute a topologically significant data structure.
Consequently, such noise is filtered out by the bootstrap bands cX or cY that we approximate (see
Section 2).

The alternate noise we utilized in our experiments, swap noise, possesses distinct characteristics
from scatter noise. Initially, given the real and fake data that constitute important data structures, we
introduce swap noise by randomly selecting real and fake samples and exchanging their positions. In
this process, the swapped fake samples follow the distribution of real data, and conversely, the real
samples adhere to the distribution of fake data. This implies the addition of noise that follows the
actual data distribution, thereby generating significant data structures. When the number of samples
undergoing such positional swaps remains small, meaningful probability values cannot be established
within the distribution. Statistically, an extremely small number of samples cannot form a probability
distribution itself. As a result, our metric operates robustly in the presence of noise. However, as the
count of these samples increases and statistically significant data structures emerge, TopP&R estimates
the precise support of such noise as part of their distribution. By examining Figure 4 and 5, as well as
Table A12, it becomes evident that conventional metrics struggle with accurate support estimation
due to vulnerability to noise. This limitation results in an inability to appropriately evaluate aspects
involving minority sets or data forming long distributions.

G.4 Limitations

Since the KDE filtration requires extensive computations in high dimensions, a random projection
that preserves high-dimensional distance and topological properties is inevitable. Based on the
topological structure of the features present in the embedded low dimensional space, we have shown
that TopP&R theoretically and experimentally has several good properties such as robustness to the
noise from various sources and sensitivity to small changes in distribution. However, matching the
distortion from the random projection to the noise level allowed by the confidence band is practically

infeasible: The bootstrap confidence band is of order
(
nhdn

)− 1
2 , and hence for the distortion from

the random projection to match this confidence band, the embedded dimension d should be of
order Ω

(
nhdn log n

)
from Remark (B.2). However, computing the KDE filtration in dimension

Ω
(
nhdn log n

)
is practically infeasible. Hence in practice, the topological distortion from the random

projection is not guaranteed to be filtered out by the confidence band, and there is a possibility of
obtaining a less accurate evaluation score compared to calculations in the original dimensions.

Exploring the avenue of localizing uncertainty at individual data points separately presents an
intriguing direction of research. Such an approach could potentially be more sample-efficient and
disregard less data points. However, considering our emphasis on preserving topological signals,
achieving localized uncertainty estimation in this manner is challenging within the current state of
the art. For instance, localizing uncertainty in the kernel density estimate p̂ is feasible, as functional
variability is inherently local. To control uncertainty at a specific point x, we primarily need to
analyze the function value p̂(x) at that point. In contrast, localizing uncertainty for homological
features situated at point x requires the analysis of all points connected by the homological feature.
Consequently, even if our intention is to confine uncertainty to a local point, it demands estimating
the uncertainty at the global structural level. This makes localizing the uncertaintly for topological
features difficult given the tools in topology and statistics we currently have.
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H Experimental Details

H.1 Implementation details of embedding

We summarize the detailed information of our embedding networks implemented for the experiments.
In Figure 2, 3, 4, A10, A4, and 5, P&R and D&C are computed from the features of ImageNet pre-
trained VGG16 (fc2 layer), and TopP&R is computed from features placed in R32 with additional
random linear projection. In the experiment in Figure A10, the SwAV embedder is additionally
considered. We implement ImageNet pre-trained InceptionV3 (fc layer), VGG16 (fc2 layer), and
SwAV as embedding networks with random linear projection to 32 dimensional feature space to
compare the ranking of GANs in Table 1.

H.2 Implementation details of confidence band estimator

Algorithm 1 Confidence Band Estimator

# KDE: kernel density estimator
# h: kernel bandwidth parameter
# k: number of repeats
# θ̂: set of difference

Given X = {X1, X2, . . . , Xn}
p̂h = KDE(X )
for iteration = 1, 2, . . . , k do

# Define X ∗ with bootstrap sampling
X ∗= random sample n times with repeat from X
# p̂∗h replaces population density
p̂∗h = KDE(X ∗)

# compute θ̂ with bootstrap samples
Append θ̂ with

√
n||p̂h − p̂∗h||∞

end for

# grid search for the confidence band
for q ∈ [min(θ̂),max(θ̂)] do

count = 0
for element ∈ θ̂ do

if element > q then
count = count + 1

end if
end for
# define the band threshold
if count/k ≈ α then

qα = q
end if

end for
# define estimated confidence band
cα = qα/

√
n

H.3 Choice of confidence level

For the confidence level α, we would like to point out that α is not the usual hyperparameter to be
tuned: It has a statistical interpretation of the probability or the level of confidence to allow error,
noise, etc. The most popular choices are α = 0.1, 0.05, 0.01, leading to 90%, 95%, 99% confidence.
We used α = 0.1 throughout our experiments.

H.4 Estimation of Bandwidth parameter

As we discussed in Section 2, since TopP&R estimates the manifold through KDE with kernel
bandwidth parameter h, we need to approximate it. The estimation techniques for h are as follows:
(a) a method of selecting h that maximizes the survival time (S(h)) or the number of significant
homological features (N(h)) based on information obtained about persistent homology using the
filtration method, (b) a method using the median of the k-nearest neighboring distances between
features obtained by the balloon estimator (for more details, please refer to [42], [43], and [44]). Note
that, the bandwidths h for all the experiments in this paper are estimated via Balloon Bandwidth
Estimator.

For (a), following the notation in Section A, let the ith homological feature of persistent diagram be
(bi, di), then we define its life length as li(h) = di − bi at kernel bandwidth h. With confidence band
cα(h), we select h that maximizes one of the following two quantities:

N(h) = #{i : li(h) > cα(h)}, S(h) =
∑
i

[li(h)− cα(h)]+.

Note that, we denote the confidence band cα as cα(h) considering the kernel bandwidth parameter h
of KDE in Algorithm 1.

For (b), the balloon bandwidth estimator is defined as below:
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Algorithm 2 Balloon Bandwidth Estimator

# h: kernel bandwidth
# KND: kth nearest distance
# idx: index
# sort: sort in ascending order

Given X = {X1, X2, . . . , Xn}
for idx = 1, 2, . . . , n do

# Compute L2 distance between Xidx and X

d(Xidx,X ) = ||Xidx −X||22,
i.e., {d(Xidx, X1), d(Xidx, X2), . . .}
# Calculate kth nearest neighbor distance
KNDidx = sort(d(Xidx,X ))[k]

end for
Given KND = {KND1,KND2, . . . ,KNDn}
# Define the estimated bandwidth ĥ
ĥ = median(KND)

H.5 Computational complexity

TopP&R is computed using the confidence band cα and KDE bandwidth h. The computational cost of
the confidence band calculation (Algorithm 1) and the balloon bandwidth calculation (Algorithm 2)
are O(k ∗ n2 ∗ d) and O(n2 ∗ d), respectively, where n represents the data size, d denotes the data
dimension, and k stands for the number of repeats (k = 10 in our implementation). The resulting
computational cost of TopP&R is O(k ∗ n2 ∗ d). In our experiments based on real data, calculating
TopP&R once using real and fake features, each consisting of 10k samples in a 4096-dimensional
space, takes approximately 3-4 minutes. This computation speed is notably comparable to that of
P&R and D&C, utilizing CPU-based computations. Note that, P&R and D&C that we primarily compare
in our experiments are algorithms based on k-nearest neighborhood for estimating data distribution,
and due to the computation of pairwise distances, the computational cost of these algorithm is
approximately O(n2 ∗ d).

Table A1: Wall clock, CPU time and Time complexity for evaluation metrics for 10k real and 10k
fake features in 4096 dimension. For TopP&R, r is random projection dimension (r ≪ d). The
results are measured by the time module in python.

Time PR DC TopPR (Ours)
Wall Clock 1min 43s 1min 40s 1min 58s
CPU time 2min 44s 2min 34s 2min 21s

Time complexity O(n2 ∗ d) O(n2 ∗ d) O(k ∗ n2 ∗ r)

H.6 Mean hamming distance

Hamming distance (HD) [45] counts the number of items with different ranks between A and B,
then measures how much proportion differs in the overall order, i.e. for Ai ∈ A and Bi ∈ B,
HD(A,B) :=

∑n
i=1 1{k : Ai ̸= Bi} where k is the number of differently ordered elements. The

mean HD is calculated as follows to measure the average distances of three ordered lists: Given three
ordered lists A,B, and C, H̄D = (HD(A,B) +HD(A,C) +HD(B,C))/3.

H.7 Explicit values of bandwidth parameter

Since our metric adaptively reacts to the given samples of P and Q, we have two h’s per experiment.
For example, in the translation experiment (Figure 2), there are 13 steps in total, and each time we
estimate h for P and Q, resulting in a total of 26 h’s. To show them all at a glance, we have listed all
values in one place. We will also provide the code that can reproduce the results in our experiments
upon acceptance.

Table A2: Bandwidth parameters h of distribution shift in Section 5.1.1.
µ ← shift shift→

real h 8.79 8.60 8.58 8.67 8.63 8.71 8.66 8.73 8.54 8.63 8.54 8.75 8.78
fake h 8.46 8.86 8.60 8.49 8.44 8.80 8.55 8.63 8.74 8.61 8.58 8.83 8.60
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Table A3: Bandwidth parameters h of sequential mode drop in Section 5.1.2.
Steps 0 1 2 3 4 5 6

real h 10.5 10.6 10.5 10.7 10.5 10.8 10.6
fake h 11.0 10.2 10.0 9.82 9.57 9.29 8.78

Table A4: Bandwidth parameters h of simultaneous mode drop in Section 5.1.2.
Steps 0 1 2 3 4 5 6 7 8 9 10

real h 10.5 10.6 10.6 10.8 10.3 10.6 10.7 10.6 10.4 10.4 10.6
fake h 10.6 10.5 10.7 10.3 10.4 10.0 9.88 9.31 9.19 9.07 8.79

Table A5: Bandwidth parameters h of non-IID noise perturbation in Section 5.1.3.
Steps 0 1 2 3 4 5 6 7 8 9

Scatter real h 8.76 8.71 8.78 8.59 8.85 8.71 8.61 8.97 9.00 8.95
fake h 8.61 8.76 8.63 8.93 8.46 8.72 8.67 8.68 9.07 8.88

Swap real h 8.65 8.44 8.76 8.62 8.55 8.75 8.96 8.59 8.53 8.74
fake h 8.52 8.55 8.68 8.97 8.87 8.94 8.84 9.05 8.94 8.90

Table A6: Bandwidth parameters h of FFHQ truncation trick in Section I.11.
Ψ Ψ ↓ Ψ ↑

real h 6.26 6.41 6.31 6.23 6.06 6.24 6.20 6.61 6.39 6.28 6.26
fake h 1.04 1.67 2.36 2.90 3.41 3.93 4.31 4.90 5.51 5.60 6.46

Table A7: Bandwidth parameters h of CIFAR10 sequential mode drop in Section 5.2.1.
Steps 0 1 2 3 4 5 6 7 8 9

real h 7.09 6.95 6.96 6.92 7.02 6.81 6.86 6.88 6.78 6.67
fake h 6.87 6.75 6.88 6.64 6.40 6.64 6.41 6.44 6.62 6.04

Table A8: Bandwidth parameters h of CIFAR10 simultaneous mode drop in Section 5.2.1.
Steps 0 1 2 3 4 5 6 7 8 9 10

real h 6.78 6.95 7.05 6.62 6.85 6.51 6.94 6.91 6.80 7.00 6.78
fake h 6.75 6.69 7.14 6.68 6.75 6.84 6.61 6.68 6.50 6.32 6.17

Table A9: Bandwidth parameters h of FFHQ non-IID noise perturbation in Section 5.2.2.
Steps 0 1 2 3 4 5 6 7 8 9

Scatter real h 7.24 7.03 7.01 7.45 7.38 7.66 7.46 7.36 7.79 7.66
fake h 5.41 5.77 5.67 5.49 5.71 5.65 5.82 6.08 5.81 6.02

Swap real h 7.25 7.20 6.99 6.67 7.07 6.96 7.03 6.94 6.83 6.86
fake h 6.87 6.63 6.60 6.91 6.74 6.77 6.92 6.83 6.83 6.82

I Additional Experiments

I.1 Survivability of minority sets in the long-tailed distribution

An important point to check in our proposed metric is the possibility that a small part of the total data
(i.e., minority sets), but containing important information, can be ignored by the confidence band.
We emphasize that since our metric takes topological features into account, even minority sets are not
filtered conditioned that they have topologically significant structures. We assume that signals or data
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Table A10: Bandwidth parameters h of FFHQ noise addition in Section 5.2.3.
Noise intensity 0 1 2 3

Gaussian noise real h 6.52 6.27 6.41 6.49
fake h 6.32 6.15 4.06 2.64

Gaussian blur real h 6.08 6.26 6.26 6.47
fake h 6.12 5.13 4.60 3.40

Black rectangle real h 6.06 6.28 6.49 6.44
fake h 6.36 6.66 6.31 5.93

Table A11: Bandwidth parameters h of GAN ranking in Section 5.2.4.
StyleGAN2 ReACGAN BigGAN PDGAN ACGAN WGAN-GP

InceptionV3 real h 2.605 2.629 2.581 2.587 2.615 2.606
fake h 2.226 2.494 2.226 2.639 2.573 2.063

VGG16 real h 7.732 8.021 8.175 7.792 7.845 8.036
fake h 7.880 6.839 7.178 6.174 6.839 3.615

SwAV real h 0.774 0.765 0.785 0.780 0.780 0.822
fake h 0.740 0.667 0.6746 0.619 0.627 0.502

that are minority sets have topological structures, but outliers exist far apart and lack a topological
structure in general.

To test this, we experimented with CIFAR10 [46], which has 5,000 samples per class. We simulate a
dataset with the majority set of six classes (2,000 samples per class, 12,000 total) and the minority
set of four classes (500 samples per class, 2,000 total), and an ideal generator that exactly mimics
the full data distribution. As shown in the Table A12, the samples in the minority set remained after
the filtering process, meaning that the samples were sufficient to form a significant structure. Both
D&C and TopP&R successfully evaluate the distribution for the ideal generator. To check whether our
metric reacts to the change in the distribution even with this harsh setting, we also carried out the
mode decay experiment. We dropped the samples of the minority set from 500 to 100 per class,
which can be interpreted as an 11.3% decrease in diversity relative to the full distribution (Given
(a) ratio of the number of samples between majority and minority sets = 12, 000 : 2, 000 = 6 : 1
and (b) 80% decrease in samples per minority class, the true decay in the diversity is calculated as

1
(1+6) × 0.8 = 11.3% with respect to the enitre samples). Here, recall and coverage react somewhat
less sensitively with their reduced diversities as 3 p.p. and 2 p.p., respectively, while TopR reacted
most similarly (9 p.p.) to the ideal value. In summary, TopP&R shows much more sensitiveness to the
changes in data distribution like mode decay. Thus, once the minority set has survived the filtering
process, our metric is likely to be much more responsive than existing methods.
Table A12: Proportion of surviving minority samples in the long-tailed distribution after the noise
exclusion with confidence band cX . The p.p. indicates the percentage points.

Before mode drop After mode drop

Proportion of survival (before / after filtering) 100%→ 59% 100%→ 57%

TopP&R (Fidelity / Diversity) 0.99 / 0.96 0.99 / 0.87 (9 p.p ↓)
P&R (Fidelity / Diversity) 0.73 / 0.73 0.74 / 0.70 (3 p.p ↓)
D&C (Fidelity / Diversity) 0.99 / 0.96 1.02 / 0.94 (2 p.p ↓)

I.2 Experiment on Non-IID perturbation with outlier removal methods

We compared the performance of metrics on a denoised dataset using Local Outlier Factor (LOF) [47]
and Isolation Forest (IF) [48]. The experimental setup is identical to that of Figure 4 (see Section G.3
for details of our noise framework). In this experiment, we applied the outlier removal method before
calculating P&R and D&C. From the result, P&R and D&C still do not provide a stable evaluation, while
TopP&R shows the most consistent evaluation for the two types of noise without changing its trend.
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Figure A2: Behaviors of evaluation metrics on Non-IID perturbations. The dotted line in the graph
shows the performance of metrics after the removal of outliers using the IF. We use "Clean" as a
prefix to denote the evaluation after IF.
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Figure A3: Behaviors of evaluation metrics on Non-IID perturbations. The dotted line in the graph
shows the performance of metrics after the removal of outliers using the LOF. We use "Clean" as a
prefix to denote the evaluation after LOF.

Since TopP&R can discriminate topologically significant signals by estimating the confidence band
(using KDE filtration function), there is no need to arbitrarily set cutoff thresholds for each dataset.
On the other hand, in order to distinguish inliers from specific datasets using LOF and IF methods,
a threshold specific to the dataset must be arbitrarily set each time, so there is a clear constraint
that different results are expected each time for each parameter setting (which is set by the user).
Through this, it is confirmed that our evaluation metric guarantees the most consistent scoring based
on the topologically significant signals. Since the removal of outliers in the TopP&R is part of the
support estimation process, it is not appropriate to replace our unified process with the LOF or IF. In
detail, TopP&R removes outliers through a clear threshold called confidence band which is defined by
KDE, and this process simultaneously defines KDE’s super-level set as the estimated support. If this
process is separated, the topological properties and interpretations of estimated support also disappear.
Therefore, it is not practical to remove outliers by other methods when calculating TopP&R.

I.3 Sequential and simultaneous mode dropping with real dataset

Concentration on the first mode
(a) Sequential mode dropping (b) Simultaneous mode dropping
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Figure A4: Comparison of evaluation metrics under sequential and simultaneous mode dropping
scenario with Baby ImageNet[15].

I.4 Sensitiveness to noise intensity

The purpose of this experiment (Figure A5) is to closely observe the noise sensitivity of metrics in
Figure 6. As the noise intensity is incrementally increased until all the metrics converge to 0, the most
ideal outcome for the metrics is to exhibit a linear trend to capture these changes most effectively.
From the results, it is able to observe that both TopP&R and P&R exhibit the most linear trend in their
evaluation outcomes, while D&C demonstrates that least capability to reflect differences based on
noise intensity.

32



(a) Gaussian noise

Noise intensity

1.0

0.0

0.5

0.3

0.7

(b) Gaussian blur (c) Salt and pepper (d) Black rectangle

Noise intensity Noise intensity Noise intensity
0.0 1.00.2 0.4 0.6 0.8 0.0 1.00.2 0.4 0.6 0.8 0.0 1.00.2 0.4 0.6 0.8 0.0 1.00.2 0.4 0.6 0.8

Figure A5: Verification of whether TopP&R can make an accurate quantitative assessment of noise
image features. Gaussian noise, gaussian blur, salt and pepper, and black rectangle noise are added to
the FFHQ images and emedded with T4096. The noise intensity is linearly increased until all metrics
converge to zero.

I.5 Evaluating state-of-the-art generative models on the ImageNet

We conducted our evaluation using the ImageNet dataset, which covers a wide range of classes.
We employed commonly accepted metrics in the community, including FID and KID, to rank the
considered generative models effectively. The purpose of this experiment is not only to establish the
applicability of our ranking metric for generative models, akin to existing single-score metrics, but
also to emphasize its interpretability. In Table A13, we calculated the HD between P&R variants and
the more reliable KID metric. This comparison aimed to assess the alignment of our metric with
established single-score metrics. The results consistenly showed that TopP&R’s evaluation results
are the most consistent with single-score metrics across various embedding networks. Conversely,
P&R exhibited an inconsistent evaluation trend compared to KID, which struggled to effectively
differentiate between ReACGAN and BigGAN. Note that, Kang et al. [15] previously demonstrated
that BigGAN performs worse than ReACGAN. However, surprisingly, P&R consistently rated
BigGAN as better than ReACGAN across all embedding networks. These findings imply that
the P&R’s unreliable support estimation under noisy conditions might hinder its ability to accurately
distinguish between generative models.

Table A13: Ranking results based on FID, KID, MTD, TopP&R, P&R and D&C for ImageNet (128 ×
128) trained generative models. SwAV, VGG16, and InceptionV3 represent the embedders, and the
numbers in parentheses indicate the ranks assigned by each metric to the evaluated models. The HD
is the hamming distance between KID and metrics.

Model ADM StyleGAN-XL ReACGAN BigGAN HD

In
ce

pt
io

nV
3

FID (↓) 9.8715 (1) 10.943 (2) 24.409 (3) 33.935 (4) 0

KID (↓) 0.0010 (1) 0.0025 (2) 0.0062 (3) 0.0205 (4) -

TopP&R (↑) 0.9168 (1) 0.8919 (2) 0.8886 (3) 0.7757 (4) 0

D&C (↑) 1.0333 (2) 1.0587 (1) 0.8468 (3) 0.5400 (4) 2

P&R (↑) 0.6988 (1) 0.6713 (2) 0.4462 (4) 0.5079 (3) 2

MTD (↓) 1.7308 (2) 1.5518 (1) 2.2122 (3) 3.0891 (4) 2

V
G

G
16

TopP&R (↑) 0.9778 (1) 0.8896 (2) 0.8376 (3) 0.5599 (4) 0

D&C (↑) 1.0022 (3) 0.9159 (4) 1.1322 (1) 1.1020 (2) 4

P&R (↑) 0.7724 (2) 0.7785 (1) 0.4092 (4) 0.5237 (3) 4

MTD (↓) 15.748 (3) 22.313 (4) 10.268 (1) 13.992 (2) 4

Sw
AV

TopP&R (↑) 0.8851 (2) 0.9102 (1) 0.6457 (3) 0.4698 (4) 2

D&C (↑) 1.0717 (1) 0.8898 (4) 1.0654 (2) 1.0578 (3) 3

P&R (↑) 0.6096 (1) 0.5596 (2) 0.1335 (4) 0.1544 (3) 2

MTD (↓) 0.4165 (3) 0.7789 (4) 0.3601 (2) 0.3200 (1) 4
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Table A14: Ranking results based on TopP&R, P&R, and D&C for ImageNet (128 × 128) trained
generative models. SwAV, VGG16, and InceptionV3 represent the embedders, and the numbers in
parentheses indicate the ranks assigned by each metric to the evaluated models. Note that, the random
projection is applied to TopP&R, P&R, and D&C.

Model ADM StyleGAN-XL ReACGAN BigGAN

In
ce

pt
io

nV
3

TopP&R (↑) 0.9168 (1) 0.8919 (2) 0.8886 (3) 0.7757 (4)

D&C w/ rand proj (↑) 1.0221 (2) 1.0249 (1) 0.9218 (3) 0.7099 (4)

P&R w/ rand proj (↑) 0.7371 (1) 0.7346 (2) 0.6117 (4) 0.6305 (3)

V
G

G
16 TopP&R (↑) 0.9778 (1) 0.8896 (2) 0.8376 (3) 0.5599 (4)

D&C w/ rand proj (↑) 1.0086 (3) 0.9187 (4) 1.0895 (1) 1.0803 (2)

P&R w/ rand proj (↑) 0.7995 (2) 0.8056 (1) 0.5917 (4) 0.6304 (3)

Sw
AV

TopP&R (↑) 0.8851 (2) 0.9102 (1) 0.6457 (3) 0.4698 (4)

D&C w/ rand proj (↑) 1.0526 (3) 0.9479 (4) 1.1037 (2) 1.1127 (1)

P&R w/ rand proj (↑) 0.6873 (1) 0.6818 (2) 0.4179 (3) 0.4104 (4)

I.6 Verification of random projection effect in generative model ranking

We also applied the same random projection used by TopP&R to P&R and D&C in Section I.6. From the
results of the Table A14, it is evident that the application of random projection to P&R leads to different
rankings than its original evaluation tendencies. Similarly, the rankings of D&C with random projection
still exhibit significant variations based on the embedding. Thus, we have demonstrated that random
projection does not provide consistent evaluation tendencies across different embeddings, while also
highlighting that this characteristic is unique to TopP&R. To quantify these differences among metrics,
we computed the mean Hamming Distance (MHD) between the results in the embedding spaces
of each metric. The calculated MHD scores were 1.33 for TopP&R, 2.67 for P&R, and 3.33 for D&C,
respectively.

I.7 Verifying the effect of random projection to the noisy data

(a) All metrics with random projection to 32-dimensional space
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(b) All metrics without random projection
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Figure A6: Behaviors of evaluation metrics for outliers on real and fake distribution. For both real
and fake data, the outliers are fixed at 3 ∈ Rd where d is a dimension, and the parameter µ is shifted
from -1 to 1. (a) depicts the comparison of all metrics using a random projection from 64 dimensions
to 32 dimensions. (b) illustrates the difference between metrics without using random projection,
where real and fake data are considered in 32 dimensions.

We experiment to ascertain whether utilizing a random projection address the drawbacks of existing
metrics that are susceptible to noise, and we also conduct tests to validate whether TopP&R possesses
noise robustness without using random projection. Through Figure A6 (a), it is evident that P&R and
D&C still retain vulnerability to noisy features, and it is apparent that random projection itself does
not diminish the impact of noise. Furthermore, Figure A6 (b) reveals that TopP&R , even without
utilizing a random projection, exhibits robustness to noise through approximating the data support
based on statistically and topologically significant features.

Building upon the insight from the toy data experiment in Figure A6 that random projection does
not confer noise robustness to P&R and D&C, we aim to further demonstrate this fact through a real
data experiment. In the experiment depicted in Figure A7, we follow the same setup as the previous
experiment in Figure 5, applying the same random projection to P&R and D&C only. The results of
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Figure A7: Comparison of evaluation metrics on Non-IID perturbations using FFHQ dataset. We
replaced certain ratio of X and Y (a) with outliers and (b) by switching some of real and fake features.
P&R and D&C were computed using the same 32-dimensional random projection.

this experiment affirm that random projection does not provide additional robustness against noise
for P&R and D&C, while TopP&R continues to exhibit the most robust performance.

I.8 Robustness of TopP&R with respect to random projection dimension

(a) Random projection to 64-dimensional space
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(b) Random projection to 128-dimensional space
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Figure A8: Comparison of evaluation trends of TopP&R with respect to random projection dimension
in both sequential and simultaneous mode drop scenarios. Baby ImageNet dataset is used for the
comparison, and TopP&R is computed using random projections to (a) 64 dimensions and (b) 128
dimensions.

To investigate whether the dimension of random projection influences the evaluation trend of TopP&R,
we conduct mode dropping experiment using the Baby ImageNet dataset, similar to the experiment in
Section I.3. Results in (a) and (b) of Figure A8 respectively compare the performance of TopP&R using
random projection in dimensions of 64 and 128 with other metrics. From the experimental results, we
observe that TopP&R is the most sensitive to the distributional changes, akin to the tendencies observed
in the previous toy mode dropping experiment. Furthermore, upon examining the differences across
random projection dimensions, TopP&R shows consistent evaluation trends regardless of dimensions.

I.9 Trucation trick

ψ is a parameter for the truncation trick and is first introduced in [4] and [1]. We followed the
approach in [4] and [1]. GANs generate images using the noise input z, which follows the standard
normal distribution N (0, I) or uniform distribution U(−1, 1). Suppose GAN inadvertently samples
noise outside of distribution, then it is less likely to sample the image from the high density area of
the image distribution p(z) defined in the latent space of GAN, which leads to generate an image with
artifacts. The truncation trick takes this into account and uses the following truncated distribution.
Let f be the mapping from the input to the latent space. Let w = f(z), and w̄ = E[f(z)], where z is
either from N (0, I) or U(−1, 1). Then we use w′ = w̄ + ψ(w − w̄) as a truncated latent vector. If
the value of ψ increases, then the degree of truncation decreases which makes images have greater
diversity but possibly lower fidelity.

I.10 Toy experiment of trade-off between fidelity and diversity

We have designed a new toy experiment to mimic the truncation trick. With data distributions of 10k
samples, X ∼ N (µ = 0, I) ∈ R32 and Y ∼ N (µ = 0.6, σ2) ∈ R32, we measure the fidelity and
diversity while incrementally increasing σ from 0.7 to 1.3. For smaller σ values, the evaluation metric
should exhibit higher fidelity and lower diversity, while increasing σ should demonstrate decreasing
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Figure A9: Trade-off between fidelity and diversity in a toy experiment. In this experiment, the µ
of X was set to 0, and the µ of Y was set to 0.6. By incrementally increasing σ from 0.7 to 1.3, the
evaluation trend based on changes in the Y distribution is measured.

fidelity and higher diversity. From the results in Figure A9, both TopP&R and P&R exhibit a trade-off
between fidelity and diversity.

I.11 Resolving fidelity and diversity
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Figure A10: Behaviors of metrics with truncation trick. The horizontal axis corresponds to the value
of ψ denoting the increased diversity. The images are generated via StyleGAN2 with FFHQ dataset
[1].

To test whether TopP&R responds appropriately to the change in the underlying distributions in
real scenarios, we test the metric on the generated images of StyleGAN2 [2] using the truncation
trick [1]. StyleGAN2, trained on FFHQ as shown by Han et al. [49], tends to generate samples
mainly belonging to the majority of the real data distribution, struggling to produce rare samples
effectively. In other words, while StyleGAN2 excels in generating high-fidelity images, it lacks
diversity. Therefore, the evaluation trend in this experiment should reflect a steady high fidelity
score while gradually increasing diversity. Han et al. [49] demonstrates that the generated image
quality of StyleGAN2 that lies within the support region exhibits sufficiently realistic visual quality.
Therefore, particularly in the case of TopP&R, which evaluates fidelity excluding noise, the fidelity
value should remain close to 1. As shown in Figure A10, every time the distribution is transformed
by ψ, TopP&R responds well and shows consistent behavior across different embedders with bounded
scores in [0, 1], which are important virtues as an evaluation metric. On the other hand, Density
gives unbounded scores (fidelity > 1) and shows inconsistent trend depending on the embedder.
Because Density is not capped in value, it is difficult to interpret the score and know exactly which
value denotes the best performance (e.g., in our case, the best performance is when TopP&R = 1).
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