
A Experiment Evaluation Environments

First, we introduce the environments and robots we used for our experiments.

The real world evaluation environments used in the comparison to single-source models (§4.1) con-
sisted of an urban and an industrial environment. The robot is a Clearpath Jackal with a monocular
RGB camera sensor. The robot’s task is to drive towards a goal GPS location while avoiding colli-
sions. We note that this single GPS coordinate is insufficient for successful navigation, and therefore
the robot must use the camera sensor in order to accomplish the task. Further details are provided in
Tab. S1.

Variable Dimen-
sion Description

ot 15,552 Image at time t, shape 54⇥ 96⇥ 3.
�pt 3 Change in x position, y position, and yaw orientation.
st 0 There is no inputted state.
at 2 Linear and angular velocity.

rt 1 r = �1 if the robot collides, otherwise r = 0. The reward is
calculated using the onboard collision detection sensors.

gt 2 GPS coordinate of goal location.
Table S1: Clearpath Jackal and task.

The real world evaluation environments used in the comparison to conventional hierarchy (§4.2)
consisted of an urban environment. The robots used in this experiment include the Clearpath Jackal
and a Parrot Bebop drone. The settings used for the Jackal experiment are the same as the ones in
the comparison to single-source models (Tab. S1). The Parrot Bebop drone also has a monocular
RGB camera, and it’s task is to avoid collisions while minimizing unnecessary maneuvers. Further
details are provided in Tab. S2.

Variable Dimen-
sion Description

ot 15,552 Image at time t, shape 54⇥ 96⇥ 3.
�pt 3 Change in x position, y position, and yaw orientation.
st 0 There is no inputted state.
at 1 Angular velocity.

rt 1 r = �1 if the robot collides, otherwise r = 0. The reward is
calculated using the onboard collision detection sensors.

gt 0 There is no inputted goal.
Table S2: Parrot Bebop drone and task.

The simulated evaluation environment used in the comparison to conventional hierarchy (§E) was
created using Panda3d [35]. The environment is a cluttered enclosed room consisting of randomly
textured objects randomly placed in a semi-uniform grid. The robot is a car with a monocular RGB
camera sensor. The robot’s task is to drive towards a goal region while avoiding collisions. Further
details are provided in Tab. S3.

†For the lag experiment only, the state consisted of the past 0.25 seconds of executed actions at�1.

11



Variable Dimen-
sion Description

ot 31,104 Images at time t and t� 1, each of shape 54⇥ 96⇥ 3.

�pt 1
The robot is at a fixed height and travels at a constant speed.
Therefore, the change in pose only includes the change in yaw
orientation.

st 0† There is no inputted state.
at 1 Angular velocity (the robot travels at a constant speed).

rt 1 r = �1 if the robot collides, otherwise r = 0. The reward is
calculated using the onboard collision detection sensors.

gt 1 Relative angle to goal region.
Table S3: Simulated robot and task.

B Training the Perception Model

The perception model, as discussed in Sec. 3.1, takes as input an image observation and a sequence
of future changes in poses, and predicts future rewards. Here, we discuss the perception model
training data and training procedure in more detail.

B.1 Training Data

In order to train the perception model, perception data must be collected. For our simulated experi-
ments (§E), perception data was collected by running the reinforcement learning algorithm from [34]
in the simulated cluttered environment.

For our real world experiments (§4.1), perception datasets were collected by a Yujin Kobuki robot in
an office environment (2267 collisions), a Clearpath Jackal in an urban environment (560 collisions),
and a person recording video with a GoPro camera in an industrial environment using correlated
random walk control policies (204 collisions).

Additional details of the perception data sources is provided in Tab. S4.

Platform Environ-
ment

Sim
or

Real?

Time
Dis-

cretiza-
tion

Data
Collection

Policy

Size
(datapoints /

hours)

Reward
Label

Generation

Pose Label
Generation

car cluttered
room sim 0.25 on-policy 500,000 / 34 physics

engine
physics
engine

Yujin
Kobuki office real 0.4

correlated
random

walk
32,884 / 3.7 collision

sensor

odometry
from wheel

encoders

Clearpath
Jackal urban real 0.25

correlated
random

walk
50,000 / 3.5 collision

sensor IMU

Person with
GoPro
camera

industrial real 0.33
correlated
random

walk
12,523 / 1.2 manual

labeling
IMU from

GoPro

Table S4: Perception model data sources.

B.2 Neural Network Training

The perception model is represented by a deep neural network, with architecture depicted in Fig.
S7. It is trained by minimizing the loss in Eqn. 1 using minibatch gradient descent. In Tab. S5, we
provide the training and model parameters.

12



Figure S7: The neural network perception model takes as input the current image observation ot and a sequence
of H future changes in poses �pt:t+H , and predicts H future rewards r̂t:t+H . This model is trained using data
gathered by a variety of robots that have the same image observations, but different dynamics.

Model Type Optimizer Learning
Rate

Weight
Decay

Grad
Clip

Norm

Collision
Data

Rebalancing
Ratio

Environment
Data

Rebalancing
Ratio

Hori-
zon

simulation Adam [36] 10�4 0.5 10 No
rebalancing N/A 6

real world: single
source Adam 10�4 0.5 10 50:50 N/A 10

real world: office +
urban Adam 10�4 0.5 10 50:50 25:70 10

real world: office +
urban + industrial Adam 10�4 0.5 10 50:50 33:33:33 10

Table S5: Perception model parameters.

C Training the Dynamics Model

The dynamics model, as discussed in Sec. 3.2, takes as input the robot state and future actions, and
predicts future changes in poses. Here, we discuss the dynamics model training data and training
procedure in more detail.

C.1 Training Data

In order to train the dynamics model, dynamics data must be collected. For our simulated experi-
ments, the basic simulated car dynamics are based on a single integrator model:

✓t+1 = ✓t +� · at (8)
xt+1 = xt +� · SPEED ·� sin(✓t+1)

yt+1 = yt +� · SPEED · cos(✓t+1)

a 2 (
�2⇡

3
,
2⇡

3
).

However, we note that this dynamics model was never provided to the learning algorithm; the learn-
ing algorithm only ever received samples from the dynamics model. Dynamics data was collected
using a random walk control policy for each robot dynamics variation—normal, limited steering,
right turn only, and 0.25 second lag.

For our real world experiments (§4.1), the both the Clearpath Jackal and the Parrot Bebop drone
collected dynamics data in the urban environment using a correlated random walk control policy.

Additional details of the dynamics data sources is provided in Tab. S6.

13



Robot
Sim
or

Real?
Dynamics Time

Discretization

Data
Collection

Policy

Size
(datapoints /

hours)
normal

car sim Eqn. 8 0.25 random walk 5,000 / 0.4

limited
steering

car
sim Eqn. 8, but with a 2 (�⇡

3 ,
⇡

3 ) 0.25 random walk 5,000 / 0.4

right turn
only car sim Eqn. 8, but with a 2 (0, 2⇡

3 ) 0.25 random walk 5,000 / 0.4

0.25
second
lag car

sim Eqn. 8, but with
✓t+1 = ✓t +� · at�3

0.25 random walk 5,000 / 0.4

Clearpath
Jackal real Unmodeled 0.25 correlated

random walk 50,000 / 3.5

Parrot
Bebop
drone

real Unmodeled 0.25 correlated
random walk 4977 / 0.35

Table S6: Dynamics model data sources.

C.2 Neural Network Training

The dynamics model is represented by a deep neural network, with architecture depicted in Fig. S8.
It is trained by minimizing the loss in Eqn. 2 using minibatch gradient descent. In Tab. S7, we
provide the training and model parameters.

Figure S8: The neural network dynamics model takes as input the current robot state st and a sequence of
H future actions at:t+H , and predicts H future changes in poses �̂p

t:t+H
. This model is trained using data

gathered by a single robot.

Model Type Optimizer Learning
Rate

Weight
Decay

Grad
Clip

Norm

Collision
Data

Rebalancing
Ratio

Environment
Data

Rebalancing
Ratio

Hori-
zon

simulation Adam 10�4 0.5 10 N/A N/A 6
real world: Jackal Adam 10�4 0.5 10 N/A N/A 10
real world: drone Adam 10�4 0.5 10 N/A N/A 10

Table S7: Dynamics model parameters.

14



D Planning

Figure S9: The combined neural network model is a concatenation of the dynamics model (a) and perception
model (b). The model takes as input the current image observation ot, robot state st, and a sequence of H future
actions at:t+H , and predicts H future rewards r̂t:t+H . This integrated model can then be used for planning and
executing actions that maximize reward.

At test time, we perform planning and control using the integrated model (§3.3). The neural network
architecture of the integrated model is shown in Fig. S9. At each time step, we plan for the action
sequence that maximizes Eqn. 3 using a stochastic zeroth-order optimizer, execute the first action,
and continue planning and executing following the framework of model predictive control.

For the simulated experiments (§E), the reward function used for planning is

R(r̂t:t+H , �̂p
t:t+H

,at:t+H ,gt) =
H�1X

h=0

r̂t+h � 0.01 · k�̂p
HEADING

t+h
� gtk1, (9)

which encourages the robot to drive in the direction of the goal while avoiding collisions. We solve
Eqn. 3 using the Cross-Entropy Method (CEM) [32], and replan at a rate of 4 Hz.

For the real world Jackal experiments (§4.1), the reward function used for planning is

R(r̂t:t+H , �̂p
t:t+H

,at:t+H ,gt) =
H�1X

h=0

r̂t+h � 0.3 · \(�̂p
t+h

,gt)� 0.05 · k�̂p
t+h

k1, (10)

which encourages the robot to avoid collisions, drive towards the goal, and minimize action magni-
tudes. For the real world drone experiments, the reward function used for planning is

R(r̂t:t+H , �̂p
t:t+H

,at:t+H ,gt) =
H�1X

h=0

r̂t+h � k�̂p
t+h

k1, (11)

which encourages the robot to avoid collisions and minimize action magnitudes. We solve Eqn. 3
using the MPPI [33], and replan at a rate of 6 Hz.

15



E Simulation Experiments in Comparison to Conventional Hierarchy

In addition to the real world experiments in Sec. 4.2, we also performed experiments in simulation
to further evaluate the performance of HInt in comparison to conventional hierarchy. We trained a
perception model using data collected by a simulated car with a monocular RGB camera. The data
was collected by running an on-policy reinforcement learning algorithm inside a cluttered room
environment using the Panda3D simulator. Similar to the real world experiments, the rewards here
also denote collision, where r = �1 if collision and r = 0 otherwise.

We deployed the perception model onto variants of the base car’s dynamics model, in which the
dynamics are modified by: constraining the angular velocity control limits, only allowing the robot
to turn right, or inducing a 0.25 second control execution lag. These modifications are very drastic
and correspond to extreme versions of the kinds of dynamical variations exhibited by real-world
robots.

The robot’s objective is to drive to a goal region while avoiding collisions. More specifically, the
reward function used for planning is

R(r̂t:t+H , �̂p
t:t+H

,at:t+H ,gt) (12)

=
H�1X

h=0

r̂t+h � 0.01 · k�̂p
HEADING

t+h
� gtk1,

which encourages the robot to drive in the direction of the goal while avoiding collisions.

Tab. S8 and Fig. S10 show the results comparing HInt versus the conventional hierarchy approach.
While HInt and conventional hierarchy achieved similar performance when deployed on the platform
that gathered the perception training data, HInt greatly outperformed the conventional hierarchy
approach when deployed on dynamical systems that were not present in the perception training
data.

Normal Limited Steering Right Turn Only 0.25 second lag

Figure S10: Top down view of example trajectories of both the conventional hierarchy (blue) and our HInt
(green) approaches in a simulated environment for the task of driving towards a goal region (yellow) while
avoiding collisions. The visualized trajectories are the median performing trajectory of the conventional hier-
archy and our HInt approaches for one example starting position. The red diamond indicates a collision. Our
integrated approach is able to reach the goal region at a higher rate compared to the modular approach.

Normal Limited Steering Right turn only 0.25 second lag
Conventional Hierarchy 96% 68% 0% 0%
HInt (ours) 96% 84% 56% 40%

Table S8: Comparison of conventional hierarchy (e.g., [1, 2, 3]) versus HInt (ours) at deployment time in a
simulated environment for the task of driving towards a goal region while avoiding collisions. Four differ-
ent dynamics models were evaluated—normal, limited steering, right turn only, and 0.25 second lag. Both
approaches were evaluated from the same 5 starting positions, with 5 trials for each starting position. Our
approach is able to achieve higher success rates for reaching the goal region because the perception model is
only able to consider trajectories that are dynamically feasible.

16



Figure S11: FPV visualization of the right turn only simulated experiment. Here, HInt (purple) successfully
avoided the obstacle, while the conventional hierarchy approach failed, because the high-level policy outputted
waypoints that avoided the obstacle by turning left (blue), but the dynamics model is unable to turn left, and
therefore drove straight into the obstacle (red).

An illustrating example of why hierarchical models are advantageous is shown in Fig. S11. Here,
the robot can only turn right, and cannot make left turns. For conventional hierarchical policies, the
high-level perception policy—which is unaware of the robot’s dynamics—outputs desired waypoints
that attempts to avoid the obstacle by turning left. The low-level controller then attempts to follow
these left-turning waypoints, but because the robot can only turn right, the best the controller can
do is drive straight, which causes the robot to collide with the obstacle. In contrast, our integrated
models approach knows that turning right is correct because the dynamics model is able to convey to
the perception model that the robot can only turn right, while the perception model is able to confirm
that turning right does indeed avoid a collision.

17


	Introduction
	Related Work
	HInt: Hierarchically Integrated Models
	Perception Model
	Dynamics Models
	Planning and Control
	Algorithm Summary

	Experiments
	Q1: Comparison to Single-Source Models
	Q2: Comparison to Conventional Hierarchy

	Discussion
	Experiment Evaluation Environments
	Training the Perception Model
	Training Data
	Neural Network Training

	Training the Dynamics Model
	Training Data
	Neural Network Training

	Planning
	Simulation Experiments in Comparison to Conventional Hierarchy

