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4D-Editor: Interactive Object-level Editing in Dynamic Neural Radiance Fields
via Semantic Distillation

Supplementary Material

1. Implementation Details001

We use Principal Component Analysis (PCA) method to ex-002

tract 64 most important semantic features from DINO [1]003

ViT-b8 model. We use 64 sampled points on each ray in004

volume rendering.005

During the editing process, we set different threshold ↵006

and number of K-Means clusters Nk according to different007

sizes of target objects: ↵ = 0.4±0.1, Nk = 3±2 for small008

objects and ↵ = 0.7 ± 0.1, Nk = 20 ± 15 for small ones.009

The value of � should be approximately 1/3 of ↵. Actually,010

in our experiments, all these values can be set loosely within011

Recursive Selection Refinement.012

2. Interactive GUI013

We design a user-friendly graphical user interface (GUI)014

that facilitates interactive editing of dynamic scenes. The015

editing procedure involves three steps: 1) Selecting a refer-016

ence frame, 2) Marking target objects with strokes in dis-017

tinct colors, and 3) Configuring editing parameters, includ-018

ing editing operations, threshold ↵, exploration range � and019

recursion depth K. These steps are depicted in Fig. ??.020

3. Model Structure021

3.1. Structures of Hybrid Radiance Fields022

We directly adopt RobustNeRF [2] and DynamicNeRF [4]023

to represent a dynmaic scene, their methods are displayed024

in Fig. 9.025

3.2. Structures of Hybrid Semantic Fields026

We design semantic fields Gs and Gd, to represent seman-027

tic information of the static and dynamic components in the028

scene, respectively. Both semantic fields are modeled using029

an 8-layer multi-layer perceptron (MLP). As illustrated in030

Fig. 1, Gs takes the position x as input after position encod-031

ing, while Gd incorporates both the position x and the time032

t.033

3.3. Volume Rendering on Semantic Features034

The spatial semantic features themselves are represented035

by a 64-dimensional vector. We apply volume rendering036

to these features and select the first 3 dimensions to gen-037

erate RGB visualizations. As shown in Fig. 2, upon re-038

constructing the spatial semantic information using seman-039

tic fields, our approach demonstrates superior preservation040
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Figure 1. Structures of Semantic Fields.

(a) DINO features (b) Ours 

Figure 2. Visualization of Semantic Features. After semantic
features distillation, we obtain enhanced semantic features in 4D
space (For additional comparisons, refer to the demo videos in the
supplementary material ).

of both multi-view and spatio-temporal consistency of se- 041

mantic information in the 4D space, compared to the rela- 042

tively coarse-grained feature map generated by the DINO 043

model [1]. Notably, on object edges, the transition of se- 044

mantic information appears remarkably smooth. 045

4. Visualization of Recursive Selection Refine- 046

ment 047

Figure 3 shows the flow of semantic feature matching and 048

target selection(semantic segmentation). Given sampled 049

points p1 . . . p8, we categorize them based on feature dis- 050

tances: valid points p4 p5, impossible points p1 p2 p8, pos- 051

sible points p3 p6 p7. Then we introduce a random offset on 052
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K new V P all V IoU Acc
1 2.84M 828.13k 2.84M 72.79 79.81
5 20.69k 120.73k 3.18M 76.53 85.39
20 426 6.55k 3.23M 80.85 92.70
30 114 1.64k 3.24M 78.63 93.45
40 8 169 3.24M 80.11 93.24
50 1 56 3.24M 79.21 93.88

Table 1. Effects of maximum recursion number K.

possible points and recalculate feature distances, repeating053

until these points are judged as valid or impossible. Here,054

p3 p6 are considered as valid points after 1 or 2 iterations re-055

spectively, while p7 excluded after 2 iterations. Ultimately,056

the selected points are p3, p4, p5, p6. We will repeat this057

process for all sampling points on each ray during the ren-058

dering process, as shown in Algorithm 4. As for the same059

batch of sampling points, we can apply different random060

offset step s at one time (e.g., s = (1/50, 1/100, 1/150)) to061

control different ranges of selection on target.062

In RSR, we initially get N possible points near the edges063

of the object and M valid points. Given the feature points064

around the object’s edges, we determine the probabilities065

of a point with an offset, being classified as valid with a066

possibility of µ or possible with a possibility of �. Note067

that µ+ � < 1 due to the presence of invalid points, where068

� also indicates the probability of progressing to the next069

round. For each point, the expected probability of being070

valid is �+�µ+�2µ+ .... This is a geometric progression,071

the sum of which is �/(1�µ). Finally, the expected number072

of points that will be selected is M +N�/(1� µ).073
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Figure 3. Process of Recursive Selection Refinement. Although
DINO model generates coarse semantic feature maps which are
used as the training set, our reconstruction and volume rendering
of the 4D spatial semantic information results in finer semantic
feature maps.

5. Analysis on Object Segmentation074

In this section, we begin by conducting a qualitative and075

quantitative comparison between N3F [3] and our method in076

terms of object segmentation performance. Subsequently,077

Figure 4. Recursive Selection Refinement

(a) Ours (a) N3F

Figure 5. Results of Object Segmentation. Compared with N3F,
we achieve finer object segmentation, which contains fewer arti-
facts especially for edge areas.

we evaluate the impact of the hyperparameter � (explo- 078

ration range) on Recursive Selection Refinement. 079

5.1. Evaluation on Segmentation Accuracy 080

We fine-tune the threshold of N3F for object segmenta- 081

tion tasks and dispaly its best results in the right column 082

of Fig. 5. Since our method utilizes Recursive Selection 083

Refinement to achieve more precise selection of target ob- 084

jects, surpassing N3F in both qualitative and quantitative 085

assessments (indicated by higher Acc and IoU values in Ta- 086

ble. 2). In our experiments, we observe that our method per- 087

forms especially well in scenes containing significant ob- 088

ject movement (e.g., a girl starting from the left side and 089

jumping to the right side in the Rollerblade dataset). Con- 090

versely, N3F produces numerous broken artifacts in such 091

scenes. Fig. 6 presents additional results of object segmen- 092

tation in 4D space. 093

5.2. Analysis on exploration range � 094

The selection of the exploration range parameter � can be 095

loose and flexible. Fig. 3 demonstrates that the segmenta- 096

tion quality remains consistent despite using different val- 097
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Table 2. Quantitative Analysis on Object Segmentation. We
choose several scenes from DAVIS dataset and use its true motion
masks as ground truth.

Scene Metric N3F Ours

Breakdance Flare
Acc " 89.96 94.12
IoU " 84.97 83.09

Rollerblade
Acc " 83.38 93.10
IoU " 71.55 81.56

Hike
Acc " 94.80 95.16
IoU " 85.73 89.88

(a) balloon (b) woman (c) balloon

Figure 6. Object Segmentation in 4D Space.

Table 3. Effects of exploration range �. We set the parameters
as follows: K = 3, Nk = 8, and ↵ = 0.6. Additionally, we
experiment with different values of � to demonstrate that it has
no impact on the segmentation quality. Consequently, � can be
loosely set during editing operations.

� 0.05 0.08 0.1 0.12 0.15 0.18 0.2
Acc " 93.10 93.42 93.81 93.66 93.94 94.02 93.94
IoU " 81.56 81.26 80.90 80.77 80.21 79.65 79.26

ues of �. This finding supports the notion that it is the re-098

cursion depth parameter K that significantly enhances seg-099

mentation accuracy, while � merely serves as an auxiliary100

factor.101

6. Scene Editing102

This section focuses on recoloring and two complex editing103

operations: transformation and composition(Fig. 8).104

6.1. Recoloring105

Recoloring on HSL is showed in Fig. 7 .106

6.2. Transformation Details107

Table 4 shows three types of geometric transformation op-108

erations (Shift, Scale, and Mirror) and a time-variant op-109

eration (Reverse). The time-variant transformation allows110

editing in the temporal dimension. For example, we can re-111

verse the trajectory of moving objects in a time series while112

maintaining the others (e.g., Fig. 8b shows two boys: the113

boy in the red box follows the real trajectory to the right114

(a) hue # (b) saturation # (c) lightness #

(d) hue " (e) saturation " (f) lightness "

Figure 7. Recolor the balloon.
Table 4. Transformation Functions.

Mapping Function
Shift (x, y, z) : (x, y, z) + �
Scale (x, y, z) : (x, y, z)⇥ scale

Mirror (x, yz) : (�x,�y, z)
Reverse (x, y, z, t) : (x, y, z,�t)

Table 5. Final �, c after Transformation.
ui 2 T 0 (�, c) (�tct)
ui 2 T , (�, c) (�oco) if reserved
ui /2 T 0 �  0 if not reserved
ui /2 T , (�, c) (�oco)
ui /2 T 0

side, but the boy in the blue box moves towards the oppo- 115

site direction and reverses to the left side). 116

In dynamic scenes, we lack explicit knowledge regarding 117

the distribution of different objects in both the current space 118

and the space after transformation. We can only judge the 119

selected target region by calculating the feature distance. 120

Therefore, we perform two rounds of calculations for all 121

sampled points. In the first round, we use initial positions 122

of all sampled points, dividing them into T (inside the ob- 123

ject) and S (outside) according to Section 3.3. In the second 124

round, we use the positions after transformation, dividing 125

edited space into T 0 and S 0. Additionally, for each sampled 126

point ui, we obtain its original attributes co and �o, as well 127

as ct and �t after transformation. 128

To preserve the original object, it is kept intact. Alterna- 129

tively, if removal is desired, we set � = 0. In cases where 130

there are overlapping areas between the transformed object 131

and the original object, we consistently apply ct and �t to 132

assign the properties to these points. The settings for the 133

final density and color can be found in Table 5 provided 134

below. 135

6.3. Composition Details 136

Assuming the presence of N objects derived from distinct 137

dynamic scenes, which have been filtered from the original 138

NeRF and are represented using masks in 4D space. Trans- 139
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(a) Composition

(b) Time reversal

Figure 8. Composition & Time Reversal. We maintain spatial-temporal consistency across the entire time series when combining different
scenes or applying time-variant transformations to individual objects within the same scene.

formation can also be applied here to prevent object overlap140

during composition. The composition is performed at each141

sample point for all segmented parts collectively:142

(�0, c0) = (
NX

i=1

�i maski,
NX

i=1

ci maski) (1)143

where maski denotes the membership of the current point144

to the ith object. Additionally, blending weights for dy-145

namic objects must be recalculated:146

b0 =
NX

i=1

bi maski (2)147

In Fig. 8a, we create a novel scene by separately using148

moving objects from the Balloon2 dataset and backgrounds149

from the Playground dataset, and then compositing them150

together. Subsequently, the rendering formula can be em-151

ployed to compute the pixel color. The computational com-152

plexity of the combination increases in proportion to the153

number of objects.154
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