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ABSTRACT

Neural networks (NNs) that exploit strong inductive biases based on physical
laws and symmetries have shown remarkable success in learning the dynamics
of physical systems directly from their trajectory. However, these works focus
only on the systems that follow deterministic dynamics, such as Newtonian or
Hamiltonian. Here, we propose a framework, namely Brownian graph neural
networks (BROGNET), combining stochastic differential equations (SDEs) and
GNNs to learn Brownian dynamics directly from the trajectory. We modify the
architecture of BROGNET to enforce linear momentum conservation of the system,
which, in turn, provides superior performance on learning dynamics as revealed
empirically. We demonstrate this approach on several systems, namely, linear
spring, linear spring with binary particle types, and non-linear spring systems, all
following Brownian dynamics at finite temperatures. We show that BROGNET
significantly outperforms proposed baselines across all the benchmarked Brownian
systems. In addition, we demonstrate zero-shot generalizability of BROGNET to
simulate unseen system sizes that are two orders of magnitude larger and to different
temperatures than those used during training. Finally, we show that BROGNET
conserves the momentum of the system resulting in superior performance and data
efficiency. Altogether, our study contributes to advancing the understanding of
the intricate dynamics of Brownian motion and demonstrates the effectiveness of
graph neural networks in modeling such complex systems.

1 INTRODUCTION AND RELATED WORKS

Learning the dynamics of physical systems directly from their trajectory is an active area of research
due to their potential applications in materials modeling Park et al. (2021), drug discovery Vamath-
evan et al. (2019), motion planning Ni & Qureshi (2022), robotics Sanchez-Gonzalez et al. (2019);
Greydanus et al. (2019), and even astrophysics Sanchez-Gonzalez et al. (2020). Recent works demon-
strated that physics-based inductive biases could enable the learned models to follow conservation
laws such as energy and momentum while also simplifying the learning making the model data
efficient Thangamuthu et al. (2022); Finzi et al. (2020). Among these, a family of models, such as
Lagrangian or Hamiltonian neural networks Bhattoo et al. (2023; 2022); Lee et al. (2021); Sanchez-
Gonzalez et al. (2019); Greydanus et al. (2019) and Neural ODEs Bishnoi et al. (2022); Zhong et al.
(2019); Gruver et al. (2021); Chen et al. (2018), enforces the physics-based inductive biases in a strong
sense. Here, a governing ordinary differential equation (ODE) is used along with a neural network
to learn the abstract quantities, such as energy or force, directly from the trajectory of the system.
These models have shown remarkable success in learning the dynamics of a variety of systems in
an efficient fashion, viz., particle-based systems Bishnoi et al. (2022); Thangamuthu et al. (2022),
atomistic dynamics Park et al. (2021); Huang et al. (2022), physical systems Bhattoo et al. (2023);
Sanchez-Gonzalez et al. (2019); Greydanus et al. (2019), and articulated systems Bhattoo et al. (2022).

Despite their success, these works focus on purely deterministic systems where the dynamics are
governed by an ODE Karniadakis et al. (2021); Thangamuthu et al. (2022); Zhong et al. (2021). An
alternative approach to model physical systems is to formulate the governing equation as a stochastic
differential equation (SDE), for instance, Brownian dynamics (BD)—widely used to study the
dynamics of particles in a fluid or solvent Van Gunsteren & Berendsen (1982). Brownian dynamics
simulations have proven to be highly valuable in numerous scientific disciplines. In physics, they
have been used to study the diffusion of particles Chung et al. (1999), the self-assembly of colloidal
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systems Noguchi & Takasu (2001), and the behavior of polymers in solution Helfand et al. (1980). In
chemistry, Brownian dynamics simulations have shed light on reaction kinetics Northrup & Erickson
(1992), molecular diffusion Madura et al. (1995), and the behavior of macromolecules Cates (1985).
In biology, they have provided insights into the movement of cells Klank et al. (2018), the folding
of proteins Karplus & Weaver (1994), and the dynamics of biomolecular complexes Gabdoulline &
Wade (2001). Despite their importance in such wide domains, while there have been approaches to
inferring the nature of Brownian dynamics from observations in a statistical sense Gnesotto et al.
(2020); Genkin et al. (2021), to the best of the authors’ knowledge, no attempt has been made to learn
the dynamics of Brownian systems in particular, or SDEs in general, from their trajectory.

Here, we propose BROGNET, which can learn the Brownian dynamics of a system directly from
the trajectory. Exploiting a GNN-based framework, we show that the Brownian dynamics can be
learned from small systems, which can then be generalized to arbitrarily large systems. The major
contributions of the work are as follows.
• Learning stochastic dynamics from trajectory: We present a framework, BROGNET, that learns

the abstract quantities governing the dynamics of stochastic systems directly from their trajectory.
While demonstrated for Brownian dynamics, the framework presented is generic and may be
applied to other SDEs as well.

• Graph-based modeling for zero-shot generalizability: We model the physical system as a graph
with nodes representing particles and edges representing their interactions, which can then be used
to learn BD. The inductive graph-based modeling naturally imparts the desirable properties of
zero-shot generalizability to unseen system sizes and permutation invariance. In addition, we also
demonstrate generalizability to unseen temperatures in a zero-shot fashion.

• Momentum conservation: We demonstrate that the proposed framework follows Newton’s third
law, thereby conserving the total linear momentum of the system. This feature, in turn, provides
superior performance for the model.

2 BACKGROUND ON BROWNIAN DYNAMICS

The fundamental concept behind Brownian dynamics is the influence of thermal fluctuations on
the motion of particles. In a fluid, particles are subject to random collisions with the surrounding
molecules, which lead to erratic motion characterized by continuous changes in direction and speed
(see the videos in the supplementary for a visual depiction). The behavior of particles undergoing
Brownian motion can be described mathematically using SDEs, such as over-damped Langevin
equations Coffey & Kalmykov (2020). These equations incorporate deterministic forces, such as
external potentials or interactions between particles, as well as stochastic forces that represent the
random effects of the surrounding fluid. By numerically integrating these equations, it is possible to
simulate and analyze the dynamic behavior of the particles over time.

Consider a system of N particles with masses M and interacting with each other through an interaction
potential U(Xt), where Xt represents the position vectors of all the particles at time t, constituting a
time-dependent random variable. The Langevin equation governing the dynamics of this system is
given by Coffey & Kalmykov (2020)

MẌt = −∇U(Xt)− ζMẊt +
√
2MζkBT Ωt (1)

where −∇U(Xt) = F (Xt) is the force due to the inter-particle interactions, ζ is the damping
constant, T is the temperature, kB is the Boltzmann constant, and Ωt is a delta-correlated stationary
Gaussian process with zero mean that follows ⟨Ωt⟩ = 0 and ⟨Ωt.Ωt′⟩ = δ(t − t′), where δ is the
standard Dirac-delta function. In the over-damped limit of Langevin dynamics, where no acceleration
exists, the equation reduces to Brownian dynamics as Brańka & Heyes (1998)

dXt

dt
=

−∇U(Xt))

γ︸ ︷︷ ︸
drift term

+

√
2γkBT

γ︸ ︷︷ ︸
diffusion term

Ωt (2)

where γ = Mζ. Thus, the evolution of a system can be obtained by numerically integrating the SDE
given by Eq. 2. The first term in the RHS of Eq. 2 is the deterministic inter-particle interaction (drift
term), and the stochastic nature in the dynamics comes from the second term (diffusion).

3 BROGNET: A GRAPH NEURAL SDE APPROACH

To learn the trajectories of a multi-particle system governed by Brownian dynamics, we design
a neural network called BROGNET. BROGNET is essentially a Graph Neural SDE—inspired by
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Figure 1: BROGNET’s architecture.

Graph Neural ODE, which parametrizes an ODE using a GNN. Thus, BROGNET parameterizes the
stochastic dynamics B(Xt) using a neural network and learns the approximate function B̂(Xt) by
minimizing the loss between the distribution of ground truth trajectories with that of the predicted
trajectories. However, in contrast to classical dynamics, the loss is applied over a distribution of
positions rather than the exact deterministic trajectory due to the stochastic nature of the dynamics.
We discuss the exact loss function in detail later.

The learning process is, therefore, decomposed into two factors: the standard deviation associated
with the ground-truth stochastic process corresponding to each particle and their expected positions.
In BROGNET, the standard deviation is learned through an MLP. On the other hand, the expected
positions are learned through a Graph Neural SDE. The choice of using a GNN to model interaction
dynamics is motivated by two key observations. First, a GNN allows us to be inductive, where the
number of model parameters is independent of the number of particles in the system. Hence, it
enables zero-shot generalizability to systems of arbitrary unseen sizes. In addition, a GNN allows
permutation-invariant modeling of the system. Below, we discuss the details.

3.1 THE GNN ARCHITECTURE

BROGNET models the interaction dynamics among participating particles as a graph. The graph
topology is used to learn the approximate dynamics B̂ by minimizing the distance between distribu-
tions representing the true and predicted positions. Note that henceforth all the variables with a hat (̂)
correspond to the approximate variable learned by the machine learning model.

Graph structure. We represent an N -particle system as an directed graph G = {V, E}. V represents
the set of nodes, where each node represents a particle. Similarly, E represents interactions or
connections among particles in the form of edges. For example, in a ball-spring system or colloidal
gels, the balls or colloid particles correspond to nodes, and the springs or the interactions between
the colloidal particles correspond to edges. Note that in the case of systems such as springs, where
explicit connections are pre-defined, the graph structure remains static. However, in the case of
systems like colloidal gels, the edges are defined based on a neighborhood cut-off, and hence the
graph structure can be dynamic, with the edges between particles changing as a function of the
particle configuration. As we will see in the next paragraph, a directed graph is required only because
the edge weights we use are directional.

Input features. Each node corresponds to a particle i and is defined by its intrinsic features, such as
the particle’s type (τi), position (Xi,t), and velocity (Ẋi,t) at time t. The position and velocities are
3-dimensional tuples corresponding to the x, y and z dimensions. The particle type distinguishes
between different characteristics, such as varying masses or friction coefficient for balls or particles.
For brevity, Xi,t is referred to as Xi henceforth unless specified otherwise. On the other hand, each
edge represents the connection between nodes and is represented by the 3-dimensional edge feature
wij = (Xi − Xj), which signifies the relative displacement of the connected nodes along each
coordinate. Note that the edge weights are asymmetric due to the vectorial nature of the input.

Summary of neural architecture. Fig. 1 provides a pictorial description of BROGNET. In the
pre-processing layer, we utilize Multilayer Perceptrons (MLPs) to create dense vector representations
for each node vi and edge eij . In systems where internal forces play a significant role in governing
dynamics, the structure’s topology holds crucial importance. To capture this dependency, we employ
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a deep, message-passing Graph Neural Network (GNN). The final representation zi = hL
i and

zij = hL
ij are generated by the GNN for each node and edge respectively, capturing relevant

information. These representations are subsequently passed through another MLP to predict the force
of each node. We next detail these individual steps.

Pre-processing. In the pre-processing layer, a dense vector representation is constructed for each
node vi and edge eij using an MLP denoted as MLPem. The construction process can be described as

h0
i = squareplus(MLPem(one-hot(τi))) (3)

h0
ij = squareplus(MLPem(wij)) (4)

Here, squareplus represents an activation function. It is important to note that the node and edge
embedding functions, parametrized by MLPem, utilize separate weights. For the sake of brevity, we
refer to them simply as MLPem. Note that the node representations do not explicitly encode their
ground-truth positions. Only the distances between nodes are encoded in the edge representations.
This allows us to ensure translational invariance.

Force prediction. We utilize multiple layers of message-passing to facilitate communication between
nodes and edges. In the ℓth layer, the node embeddings are updated as follows:

hℓ+1
i = squareplus

Wℓ
V ·

hℓ
i

n ∑
j∈N in

i

hℓ
ji

n ∑
j∈Nout

i

hℓ
ij

 (5)

Here, N in
i = {vj ∈ V | eji ∈ E} and N out

i = {vj ∈ V | eij ∈ E} represents the incoming and
outgoing neighbors of node vi respectively. The term Wℓ

V signifies a layer-specific learnable weight
matrix. More simply, we sum-pool the edge embeddings over both incoming and outgoing neighbors,
concatenate them along with the target node’s own embedding and then pass it through one linear
transformation followed by non-linearity. The embedding of an edge eij on node vi in the ℓth layer,
denoted as hℓ

ij , is computed as:

hℓ+1
ij = squareplus

(
Wℓ

E ·
(
hℓ
ij

n
hℓ
i

n
hℓ
j

))
(6)

Similar to Wℓ
V , Wℓ

E is a layer-specific learnable weight matrix that applies to the edge set. The
message-passing process spans L layers, with L being a hyper-parameter. In the Lth layer, the final
node and edge representations are denoted as zi = hL

i and zij = hL
ij , respectively.

Finally, the pair-wise interaction force F̂ij from particle i to j is predicted as:

F̂ij = squareplus(MLPV(zij)) (7)

where, MLPV denotes a Multilayer Perceptron with a squareplus activation function. One may also
use ReLU as ativation function, see empirical comparison at Fig. K in App. H

The force on a node is defined as the summation of all forces from incoming edges and the reactive
force from its outgoing edges. Mathematically,

F̂i =
∑

j∈N in
i

F̂ji +
∑

j∈Nout
i

−F̂ij (8)

Here, the second term accounts for the reactive force from each outgoing edge, which is essentially
the negated version of the force particle i imparts on particle j. This inductive bias ensures Newton’s
third law that every action has an equal and opposite reaction. More importantly, this inductive
bias implicitly ensures that the net force on the system is zero, thereby strictly ensuring momentum
conservation. Formally:
Theorem 1 (Momentum Conservation) In the absence of an external field, BROGNET exactly
conserves the linear momentum of the system.
Proof of the theorem is provided in Appendix A. Further, as demonstrated later the empirical
results comparing the performance of BROGNET with a version that does not employ the momentum
conservation, namely, Brownian dynamics GNN (BDGNN), suggests that the momentum conservation
indeed results in better performance of the model.
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Learning the Brownian term. While we can learn the distribution associated with the diffusion
term (see Eq.( 2)), it is well-known that Brownian motion follows multivariate Gaussian distribution.
The diffusion term is independent of the system topology and depends only the particle type and its
attributes such as radius or friction coefficient. To learn this term, we represent the node type as a
one-hot encoding, which is passed through an MLP to obtain the γ̂i associated with each particle (see
Fig. 1). This γ̂i, along with force obtained from the GNN, is substituted in the governing equation
(Eq. 2) and learned in an end-to-end fashion. It is worth noting that the standard deviation of the
stochastic process is given by σi =

√
2γikBT . Thus, all other terms other than γi in the Eq. 2 are

known apriori or are constants.

Trajectory prediction and training. Based on the predicted forces and γis, the positions are derived
using the Euler Maruyama integrator Brańka & Heyes (1998). The loss on the prediction is computed
using Gaussian Negative Log-likelihood loss, which is then back-propagated to train the model.
Specifically, let Xi,t and X̂i,t denote the ground truth and predicted positions of particle i at time t,
respectively. The loss function is defined as follows.

L =
1

N

(
N∑
i=1

T∑
t=2

logmax{σ̂2
i , ϵ}+ λ

(Xi,t − X̂i,t)
2

max{σ̂2
i , ϵ}

)
(9)

Here, ϵ is a small constant, and λ controls the relative weightage of the two terms. σ̂i is the standard
deviation associated with the position of each of the particles. The overall objective of the loss is to
minimize the variance-normalized deviation from the ground truth (second term), while also ensuring
a regularizing term to keep the variance low. We use Gaussian NLL loss since the stochasticity in
Brownian dynamics is a Gaussian as well (recall Eq. 2).

Note that the positions, both predicted and ground-truth, are computed directly from the predicted
and ground-truth forces, respectively, using Euler Maruyama integrator as follows.

Xi(t+∆t) = Xi(t) + Fi/γi∆t+

√
2kBT

γi
∆Ωt (10)

where ∆Ωt is a random number sampled from a standard Normal distribution. It should be noted
that the training approach presented here may lead to learning the dynamics as dictated by the Euler
Maruyama integrator. Thus, the learned dynamics may not represent the “true” dynamics of the
system, but one that is optimal for the Euler Maruyama integrator1.

4 EXPERIMENTS

In this section, we benchmark the ability of BROGNET to learn Brownian dynamics directly from the
trajectory and establish:
• Accuracy: BROGNET accurately models Brownian dynamics and outperforms baseline models.
• Zero-shot generalizability: The inductive architecture of BROGNET allows it to accurately

generalize to systems of unseen sizes and temperatures.

The codebase and all datasets used in this work can be accessed from the anonymous repository at
https://anonymous.4open.science/r/BroGNet-F589/README.md.

4.1 EXPERIMENTAL SETUP

We provide the details of the hardware and software environment in App. C.1.
• Baselines: To the best of the authors’ knowledge, there are no prior works on learning Brownian
dynamics directly from the trajectory. Thus, in order to compare the performance of BROGNET, we
propose five different baselines.
(1) Neural Network (NN): Here, we use a feedforward MLP that takes Xi vector at time t as the
input and predicts the positions at t+∆t as the output.
(2) Brownian NN (BNN): NN in (1) does not have any physics-based inductive biases. To address
this, we propose BNN, a Neural SDE that parameterizes the Brownian dynamics using a feed-forward
MLP. Specifically, BNN takes Xt of all the particles concatenated into a vector as input and predicts
the F̂ and γ̂ as output employing a fully connected MLP. These outputs are then used in Eq. 10
to predict the updated positions. Thus, BNN employs the inductive-bias in terms of the Brownian

1See App. B for details on Euler Maruyama integrator and other integrators for SDE.
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equation of motion.
(3) Brownian full graph network (BFGN): The models in (1) and (2) do not exploit the topology of
the system and are not permutation invariant. To this extent, we employ BFGN a graph-based baseline
that takes the position as input and outputs the forces and γ for each node. This output is then sub-
stituted in Eq. 10 to obtain the updated position. Thus, BFGN is a graph-based version of BNN. Note
that BFGN employs the full graph network architecture Cranmer et al. (2020); Sanchez-Gonzalez et al.
(2020), a versatile architecture that has been demonstrated for a variety of particle-based systems. It is
worth noting that BFGN is not translational invariant due to the explicit use of positions as node inputs.
(4) Brownian Dynamics GNN (BDGNN): We also present a physics-informed baseline, BDGNN.
BDGNN has all the inductive biases of BROGNET except Newton’s third law. Specifically, the force
on each particle i is computed as:

Fi = squareplus(MLPV(zi)) (11)

Note that BDGNN has the same architecture as BROGNET and hence allows us to evaluate the role
of momentum conservation as an inductive bias in the BROGNET.
(5) Brownian Neural Equivariant Interatomic Potentials (BNequIP): BNequIP employs an equiv-
ariant GNNs proposed by (Batzner et al., 2022) and directly predicts the force vector as the output.
• Datasets and systems: To compare the performance BROGNET, we selected three different
systems, namely, linear spring, linear spring with binary particle types, and non-linear spring systems,
all following Brownian dynamics at finite temperatures. The first is a model system with particles
interacting with each other based on a linear spring and subjected to Gaussian noise. The second
system comprises of non-linear spring where the force on a spring is proportional to the fourth power
of displacement. The third system corresponds to a linear spring system with two different types
of particles having different γ. For linear and non-linear spring systems, models are trained on
5−spring system only, which are then evaluated on other system sizes. In case of linear spring with
binary particle types, models are trained on 10−spring system and evaluated on other system sizes.
The details of all the systems to generate the ground truth data are provided in App. C. Further, the
detailed data-generation procedure is given in App. D.

• Evaluation Metric: To quantify performance, we use the following metrics.
Position error: The position error is the normalized Euclidean distance between the ground truth
and predicted positions. Mathematically, let (x, y, z) and x̂, ŷ, ẑ be the ground truth and predicted
positions, respectively, of a given particle. Furthermore, let σx/y/z be the ground-truth standard
deviation of the positions of the particle. The error is, therefore:

PE =

 ∑
c∈{x,y,z}

(
c− ĉ

σc

)2
1/2

(12)

Brownian error: The Brownian error quantifies the difference between the standard deviation
estimated by the neural network and that of the ground truth using the RMSE metric.
Trajectory roll-out error: The above two metrics individually look at the errors in positions and
the standard deviation. In this metric, we holistically compare the distance between the distribution
of trajectories in the ground truth against the ones predicted by BROGNET. Specifically, given a
Brownian system, we simulate 100 ground-truth trajectories across 100 time steps over each particle
in the system. Similarly, we predict the trajectories using BROGNET. We next compute the average
distance between the ground-truth distribution and the predicted one using KL-divergence across all
particles. KL-divergence is defined as follows:

DKL(X̂ ∥X ) =
∑
x∈X̂

X̂ (x) log

(
X̂ (x)

X (x)

)
(13)

Here, X and X̂ represent the distributions over the ground truth and predicted trajectories, respec-
tively. Both these distributions are univariate normal distributions since the stochastic component in
Brownian dynamics is normally distributed (Eq. 2). Hence, Eq. 13 reduces to the following:

DKL(X̂ ∥X ) = log
σ1

σ0
+

σ2
0 + (µo − µ1)

2

2σ2
1

− 1

2
(14)

Here, σ0 and µ0 are the standard-deviation and mean of distribution X̂ and similarly σ1 and µ1

denote the standard deviation and mean of X .
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Figure 2: Comparison of BROGNET on a linear 5−spring system against baselines, NN, BNN,
BFGN, BDGNN and BNequIP using (a) trajectory roll-out error, (b) Brownian error, and (c) position
error. All models are trained using 10000 data points for linear 5−spring. The plots are obtained
based on 1000 forward simulations by the trained model from 100 initial conditions, each evaluated
with 10 random seeds random. Additionally, the geometric mean of (d) trajectory roll-out error, (e)
Brownian error, and (f) position error is shown in the bottom subplot.

• Model architecture and training setup: We use 10000 data points generated from 100 trajectories
with random initial conditions to train all the models. Detailed training procedures and hyper-
parameters are provided in App. E. For all versions of the graph architectures, MLPs are two layers
deep. All models were trained till the decrease in loss saturates to less than 0.001 over 100 epochs.
The model performance is evaluated on a forward trajectory, a task it was not explicitly trained for, of
0.1s. To compute the evaluation metrics, all the results are obtained over trajectories generated from
100 different initial conditions. Further, to evaluate the zero-shot generalizability, the models trained
on 5 spring systems are evaluated on 50, and 500 spring systems. Further, the models trained at 1
unit temperature are evaluated at 10 and 100 unit temperatures.

4.2 COMPARISON WITH BASELINES

Fig. 2 shows the trajectory error, Brownian error, and the position error and the geometric mean
of these errors over the trajectory for all the baselines, namely, NN, BNN, BFGN, BDGNN, and
BNequIP in comparison to BROGNET for linear 5−spring system. We observe that BROGNET
significantly outperforms all other baselines over all evaluation metric. Specifically, we observe that
the BROGNET outperforms BDGNN, which differs from the BROGNET only in terms of momentum
conservation. This suggests that the momentum conservation bias added BROGNET significantly
enhances the performance of the model. Interestingly, we also observe that the performance of BNN,
BFGN, BDGNN, and BNequIP are comparable.

Figure 3 shows the performance of BROGNET on non-linear 5−spring system, and Figure 4 shows
the performance on binary linear 10−spring systems, respectively. As in the case of the linear
spring system, we observe that BROGNET outperforms all other baselines in learning the Brownian
dynamics for non-linear spring systems and binary linear spring systems. However, we note that
the difference between the performance of BROGNET with other baselines is lower in binary spring
systems. Nevertheless, these results suggest the ability of BROGNET to learn the dynamics of
complex multi-particle systems interacting with each other based on non-linear interaction forces.

4.3 ZERO-SHOT GENERALIZABILITY

Now, we evaluate the zero-shot generalizability of the learned models to unseen system sizes and
temperatures. To this extent, we use the learned models, BFGN, BDGNN, BNequIP and BROGNET
trained on N = 5 and T = 1 units. First, these models are evaluated on system sizes of 50 and 500
springs, up to two orders of magnitude larger than those used in the training data. Figure 5(a-c)
shows the trajectory rollout error of BFGN, BDGNN, BNequIP and BROGNET on 5−, 50−, and
500− spring systems, respectively. Interestingly, we observe all four models exhibit inductivity to
larger system sizes, thanks to the GNN. Further, we observe that the trajectory rollout error for all
the models is comparable with the increasing system size, even when evaluated on a system size
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Figure 3: Comparison of BROGNET on a non-linear 5−spring system against baselines NN, BNN,
BFGN, BDGNN and BNequIP using (a) trajectory roll-out error, (b) Brownian error, and (c) position
error. All models are trained using 10000 data points for non-linear 5−spring. The plots are obtained
based on 1000 forward simulations by the trained model from 100 initial conditions, each evaluated
with 10 random seeds random. Additionally, the geometric mean of (d) trajectory roll-out error, (e)
Brownian error, and (f) position error are shown in the bottom subplot.

Figure 4: Comparison of BROGNET on a binary linear 10−spring system against baselines using (a)
trajectory roll-out error, (b) Brownian error, and (c) position error. All models are trained using 10000
data points for binary linear 10−spring (A3-B7). The plots are obtained based on 1000 forward
simulations by the trained model from 100 initial conditions. Additionally, the geometric mean of (d)
trajectory roll-out error, (e) Brownian error, and (f) position error are shown in the bottom subplot.

of 500. All the error metrics on all three type of systems linear spring, binary linear spring, and
non-linear spring are included in the App. F. These results suggest that the BROGNET can be trained
on small datasets and generalized to arbitrarily large system sizes for performing inference on the
Brownian dynamics of the system. It should be noted that both NN and BNN, due to their architecture
(feed-forward MLP), is not inductive and does not allow inference on larger system sizes.

Another important aspect of Brownian dynamics is the ability to simulate the learned systems
corresponding to different thermodynamic conditions, namely, different temperatures. Figure 5(e,f)
shows the trajectory rollout error of linear spring systems with five particles at temperatures 10
and 100 units, respectively. We again observe that BROGNET outperforms BFGN, BDGNN, and
BNequIP with very low errors on the roll-out. This suggests that both the stochastic Brownian terms
and the deterministic force term learned by the BROGNET are accurate and scalable to large system
sizes and different thermodynamic conditions.
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Figure 5: Trajectory roll-out error of BFGN, BDGNN, BNequIP and BROGNET trained on N = 5 and
T =1 to unseen system sizes (N = 50, and 500) and unseen temperatures (T = 10 and 100). The plots
are obtained based on 100 forward simulations by the trained model with random initial conditions.

4.4 MOMENTUM CONSERVATION

Note that the Brownian motion has a net-zero acceleration, so the momentum remains conserved.
To evaluate this, we compute the total force experienced by each particle during the dynamics
predicted by the models. Figure 6 shows the geometric mean of the total force experienced by
the system. Interestingly, we see that all the models except BROGNET predict finite force, while
BROGNET predicts force close to zero. This shows that the additional inductive bias of momentum
conservation enforced in the architecture of BROGNET contributes to its improved performance.

Figure 6: Momentum Error of linear, non-linear, and AB spring.
The plots are obtained based on 100 forward simulations by
the trained model with random initial conditions.

4.5 DATA EFFICIENCY

We also evaluated the data effi-
ciency of BROGNET compared to
the baselines. Specifically, we evalu-
ated the performance of BROGNET
trained with dataset size varying as
100, 500, 1000, 5000, and 10000
and compared it with the base-
lines BFGN, BDGNN and BNequIP,
trained with the respective dataset.
The results shown in Fig. 7 suggest that BROGNET can learn efficiently from a small dataset size
compared to the baselines, which could be attributed to the momentum conservation bias in the system.

5 CONCLUSION

Figure 7: Geometric mean of (a) trajectory error, (b) Brownian
error, and (c) position error of BFGN, BDGNN, and BROGNET
trained on varying dataset size. All the results are evaluated
based on 1000 forward simulations based on 100 initial condi-
tions, each evaluated with 10 random seeds.

In the present work, we demon-
strate a graph-based neural SDE
framework that can learn Brow-
nian dynamics directly from the
data. We demonstrate the ap-
proach to linear and non-linear
springs and binary linear spring
systems subjected to a stochas-
tic dynamic term and following
Brownian dynamics. In order
to compare the performance of
BROGNET, we proposed several baselines, namely, NN, BNN, BFGN, BDGNN, and BNequIP.
Note that these baselines were proposed due to the paucity of baselines in the literature. We show that
the BROGNET architecture, with its unique momentum conservation, significantly outperforms all
other baselines. Specifically, we demonstrate that momentum conservation is an important feature that
can significantly enhance the performance of such models. We also demonstrate the zero-shot general-
izability of the learned model to unseen system sizes and unseen temperatures. These results suggest
that BROGNET presents a robust framework to learn Brownian dynamics from small amounts of data.

Limitations and future works: This work focuses on Brownian dynamics, which is an over-damped
limit of the Langevin equation. How does the model perform in the case of a Langevin equation
where the acceleration is non-zero? How can the model be extended to other SDEs? We aim to
explore these questions in our future work. Further, the present work does not analyze the effect of
different integrators. This can also be pursued as part of future work.
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A APPENDIX

A PROOF OF THM. 1

PROOF. Consider a system without any external field where the dynamics is governed only by the
internal deterministic forces, for instance, a n-spring system and stochastic force terms representing
the interaction with the environment, for example, spring-particle systems in fluid system with the
stochastic term representing the collision of the particles with the atoms of the fluid environment. Note
that the deterministic term consisting of the forces is also termed as the drift term as it contributed to
the overall drift of the system, if any. Accordingly, the stochastic term is referred to as the diffusion
term. Since, the acceleration of each of the particles is zero, the net force on the system should be
zero, that is, the total linear momentum of the system due to the internal deterministic forces remain
conserved. The conservation of linear momentum for this system implies that

∑n
i=1 F̂i = 0. Assume

that the total error between the predicted and actual forces of all the particles at time t to be ε̂t. To
prove that BROGNET conserve the linear momentum exactly, it is sufficient to prove that ε̂t = 0,
since the stochastic term has zero mean. Consider,

ε̂t =

n∑
i=1

ε̂i,t =

n∑
i=1

(F̂i − Fi) =

n∑
i=1

F̂i −
n∑

i=1

Fi (15)

Note that in Brownian dynamics, which is the over damped limit of Langevin equation (Eq. 1), the
acceleration of each particle is assumed to be zero. Thus, without loss of generality,

∑n
i=1 Fi =

Fi = 0, in the absence of an external field. Hence,

ε̂t =

n∑
i=1

ε̂i,t =

n∑
i=1

F̂i =

n∑
i=1

 ∑
j∈N in

i

F̂ji +
∑

j∈Nout
i

−F̂ij

 = 0 □

Thus, the sum of the predicted force of the system remains zero leading to the conservation of linear
momentum of the system.

B EULER MARUYAMA INTEGRATOR

Consider a system of N particles having masses M and interacting with each other through an
interaction potential U(X(t)), where X(t) represents the position vectors of all the particles at time
t, that constitute a time-dependent random variable. The Taylor series expansion of the position of a
particle i at time t+∆t is given by

Xi(t+∆t) = Xi(t) + ∆tẊi(t) + ∆t2Ẍi(t) + . . . (16)

In the over-damped limit of Langevin dynamics, namely, Brownian dynamics, acceleration and higher
order terms are assumed to be zero. Thus, substituting for velocity given by Eq. 2 in Eq. 16, we get

Xi(t+∆t) = Xi(t) + Fi/γi∆t+

√
2kBT

γi
∆Ωt (17)

where ∆Ωt is a random number sampled from a standard Normal distribution. Note that the Euler-
Maruyama is the simplest form of a stochastic numerical integrator. Further, higher order integrals
can also be employed to integrate the SDEs.

C EXPERIMENTAL SYSTEMS

C.1 SIMULATION ENVIRONMENT

• Simulation environment. All the training and forward simulations are carried out in the JAX
environment Schoenholz & Cubuk (2020). The graph architecture is implemented using the jraph
package Godwin* et al. (2020). All the codes related to dataset generation and training are available
in https://anonymous.4open.science/r/BroGNet-F589/README.md.
Software packages: numpy-1.20.3, jax-0.2.24, jax-md-0.1.20, jaxlib-0.1.73, jraph-0.0.1.dev0
Hardware: Memory: 16GiB System memory, Processor: Intel(R) Core(TM) i7-10750H CPU @
2.60GHz.
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C.2 LINEAR n-SPRING SYSTEM

In this system, n-point masses are connected by elastic springs that deform linearly with extension
or compression. Note that similar to a pendulum setup, each mass mi is connected only to two
masses mi−1 and mi+1 through springs so that all the masses form a closed connection. Thus, the
deterministic force experienced by each mass i due to a spring connecting i to its neighbor j is
Fij = −k(||Xi −Xj || −Rij), where Rij is the equilibrium length of the spring and k represent the
un-deformed length and the stiffness, respectively, of the spring.

C.3 NON-LINEAR n-SPRING SYSTEM

This system is similar to a linear n-spring system with the difference that the spring force is non-linear.
Specifically, the deterministic force experienced by each mass i due to a spring connecting i to its
neighbor j is Fij = −k(||Xi −Xj || −Rij)

3, where Rij is the equilibrium length of the spring and
k represent the un-deformed length and the stiffness, respectively, of the spring.

C.4 BINARY LINEAR n-SPRING SYSTEM

This system is similar to a linear n-spring system with the difference that the system consists of two
different types of particles with different masses, friction coefficient, and γ. Thus, the deterministic
force experienced by each mass i due to a spring connecting i to its neighbor j remains the same as
Fij = −k(||Xi −Xj || −Rij), where Rij is the equilibrium length of the spring and k represent the
un-deformed length and the stiffness, respectively, of the spring. However, the stochastic part varies
depending on the type of the particle.

D DATASET GENERATION

All the datasets are generated using the known deterministic forces of the systems, along with the
stochastic, as described in Section C and Eq.2. For each system, we create the training data by
performing forward simulations with 100 random initial conditions. For both linear and nonlinear
n−spring system, n = 5 is used for generating the training data. For the binary system, a 10 particle
system is used for generating the data with the ratio of particle type 1 to type 2 as 3:7. A timestep of
10−3s is used to integrate the equations of motion for all the systems. The Euler-Maruyama algorithm
is used to integrate equations of motion due to its ability to handle stochastic differential equations.
The details of the parameters used for each of the systems are given below.
• Linear n-spring system

Parameter Value
Mass (M ) 1 unit

Stiffness (k) 1 unit
Damping constant (ζ) 1 unit

kBT 1 unit
Equilibrium length of the spring (Rij) 1 unit

• Nonlinear n-spring system

Parameter Value
Mass (M ) 1 unit

Stiffness (k) 1 unit
Damping constant (ζ) 1 unit

kBT 1 unit
Equilibrium length of the spring (Rij) 1 unit

• Binary linear n-spring system
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Parameter Value
Mass (M ) 1 unit

Stiffness (k) 1 unit
(γ1) 1 unit
(γ2) 2 unit
kBT 1 unit

Equilibrium length of the spring (Rij) 1 unit
Ratio of particle type1 to type2 30:70

From the 100 simulations for the systems obtained from the rollout starting from 100 random initial
conditions, 100 data points are extracted per simulation, resulting in a total of 10000 data points.
For training, we create several sets of trajectories with positions from two consecutive timesteps t
and t + ∆t, where the input for the model is the positions of all the particles at t and the output
against which the model is trained is the position of all the particles at t +∆t employing the loss
function as defined in Eq. 9. Note that in the present work, we use only trajectories of length one
timestep only. The trained models are evaluated on 1000 trajectories generated from 100 different
initial conditions with each initial condition simulated for 10 random seeds, all of which are unseen
during the training. The trajectories considered are of 100 timesteps, that is, 0.1 s. Note that this is
not a task the models are trained for; the training was done only on one timestep trajectories. All the
error metrics presented in the work are averaged over the 1000 trajectories for each of the models and
casees unless specified otherwise.

For zero-shot generalizability, for each case of different system sizes and temperatures, we directly
evaluate the trained models on 1000 trajectories. No fine tuning or additional training is performed
for any of the different system sizes or temperatures.

E TRAINING DETAILS AND HYPER-PARAMETERS

The detailed procedures followed for the training of the models and the hyperparameters employed
for each of the models, identified based on good practices, are provided in this section.

E.1 TRAINING DETAILS

The training dataset is divided in 80:20 ratio randomly, where the 80% is used for training and 20%
is used as the validation set for hyperparametric optimization. Further, the trained models are tested
on its ability to predict statistically equivalent trajectory, a task it was not trained on. Specifically, the
systems are evaluated on a 0.1s long trajectory, that is 100× larger than the training trajectory. The
error metrics are computed based on 1000 different trajectories from 100 initial conditions, each
run with 10 random seeds. All models are trained till the losses saturated. A learning rate of 10−3

was used with the Adam optimizer for the training. Detailed hyperparameters employed for all the
models are provided next.

E.2 HYPER-PARAMETERS

The hyper-parameters used for different models, namely, NN, BNN, BFGN, BDGNN, and BROGNET
are given in the tables below.

•NN, BNN

Parameter Value
Hidden layer neurons (MLP) 16

Number of hidden layers (MLP) 2
Activation function squareplus

Optimizer ADAM
Learning rate 1.0e−3

Batch size 20

•BFGN
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Parameter Value
Node embedding dimension 8
Edge embedding dimension 8
Hidden layer neurons (MLP) 16

Number of hidden layers (MLP) 2
Activation function squareplus

Number of layers of message passing 1
Optimizer ADAM

Learning rate 1.0e−3

Batch size 20

•BDGNN, BROGNET

Parameter Value
Node embedding dimension 5
Edge embedding dimension 5
Hidden layer neurons (MLP) 5

Number of hidden layers (MLP) 2
Activation function squareplus

Number of layers of message passing 1
Optimizer ADAM

Learning rate 1.0e−3

Batch size 20

•BNequIP

Parameters Value
graph_net_steps 2

use_sc True
nonlinearities {’e’: ’raw_swish’, ’o’: ’tanh’}

n_element 1
hidden_irreps ’128x0e + 64x1e + 4x2e’

sh_irreps ’1x3e + 1x0e’
num_basis 8

r_max 2.5
radial_net_nonlinearity ’raw_swish’

radial_net_n_hidden 64
radial_net_n_layers 1

shift 0
scale 1

n_neighbors 10.
scalar_mlp_std 5.

Optimizer ADAM
Learning rate 1.0e−2

Batch size 100

F ZERO-SHOT GENERALIZABILITY

Here, we evaluate the zero-shot generalizability of BROGNET in comparison to BFGN, BDGNN,
and BNequIP for linear, non-linear, and binary linear n− spring systems. Figures H I and J show the
trajectory, Brownian, and position error, respectively, of BFGN, BDGNN, BNequIP, and BROGNET
evaluated on 50, 500, and 5000 particle systems. Note for linear and non-linear springs, the models
are trained on 5−particle systems, while for binary linear spring system, the models are trained on
10−particle systems. We observe that BROGNET significantly outperforms other models.
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Figure H: Rollout error of BFGN, BDGNN, BNequIP, and BROGNET tested on N = 50, 500, 5000
for linear (row 1), non-linear spring (row 2), and binary linear spring (row 3) systems evaluated on
1000 forward trajectories. Note that for linear and non-linear systems, the models are trained on
5−particle systems whereas for binary system, the models are trained on 10−particle system.
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Figure I: Brownian error of BFGN, BDGNN, BNequIP, and BROGNET trained on N = 5 system and
tested on N = 50, 500, 5000 for linear (row 1), non-linear spring (row 2), and binary linear spring
(row 3) systems evaluated on 1000 forward trajectories.
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Figure J: Position error of BFGN, BDGNN, BNequIP, and BROGNET trained on N = 5 system and
tested on N = 50, 500, 5000 for linear (row 1), non-linear spring (row 2), and binary linear spring
(row 3) systems evaluated on 1000 forward trajectories.
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Models Training time (in sec) Forward Simulation time (in sec)
NN 391 0.012
BNN 635 0.222
BFGN 1755 0.642
BDGNN 1934 0.411
BNequIP 27535 21.319
BROGNET 2126 0.506

Table A: Training time for 10,000 epochs and forward simulation time for 100 timesteps of NN, BNN,
BFGN, BDGNN, NequIP, and BROGNET on linear 5 spring system. Note that the forward simulation
time is computed as the average of 100 initial condition with each initial condition simulated for 10
different random seeds (altogether, an average of 1000 trajectories).

Figure K: Comparison of activation function SquarePlus vs ReLU on linear 5− spring system with
BROGNET. All the results are evaluated based on 1000 forward simulations based on 100 initial
conditions, each evaluated with 10 random seeds.
G TRAJECTORY VISUALIZATION

Visualizations of the trajectories of linear n-spring systems using ground truth and BROGNET is
included as a video in the link: https://anonymous.4open.science/r/BroGNet-F589/videos. Note that
BROGNET is trained on a 5−particle system.

H SQUAREPLUS VS RELU

Here, we evaluate BROGNET performance with respect to two activation functions: SquarePlus and
ReLU. From Fig. K we can say one may also use ReLU for training.
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