
A Limitations52

In this section, we discuss the limitations of our framework and outline some potential solutions.53

Expressiveness. The theoretical capability of the cardinality constraint to represent any propositional54

logic formula does not necessarily imply the practical ability to learn any such formula in our frame-55

work; this remains a challenge. Fundamentally, logical constraint learning is an inductive method, and56

thus different learning methods would have different inductive biases. Cardinality constraint-based57

learning is more suitable for tasks where the logical constraints can be straightforwardly translated58

into the cardinality form. A typical example of such a task is Sudoku, where the target CNF formula59

consists of at least 8,829 clauses [Lynce and Ouaknine, 2006], while the total number of target60

cardinality constraints stands at a mere 324.61

Technically, our logical constraint learning prefers equality constraints (e.g., x + y = 2), which62

actually induce logical conjunction (e.g., x ^ y = T) and may ignore potential logical disjunction63

which is represented by inequality constraints (e.g., x _ y = T is expressed by x + y � 1). To64

overcome this issue, a practical trick is to introduce some auxiliary variables, which is commonly65

used in linear programming [Fang and Puthenpura, 1993]. Consider the disjunction x _ y = T; here,66

the auxiliary variables z1, z2 help form two equalities, namely, x+ y + z1 = 2 for (x, y) = (T,T)67

and x+ y+ z2 = 1 for (x, y) = (T,F) or (x, y) = (F,T). One can refer to the Chain-XOR task (cf.68

Section G.1) for a concrete application of auxiliary variables.69

Reasoning efficiency. The reasoning efficiency, particularly that of SMT solvers, during the inference70

phase can be a primary bottleneck in our framework. For instance, in the self-driving path planning71

task, when we scale the map size up to a 20⇥ 20 grid involving 800 Boolean variables (400 variables72

for grid obstacles and 400 for path designation), the Z3 MaxSAT solver would require more than two73

hours for some input.74

To boost reasoning efficiency, there are several practical methods that could be applied. One75

straightforward method is to use an integer linear program (ILP) solver (e.g., Gurobi) as an alternative76

to the Z3 MaxSAT solver. In addition, some learning-based methods (e.g., Balunovic et al. [2018])77

may enhance SMT solvers in our framework. Nonetheless, we do not expect merely using a more78

efficient solver can resolve the problem. The improve the scalability, a more promising way is to79

combine System 1 and System 2 also in the inference stage (e.g., Cornelio et al. [2023]). Generally80

speaking, in the inference stage, neural perception should first deliver a partial solution, which is then81

completed by the reasoning engine. Such a paradigm ensures fast reasoning via neural perception,82

drastically reducing the logical variables that require solving by the exact reasoning engine, thereby83

also improving its efficiency.84

B Proofs of DC technique85

Notations. We define S := (QTQ+ ⌧I), s := (QTq1 + ⌧q2), and denote the largest eigenvalues86

and largest diagonal element of S by �max and �max, respectively. Hence, the two problems can be87

equivalently rewritten as88

(P) min
u2{0,1}n

uTSu� 2sTu, (Pt) min
u2[0,1]n

uT(S � tI)u� (2s� te)Tu.

B.1 Proof of Proposition 189

Proof. The results are primarily based on Bertsekas [2015, Proposition 1.3.4]: the minima of a90

strictly concave function cannot be in the relative interior of the feasible set.91

We first show that if t0 � �max, then the two problems are equivalent [Le Thi and Ding Tao, 2001,92

Theorem 1]. Specifically, since S�tI is negative definite, problem (Pt) is strictly concave. Therefore,93

the minima should be in the vertex set of the feasible domain, which is consistent with problem (P).94

We can further generalize this result to the case t0 � �max[Hansen et al., 1993, Proposition 1]. In this95

case, considering the i-th component of u, its second-order derivative in problem (Pt) is 2(Sii � t).96

Similarly, the strict concavity of ui ensures a binary solution, indicating the equivalence of problems97

(P) and (Pt).98

3



B.2 Proof of Proposition 299

Proof. The Karush–Kuhn–Tucker (KKT) conditions of the problem (Pt) are as follows.100

[2Su� 2tu� 2s+ te]i �↵i + �i = 0;

ui 2 [0, 1]n; ↵i � 0,�i � 0;

↵iui = 0, �i(ui � 1) = 0; i = 1, . . . , n.

where ↵ and � are multiplier vector. For u 2 {0, 1}n, the KKT condition is equivalent to101

↵i = [2Su� 2tu� 2s+ te]i(1� ui) � 0, �i = [2Su� 2tu� 2s+ te]iui  0.

By using (1� 2ui) 2 {�1, 1}, we can further combine the above two inequalities, and obtain102

2[Su� s]i(1� 2ui) + t � 0, i = 1, . . . , n.

On the other hand, if 2[Su� s]i(1� 2ui) + t � 0 holds for each i = 1, . . . , n, it is easy to check103

that ↵ � 0 and � � 0, which proves the first part of the proposition.104

The proof of the second part is a direct result of Beck and Teboulle [2000, Theorem 2.4]. To be105

specific, if u achieves a global minimum of (P), then q(u)  q(u0) for any u0
2 {0, 1}n. Hence, we106

only flip the i-th value of u, i.e., considering ui and u0
i = 1� ui, and it holds that107

uTSu� 2sTu  (u0)TSu0
� 2sTu0

= (uTSu� 2sTu) + 2[Su� s]i(1� 2ui) + Sii.

Rearranging the inequality, we obtain108

2[Su� s]i(1� 2ui) � �Sii, i = 1, . . . , n,

which completes the proof.109

C Proof of Theorem 1110

Proof. Notations. We use k · k to denote the `2 norm for vectors and Frobenius norm for matrices.111

We define112

'(�,✓,Z,Y) := kZwu +Ywv � bk2 + ↵k(Z,Y)� (f✓(X),Y)k2 + �kw �w0
k
2.

For the loss functions of logic programming and network training, we assume `1(✓) and `2(�) to be113

µ✓ and µ� smooth, respectively. For ease of presentation, we define �k = f✓k(X)wk
u +Ywk

v � b,114

and let cmax be the upper bound of k�k
k. Furthermore, by using the Woodbury identity formula, we115

can compute116

(Zk;Yk) = arg min
(Z,Y)

kZwk
u +Ywk

v � bk2 + ↵k(Z,Y)� (f✓k(X),Y)k2 + �kw �w0
k
2

= (f✓k(X);Y)� �k�k(wk)T, where �k =
1

↵+ kwkk2
.

Let ⇢k := (↵�k), we have117

'(�k,✓k, f✓k(X),Y)� '(�k,✓k,Zk,Yk) = (1� ((↵�k)2 + (1� ↵�k)2)k�k
k
2

= 2⇢k(1� ⇢k)k�k
k
2.

Update of �. We consider the single rule case (multiple rules can be directly decomposed), i.e.,118

� = (w, b) and b = (b; . . . ; b). The update of � is conducted on the loss function119

`k2(w, b) = '(�k,✓k, f✓k(X),Y) = kf✓k(X)wu +Ywv � bk2 + �kw �w0
k
2.

The smallest and the largest eigenvalues of (f✓k(X),Y)T(f✓k(X),Y) + �I are denoted by �min120

and �max, respectively.121

The PPA method updates w by122

wk+1 = argmin
w

`k2(w, b) +
1

�
kw �wk

k
2,

4



which can be reduced to123

wk+1
�wk = �Mk�k, �k = (f✓k(X),Y)T� = rw`k2(w, b),

where124

Mk =
�
(f✓k(X),Y)T(f✓k(X),Y) + �I +

1

�
I
��1

.

The (2/�)-strongly convexity of the proximal term implies the Polyak-Łojasiewicz (PL) inequality,125

which derives that126

'(�k,✓k,Zk,Yk) = '(�k,✓k, f✓k(X),Y)� 2⇢k(1� ⇢k)k�k
2

= `k2(w
k, b)� 2⇢k(1� ⇢k)k�k

k
2
� `k2(w

k+1, b)� 2⇢k(1� ⇢k)k�k
2 +

2

�
kwk+1

�wk
k
2.

Plugging wk+1
�wk = �Mk�k into the inequality, we have127

'(�k,✓k,Zk,Yk) � `k2(w
k+1, b) +

2

�
(�k)T(Mk)2�k � 2⇢k(1� ⇢k)k�k

k
2

� '(�k+1,✓k,Zk+ 1
2 ,Yk+ 1

2 ) +
2

�
(�k)T(Mk)2�k � 2⇢k(1� ⇢k)k�k

k
2,

where128

(Zk+ 1
2 ;Yk+ 1

2 ) = argmin(Z̄,Ȳ)kZ̄w
k+1
u + Ȳwk+1

v � bk2 + ↵k(Z̄, Ȳ)� (f✓k(X),Y)k2

= (f✓k(X);Y)� �k+ 1
2�k+ 1

2 (wk+1)T, where �k+ 1
2 =

1

↵+ kwk+1k2
.

Note that (Mk)2 has the smallest eigenvalue �2/(1 + ��max)2, and thus we have129

'(�k,✓k,Zk,Yk) � '(�k+1,✓k,Zk+ 1
2 ,Yk+ 1

2 )+
2�

(1 + ��max)2
kr�`2(w, b)k2�2⇢k(1�⇢k)cmax.

Update of ✓. The update of ✓ is conducted on the loss function130

`k1(✓) = kZk+ 1
2 � f✓(X)k2.

By using µ✓-smooth of `k1 , we obtain that131

'(�k+1,✓k,Zk+ 1
2 ,Yk+ 1

2 )� '(�k+1,✓k+1,Zk+ 1
2 ,Yk+ 1

2 ) = `k1(✓
k+1)� `k1(✓

k)

� �hr✓`
k
1(✓

k),✓k+1
� ✓k

i �
µ✓

2
k✓k+1

� ✓k
k
2
�

1

2
⌘kr✓`

k
1(✓

k)k2.

Letting Zk+1 = argminZ '(�k+1,✓k+1,Z), we conclude132

'(�k+1,✓k,Zk+ 1
2 ,Yk+ 1

2 ) � '(�k+1,✓k+1,Zk+1,Yk+1) +
1

2
⌘kr✓`

k
1(✓

k)k2.

Convergent result. By combining the update of � and ✓, we have133

'(�k,✓k,Zk,Yk)� '(�k+1,✓k+1,Zk+1,Yk+1)

�
1

2
⌘kr✓`

k
1(✓

k)k2 +
2�

(1 + ��max)2
kr�`2(�

k)k2 � 2⇢k(1� ⇢k)cmax.

Taking a telescopic sum over k, we obtain134

'(�0,✓0,Z0,Y0)� '(�K ,✓K ,ZK ,YK)

�

KX

i=1

1

2
⌘kr✓`

k
1(✓

k)k2 +
2�

(1 + ��max)2
kr�`2(�

k)k2 � 2⇢k(1� ⇢k)cmax.

Since ⇢k(1� ⇢k)  ⇢/(K + 1)2, we have135

E[kr✓`
k
2(✓

k)k2] 
2

(K + 1)⌘

�
('(�0,✓0,Z0,Y0)�min') + 2cmax

�
,

5



and136

E[kr�`2(�
k)k2] 

(1 + ��max)2

2(K + 1)

�
('(�0,✓0,Z0,Y0)�min') + 2cmax

�
.

Stochastic version. We first introduce an additional assumption: the gradient estimate is unbiased137

and has bounded variance [Bottou et al., 2018, Sec. 4], i.e.,138

E⇠[r̃✓`
k
1(✓

k)] = r✓`
k
1(✓

k), E⇠[r̃✓`
k
2(�

k)] = r✓`
k
2(�

k),

and139

V⇠[r̃✓`
k
1(✓

k)]  ⇣ + ⇣vkr✓`
k
1(✓

k)k2, V⇠[r̃�`
k
1(✓

k)]  ⇣ + ⇣vkr�`
k
2(�

k)k2.

This assumption derives the following inequalities hold for ⇣g = ⇣v + 1:140

E⇠[kr̃✓`
k
1(✓

k)k2]  ⇣ + ⇣gkr✓`
k
1(✓

k)k2, E⇠[kr̃✓`
k
2(�

k)k2]  ⇣ + ⇣gkr�`
k
2(�

k)k2,

For the update of ✓, we have141

'(�k+1,✓k,Zk+ 1
2 ,Yk+ 1

2 )� E⇠['(�
k+1,✓k+1,Zk+1,Yk+1)] �

⌘k
2
kr✓`

k
1(✓

k)k2 �
⌘2kµ✓

2
⇣.

For the update of �, using the µ�-smooth, and taking the total expectation:142

'(�k,✓k,Zk,Yk)� E⇠['(�
k+1,✓k,Zk+ 1

2 ,Yk+ 1
2 )] + 2⇢k(1� ⇢k)k�k

k
2

� (r�`
k
2(�

k))TMk(r�`
k
2(�

k))�
µ�

2
E⇠[kM̃

k
r̃�`

k
2(�

k)k2]

�
1

✏k + �max
kr�`

k
2(�

k)k2 �
µ�

2(✏k + �min)2
(⇣ + ⇣gkr�`

k
2(�

k)k2),

where we define ✏k = 1/�k for simplicity. Now, let � be sufficiently small (that is, satisfying143

(✏k + �min)2 � µ�(✏k + �max)), we obtain144

'(�k,✓k,Zk,Yk)� E⇠['(�
k+1,✓k,Zk+ 1

2 ,Yk+ 1
2 )] + 2⇢k(1� ⇢k)k�k

k
2

�
1

2(✏k + �max)
kr�`

k
2(�

k)k2 �
µ�

2(✏k + �min)2
⇣.

Putting the updates of ✓ and � together, we have145

'(�k,✓k,Zk,Yk)� E⇠['(�
k+1,✓k+1,Zk+1,Yk+1)] + 2⇢k(1� ⇢k)k�k

k
2

�
1

2
⌘kkr✓`

k
1(✓

k)k2 �
1

2
⌘2kµ✓⇣ +

1

2(✏k + �max)
kr�`

k
2(�

k)k2 �
µ�

2(✏k + �min)2
⇣.

Now, setting ⌘k  ✓/
p
K + 1 and �k

 �/
p
K + 1, we can conclude146

E[kr✓`
k
1(✓

k)k2] = O(
1

p
K + 1

), E[kr�`2(�
k)k2] = O(

1
p
K + 1

).

D Proof of Theorem 2147

Proof. We consider the following problem,148

(P⇠) min
u2{0,1}n

q⇠(u) := uT(S + �I)u� 2(s+ �⇠)Tu.

For given t � 0, the corresponding stationary points of (P⇠) satisfy149

2[Su� s]i(1� 2ui) + 2�(ui � ⇠i)(1� 2ui) + t � 0, i = 1, . . . , n.

Note that150

(ui � ⇠i)(1� 2ui) =

⇢
�⇠i if ui = 0;
⇠i � 1 if ui = 1.

For given u 2 {0, 1}n, we denote %i = 2[Su� s]i(1� 2ui). Then, the probability that (P⇠) has the151

stationary point u can be computed as152

Pr(u) =
nY

i=1

Pr(%i + 2�(ui � ⇠i)(1� 2ui) + t � 0),

6



where153

Pr(2�(ui � ⇠i)(1� 2ui) + %i + t � 0) = min(
1

2�
(t+ %i), 1).

Hence, for given two different u(0)
1 and u(0)

2 , the probability that the corresponding rules can converge154

to the same result u satisfying155

Pr(u1 = u,u2 = u)  Pr(u)2 =
nY

i=1

min(
1

2�
(t+ %i), 1)

2.

E Trust Region Method156

Figure 3 illustrates the key concept of the trust region method. For simplicity, centre points157

w1(0), . . . ,w4(0) of the trust region are also set as the initial points of stochastic gradient de-158

scent. Stochastic gradient descent is implicitly biased to least norm solutions and finally converges to159

point (0, 1) by enforcing the Boolean constraints. The trust region penalty encourages the stochastic160

gradient descent to converge to different optimal solutions in different trust regions.161

(0,0)

(1,1)

&!(')&"(')

&!
&" &#&$&$(')

&#(')
(0,0)

(1,1)

&!(')&"(')

&!&"

&#

&$&$(')
&#(')

Figure 1: Avoid degeneracy by trust region method. In logical constraint learning, the imposition of
the Boolean constraints and the implicit bias of the stochastic gradient descent cause w1, . . . ,w4 to
converge to the same result (left figure), while the trust region constraints guarantee that they can
sufficiently indicate different rules (right figure).

F Experiment Details162

Computing configuration. We implemented our approach via the PyTorch DL framework. The163

experiments were conducted on a GPU server with two Intel Xeon Gold 5118 CPU@2.30GHz,164

400GB RAM, and 9 GeForce RTX 2080 Ti GPUs. The server ran Ubuntu 16.04 with GNU/Linux165

kernel 4.4.0.166

Hyperparameter tuning. Some hyperparameters are introduced in our framework. In Table 3167

we summarize the (hyper-)parameters, together with their corresponding initialization or update168

strategies. Most of these hyperparameters are quite stable and thus only need to be fixed to a constant169

or set by standard strategies. We only discuss the setting of bmin, bmax and b. We recommend b to be170

tuned manually rather than set by PPA update, and one can gradually increase b from 1 to n� 1 (n is171

the number of involved logical variables), and collect all logical constraints as candidate constraints.172

For bmin and bmax, due to the prediction error, it is unreasonable to set bmin and bmax that ensure all173

examples to satisfy the logical constraint. An alternative method is to set a threshold (e.g. k%) on the174

training (or validation) set, and the constraint is only required to be satisfied by at least k% examples.175

G Additional Experiment Results176

G.1 Chained XOR177

The chained XOR, also known as the parity function, is a basic logical function, yet it has proven178

challenging for neural networks to learn it explicitly [Shalev-Shwartz et al., 2017, Wang et al., 2019]179

To be specific, given a sequence of length L, the parity function outputs 1 if there are an odd number180

7



Table 1: The list of (hyper-)parameters and their initialization or update strategies.
Param. Description Setting

✓ Neural network parameters Updated by stochastic gradient descent

W Matrix of logical constraints Updated by stochastic PPA

b Bias term of logical constraints Pre-set or Updated by stochastic PPA

bmin/bmax Lower/Upper bound of logical constraints Estimated by training set

↵ Trade-off weight in symbol grounding Fixed to ↵ = 1.0

� Weight of trust region penalty Fixed to � = 0.1

t1/t2 Weight of DC penalty Increased per epoch

⌘ Learning rate of network training Adam schedule

� Step size of constraint learning Adaptively set (� = 0.001 by default)

of 1’s in the sequence, and 0 otherwise. The goal of the Chained XOR task is to learn this parity181

function with fixed L. Note that this task does not involve any perception task.182

We compare our method with SATNet and L1R32H4. In this task, SATNet uses an implicit but strong183

background knowledge that the task can be decomposed into L single XOR tasks. Neither L1R32H4184

nor our method uses such knowledge. For L1R32H4, we adapt the embedding layer to this task and185

fix any other configuration. Regarding our method, we introduce L� 1 auxiliary variables.1186

It is worth noting that these auxiliary variables essentially serve as a form of symbol grounding.187

Elaborately, the learned logical constraints by our method can be formulated as follows,188

w1x1 + · · ·+wLxL +wL+1z1 + · · ·+w2L�1zL�1 = b,

where wi 2 B, i = 1, . . . , 2L � 1, xi 2 B, i = 1, . . . , L and zi 2 B, i = 1, . . . , L. The auxiliary189

variables zi, i = 1, . . . , L have different truth assignments for different examples, indicting how the190

logical constraint is satisfied by the given input. Now, combining the symbol grounding of auxiliary191

variables, we revise the optimization problem (1) of our framework as192

min
(W ,b)

E(x,y)⇠D[kW (x; z̄;y)� bk2] + �kW �W (0)
k
2,

s.t. z̄ = argminz2Z E(x,y)⇠D[kW (x; z;y)� bk2], W 2 B
m⇥(u+v), b 2 N

m
+ .

The symbol grounding is solely guided by logical constraints, as neural perception is not involved.193

The experimental results are plotted in Figure 4. The results show that L1R32H4 is unable to learn194

such a simple reasoning pattern, while SATNet often fails to converge even with sufficient iterations,195

leading to unstable results. Our method consistently delivers full accuracy across all settings, thereby196

demonstrating superior performance and enhanced scalability in comparison to existing state-of-the-197

art methods. To further exemplify the efficacy of our method, we formulate the learned constraints198

in the task of L = 20. Eliminating redundant constraints and replacing the auxiliary variables with199

logical disjunctions, the final learned constraint can be expressed as200

(x1 + · · ·+ x20 + y = 0) _ (x1 + · · ·+ x20 + y = 2) _ · · · _ (x1 + · · ·+ x20 + y = 20),

which shows that our method concludes with complete and precise logical constraints.201

G.2 Nonograms202

Nonograms is a logic puzzle with simple rules but challenging solutions. Given a grid of squares, the203

task of nonograms is to plot a binary image, i.e., filling each grid in black or marking it by X. The204

required numbers of black squares on that row (resp. column) are given beside (resp. above) each205

row (resp. column) of the grid. Figure 5 gives a simple example.206

1Note that the number of auxiliary variables should not exceed the number of logical variables. If so, the
logical constraints trivially converge to any result.

8



(a) SATNet (b) L1R32H4 (c) Ours

Figure 2: Results (%) of chained XOR task, including accuracy and F1 score (of class 0). The
sequence length ranges from 20 to 200, showing that our method stably outperforms competitors.

r1

r2

r3

r4

r5

c1 c2 c3 c4 c5

Empty Nonogram Solved Nonogram

Figure 3: An example of nonograms.

Data Size L1R32H4 Ours

1000 14.4 100.0
5000 62.0 100.0
9000 81.2 100.0

Table 2: Accuracy (%) of the nonograms task.

In contrast to the supervised setting used in Yang et al. [2023], we evaluate our method on a weakly207

supervised learning setting. Elaborately, instead of the fully solved board, only partial solutions208

(i.e., only one row or one column) are observed. Note that this supervision is enough to solve the209

nonograms, because the only logical rule to be learned is that the different black squares (in each row210

or column) should not be connected.211

For our method, we do not introduce a neural network in this task, and only aim to learn the logical212

constraints. We carry out the experiments on 7 ⇥ 7 nonograms, with training data sizes ranging213

from 1,000 to 9,000. The results are given in Table 4, showing the efficacy of our logical constraint214

learning. Compared to the L1R32H4 method, whose effectiveness highly depends on the training215

data size, our method works well even with extremely limited data.216

G.3 Visual SudoKu Solving217

In the visual SudoKu task, it is worth noting that the computation of z cannot be conducted by batch218

processing. This is because the index of y varies for each data point. For instance, in different219

SudoKu games, the cells to be filled are different, and thus the symbol z has to be computed in a220

point-wise way. To solve this issue, we introduce an auxiliary ȳ to approximate the output symbol y:221

(z̄, ȳ) = argminz̄2Z,ȳ2Y kW (z̄; ȳ)� bk2 + ↵k(z̄; ȳ)� (f✓(x);y)k
2.

On the SATNet dataset, we use the recurrent transformer as the perception model [Yang et al., 2023],222

because we observe that the recurrent transformer can significantly improve the perception accuracy,223

and even outperforms the state-of-the-art of MNIST digit recognition model. However, we find224

that its performance degrades on the more difficult dataset RRN, and thus we still use a standard225

convolutional neural network model as the perception model for this dataset.226

We include detailed results of board and cell accuracy in Table 5. It can be observed that our method is227

consistently superior to the existing methods, and significantly outperforms the current state-of-the-art228

method L1R32H4 on the RRN dataset (total board accuracy improvement exceeds 20%). Also note229

that the solving accuracy of our method always performs the best, illustrating the efficacy of our230

logical constraint learning.231

Next, we exchange the evaluation dataset, namely, using the RRN dataset to evaluate the model232

trained on the SATNet dataset, and vice versa. The results are presented in Table 6. The accurate233

logical constraints and exact logical reasoning engine guarantee the best performance of our method234

9



on transfer tasks. Specifically, the performance of L1R32H4 drops significantly when transfer the235

SATNet trained model to RNN dataset our method beats the alternative methods on both transfer236

tasks.237

Table 3: Detailed cell and board accuracy (%) of original visual Sudoku task.

Method
SATNet dataset RRN dataset

Perception Solving Total Perception Solving Total
board acc. board acc. board acc. board acc. board acc. board acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 72.7 75.9 67.3 75.7 0.1 0.1
L1R32H4 94.1 91.0 90.5 87.7 65.8 65.7

NTR 87.4 0.0 0.0 91.4 3.9 3.9
NDC 79.9 0.0 0.0 88.0 0.0 0.01

Ours 95.5 95.9 95.5 93.1 94.4 93.1

Perception Solving Total Perception Solving Total
cell acc. cell acc. cell acc. cell acc. cell acc. cell acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 99.1 98.6 98.8 75.7 59.7 72.0
L1R32H4 99.8 99.1 99.4 99.3 89.5 92.6

NTR 99.7 60.1 77.8 99.7 38.5 57.3
NDC 99.4 10.8 50.4 99.5 10.9 38.7

Ours 99.9 99.6 99.7 99.7 98.3 98.7

G.4 Self-driving Path Planning238

Input Scene Neural network
Latent symbol

Symbolic reasoning
Output Path

Figure 4: A neuro-symbolic system in self-driving tasks. The neural perception detects the obstacles
from the image collected by the camera; the symbolic reasoning plans the driving path based on the
obstacle map. The neuro-symbolic learning task is to build these two modules in an end-to-end way.

The goal of the self-driving path planning task is to train the neural network for object detection and239

to learn the logical constraints for path planning in an end-to-end way. As shown in Figure 6, we240

construct two maps and each contains 10⇥ 10 grids (binary variables). The neural perception detects241

the obstacles from the image x and locates it in the first map, which is essentially the symbol z. Next,242

the logical reasoning computes the final path from the symbol z and tags it on the second map as the243

output y.244

As a detailed reference, we select some results of path planning generated by different methods and245

plot them in Figure 7. We find that some correct properties are learned by our method. For example,246

given the point y34 in the path, we have the following connectivity:247

(y34 = s) + (y34 = e) + Adj(y34) = 2,

which means that the path point y34 should be connected by its adjacent points. In addition, some248

distinct constraints are also learned, for example,249

y32 + z32 + z11 + z01 = 1.

10



Table 4: Detailed cell and board accuracy (%) of transfer visual Sudoku task.

Method
SATNet ! RRN RRN ! SATNet

Perception Solving Total Perception Solving Total
board acc. board acc. board acc. board acc. board acc. board acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 80.8 1.4 1.4 0.0 0.0 0.0
L1R32H4 84.8 21.3 21.3 94.9 95.0 94.5

NTR 90.2 0.0 0.0 86.9 0.0 0.0
NDC 86.1 0.0 0.0 82.4 0.0 0.0

Ours 93.9 95.2 93.9 95.2 95.3 95.2

Perception Solving Total Perception Solving Total
cell acc. cell acc. cell acc. cell acc. cell acc. cell acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 99.1 66.2 76.5 65.8 53.8 59.2
L1R32H4 99.3 89.5 92.6 99.7 99.6 99.7

NTR 99.6 37.1 56.3 99.6 62.4 79.0
NDC 99.4 11.0 38.7 99.5 11.3 50.7

Ours 99.8 98.4 98.8 99.8 99.7 99.7

In this constraint, z11 and z01 are two noise points, and they always take the value of 0. Therefore, it250

actually ensures that if z32 is an obstacle, then y32 should not be selected as a path point. However, it251

is still unknown whether our neuro-symbolic framework derives all the results as expected, because252

some of the learned constraints are too complex to be understood.253

(a) Input scene (with labels) (b) ResNet method (c) RT method (d) Ours

Figure 5: Some results of neuro-symbolic learning methods in self-driving path planning task.

11



References25

Inês Lynce and Joël Ouaknine. Sudoku as a sat problem. In AI&M, 2006.26

Shu-Cherng Fang and Sarat Puthenpura. Linear optimization and extensions: theory and algorithms.27

Prentice-Hall, Inc., 1993.28

Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to solve smt formulas. Advances in29

Neural Information Processing Systems, 31, 2018.30

Cristina Cornelio, Jan Stuehmer, Shell Xu Hu, and Timothy Hospedales. Learning where and when31

to reason in neuro-symbolic inference. In The Eleventh International Conference on Learning32

Representations, 2023.33

Dimitri Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.34

Hoai An Le Thi and Pham Ding Tao. A continuous approch for globally solving linearly constrained35

quadratic. Optimization, 50(1-2):93–120, 2001.36

Pierre Hansen, Brigitte Jaumard, MichèLe Ruiz, and Junjie Xiong. Global minimization of indefinite37

quadratic functions subject to box constraints. Naval Research Logistics (NRL), 40(3):373–392,38

1993.39

Amir Beck and Marc Teboulle. Global optimality conditions for quadratic optimization problems40

with binary constraints. SIAM journal on optimization, 11(1):179–188, 2000.41

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine42

learning. SIAM review, 60(2):223–311, 2018.43

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.44

In International Conference on Machine Learning, pages 3067–3075. PMLR, 2017.45

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and logical46

reasoning using a differentiable satisfiability solver. In International Conference on Machine47

Learning, pages 6545–6554. PMLR, 2019.48

Zhun Yang, Adam Ishay, and Joohyung Lee. Learning to solve constraint satisfaction problems with49

recurrent transformer. In The Eleventh International Conference on Learning Representations,50

2023.51

2


	Introduction
	Neuro-symbolic Learning Framework
	Efficient and Effective Logical Constraint Learning
	Neural Network Learning in Tandem with Constraint Learning

	Algorithms and Analysis
	Algorithms
	Theoretical Analysis

	Experiments
	Visual Sudoku Solving
	Self-driving Path Planning

	Related Work
	Conclusion
	Limitations
	Proofs of DC technique
	Proof of Proposition 1
	Proof of Proposition 2

	Proof of Theorem 1
	Proof of Theorem 2
	Trust Region Method
	Experiment Details
	Additional Experiment Results
	Chained XOR
	Nonograms
	Visual SudoKu Solving
	Self-driving Path Planning


