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ECAvatar: 3D Avatar Facial Animation with Controllable Identity
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ABSTRACT
Speech-driven 3D facial animation has attracted considerable at-
tention due to its extensive applicability across diverse domains.
The majority of existing 3D facial animation methods ignore the
avatar’s expression, while emotion-controllable methods struggle
with specifying the avatar’s identity and portraying various emo-
tional intensities, resulting in a lack of naturalness and realism in
the animation. To address this issue, we first present an Emolib
dataset containing 10,736 expression images with eight emotion
categories, i.e., neutral, happy, angry, sad, fear, surprise, disgust, and
contempt, where each image is accompanied by a corresponding
emotion label and a 3D model with expression. Additionally, we
present a novel 3D facial animation framework that operates with
unpaired training data. This framework produces emotional facial
animations aligned with the input face image, effectively conveying
diverse emotional expressions and intensities. Our framework ini-
tially generates lip-synchronized and expression models separately.
These models are then combined using a fusion network to gen-
erate face models that effectively synchronize with speech while
conveying emotions. Moreover, the mouth structure is incorporated
to create a comprehensive face model. This model is then fed into
our skin-realistic renderer, resulting in a highly realistic animation.
Experimental results demonstrate that our approach outperforms
state-of-the-art 3D facial animation methods in terms of realism
and emotional expressiveness while also maintaining precise lip
synchronization.

CCS CONCEPTS
• Computing methodologies→ Animation; Computer graph-
ics.

KEYWORDS
Virtual Avatar, Speech-driven, Facial Animation, Emotional Con-
trollable

1 INTRODUCTION
Speech-driven facial animation is a long-standing problem in com-
puter vision and computer graphics. In contrast to 2D facial ani-
mation [9, 16, 17, 29, 33, 38], 3D facial animation methods [7, 8, 10,
28, 40] offer a unique advantage in creating facial animations with
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diverse poses, viewpoints, and lighting conditions, making them
focal points for both academic and industrial communities.

Due to the strong correlation between speech and lip move-
ments, existing 3D animation generation methods mainly focus
on lip synchronization, which may result in a less natural or even
completely static upper face. To address this issue, some studies
incorporated blinking or head movements to enhance the natural-
ness of generated animations [31, 41]. However, these approaches
fail to consider the emotional expression of the avatar and cannot
effectively respond to the emotion conveyed in the speech clip,
which is unfavorable for generating 3D face animations with a
high degree of realism and naturalness. In recent years, some re-
searchers have concentrated on and made significant strides in the
emotion-controllable methods via specifying emotion labels [8, 27].
However, due to the limitation of the training set (e.g., MEAD [38]
or RAVDESS [21]), the identity diversity of the generated anima-
tions still remains to be improved. In addition, to the best of our
knowledge, the current methods mainly focus on face models with-
out considering the oral cavity, leading to deficiencies in the realism
of the generated animations.

In this paper, we propose an Emolib dataset consisting of 10,736
expression images in eight categories: neutral, happy, angry, sad,
fear, surprise, disgust, and contempt. Each image is associatedwith a
label pair, which includes the emotion category and intensity, along
with a corresponding 3D face model with expression. Moreover, to
address the issue of insufficiently conveying emotion in previous
methods, we propose ECAvatar, a speech-driven framework that
produces 3D facial animations corresponding to the emotions in
the speech. The framework takes a face image and a speech clip as
inputs. The face image is used to reconstruct a 3D neutral expression
face model. And the speech clip is processed by a speech emotion
recognition module to generate a label pair that indicates both the
emotion category and emotional intensity. Then, based on the label
pair, an emotional face model that closely resembles the neutral
face model is retrieved in the Emolib dataset. Meanwhile, a lip-
synchronized model with mouth structure is generated with the
speech clip and the neutral face model. A fusion network 𝐹𝑢𝑁𝑒𝑡

is proposed to incorporate the emotional and lip-synchronized
model to obtain a comprehensive face model, which is then fed
into a skin-realistic renderer to generate expressive animation. We
evaluate our framework on three databases and compare it with
nine representative methods. Extensive experimental results show
that our framework achieves enhanced realism while maintaining
satisfactory lip synchronization.

We summarize our contributions as follows:
(1) We construct an Emolib dataset of 10,736 emotional face mod-

els with diverse identities, comprising eight emotional categories
with three intensities. Each item contains a face image with a label
pair (emotion category and intensity), and its corresponding 3D
face model with expression.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(2) We propose ECAvatar, a novel framework capable of gener-
ating 3D facial animation using only unpaired training data. This
framework allows users to easily define the avatar’s identity, accu-
rately express various emotions based on input speech, and ensure
seamless lip synchronization.

(3) Our framework not only generates complete head models
with the internal mouth structure, but also incorporates a skin-
realistic renderer for more photo-realistic face animations.

2 RELATEDWORK
2.1 Emotionless 3D face animation
Compared to early approaches, which tend to specify the mapping
rules between speech and facial motions explicitly [35, 36, 42], deep
learning methods prefer to use large amounts of data to implicitly
learn the relationship. VOCA [7] is a speaker-independent method
that can capture a wide range of speaking styles but fails to syn-
thesize the upper face movements. MeshTalk [31] focuses on the
upper part of the face, which is lacking in VOCA. Greenwood et
al. [11] mainly leverages BLSTM to consider the facial expression
and head pose with respect to the input speech. Richard et al. [30]
then proposes a fusion model to combine lip and eye movements
together. Although all of the above works achieved good results,
none of them considered complete facial motion. FaceFormer [10]
encodes the long-term audio context and autoregressively predicts
a sequence of animated 3D face meshes based on transformer [37].
CodeTalker [40] models the generation as a code query task in
a finite proxy space of the learned codebook to promote vivid-
ness. Recently, some approaches have also been developed based
on the diffusion model. FaceDiffuser [34] is a non-deterministic
deep learning model to generate speech-driven facial animations
that is trained with both 3D vertex and blendshape-based datasets.
DiffSpeaker [23] is a Transformer-based network equipped with
novel biased conditional attention modules that steer the attention
mechanisms to concentrate on both the relevant task-specific and
diffusion-related conditions. However, these methods ignore the
effect of speech emotions on expressions, resulting in less natural
animations.

2.2 Emotional 3D face animation
It is well observed that when spoken with different emotions, even
the same sentence often elicits distinct facial expressions. Conse-
quently, an increasing number of researchers recognize the impor-
tance of introducing emotion for facial animation synthesis. Karras
et al. [18] designs an end-to-end convolutional network that em-
ploys linear prediction coding to encode audio and then maps the
speech data to vertex coordinates of a 3D face model. Additionally,
the network uses an emotion vector latent code as the additional
input to control speaking styles, facial expressions, and emotional
states. Pham et al. [28] trains an LSTM-RNN neural network on a
large-scale audiovisual dataset to achieve a time-varying contex-
tual non-linear mapping between audio streams and facial move-
ments with implicit emotional awareness. 3D-TalkEmo[39] adds
expression to neutral 3D meshes by a multi-dimensional scaling-
based projection method to generate emotional 3D face animation.
Speech4Mesh[12] utilizes speech information to reconstruct 3D

data and encode emotions as embedding vectors to control emo-
tional states. EmoTalk [27] introduces the emotion disentangling
encoder to disentangle the emotion and content in the speech and
then employs an emotion-guided fusion decoder to generate a 3D
talking face with enhanced emotion. However, the training data
used in EmoTalk requires the manual labor of several professional
animators. EMOTE [8] employs a content-emotion exchange mech-
anism to supervise different emotions on the same audio, but users
need to manually specify emotion labels. Moreover, the character-
istics of the oral cavity and human skin are disregarded, making
the generated animation less realistic. Therefore, we propose an
emotional facial animation framework to overcome these problems.

3 PRELIMINARIES
3.1 3D face model representation
Inspired by recent work on speech-driven facial animation [7, 10,
40], we use the FLAMEmodel [20] as the face representation, which
allows for intuitive control and editing of facial shape, pose, and
expressions using a few parameters. It includes identity-specific
face shape parameters 𝛽 ∈ R |𝛽 | , expression parameters 𝜓 ∈ R |𝜓 | ,
and pose parameters 𝜃 ∈ R3𝑘+3 (𝑘 = 4, for the left and right eyeballs,
neck, and jaw, respectively), which can be defined as:

M(𝛽, 𝜃,𝜓 ) → {V, F}, (1)

where V ∈ R𝑁×3 is the set of vertices and F ∈ Z+𝑀×3 is the set of
faces formed by the index of V. 𝑁 = 5023 and𝑀 = 9976 denote the
number of vertices and faces, respectively.

3.2 3D face model reconstruction
EMICA [8] is utilized to reconstruct 3D face models with expression
from images. It introduces a depth perceptual emotional consistency
loss to ensure that the reconstructed results are consistent with the
expressions depicted in the input images. In addition to the mesh
model, the FLAME parameters for shape, expression, and jaw pose
will also be provided. However, the 3D face models reconstructed
by EMICA still retain the pose and position corresponding to the
input image. We desire the lip-synchronized and the emotional
face model that needs to be fused to remain in the same pose; this
ensures that regardless of the emotional models used, the result-
ing comprehensive face model from the fusion network maintains
a consistent pose, which will enhance the natural transition be-
tween different emotions. Therefore, a model alignment operation
is necessary. In this work, we apply the Iterative Closest Point (ICP)
algorithm [3], which is widely used for achieving the optimal rigid
transformation between two meshes, to obtain a FLAME model
with pose parameters 𝜃 = 0.

3.3 Emolib dataset
To address the limited identity diversity in existing affective 3D
datasets, we introduce the Emolib dataset. We select a subset of the
AffectNet dataset [24] and generate 3D models corresponding to
the images in this subset to form the Emolib dataset used in our
work.

The AffectNet dataset comprises an extensive collection of im-
ages depicting facial expressions. The eight distinct emotion cat-
egories represented in these manually annotated images include
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Table 1: The number of images for each emotion category.

Emotion Neutral Happy Sad Surprise Fear Disgust Anger Contempt

Level1 500 500 500 262 108 205 500 378
Level2 500 500 500 500 500 500 500 500
Level3 500 500 359 500 500 424 500 500

Figure 1: An example item of Emolib. It contains a facial
image, a corresponding 3D model, a label pair, and Flame
parameters.

neutral, happy, angry, sad, fear, surprise, disgust, and contempt. Fur-
thermore, the dataset includes labels denoting valence and arousal
that are associated with every image. Arousal relates to the in-
tensity of an emotion or the power of the related emotional state,
whereas emotional valence specifies whether an emotion is positive
or negative [6].

For each category, the largest arousal value, 𝑉𝑎𝑟𝑜𝑚𝑎𝑥 , and the
lowest arousal value,𝑉𝑎𝑟𝑜𝑚𝑖𝑛 , are identified. Starting from𝑉𝑎𝑟𝑜𝑚𝑖𝑛 ,
the arousal values in each category were divided into three levels
with an interval of (𝑉𝑎𝑟𝑜𝑚𝑎𝑥 −𝑉𝑎𝑟𝑜𝑚𝑖𝑛)/3. Each picture is classi-
fied into one of the three levels according to its arousal value. 500
pictures are randomly selected in each level (if the total number of
pictures in the level is less than 500, all of them are included). The
number of images included in each category is shown in Table 1.
Subsequently, the 3D face model reconstruction (Section 3.2) is
employed to generate the corresponding 3D mesh model of each
image as well as the corresponding FLAME parameters. After these
steps, we obtain the dataset Emolib. It contains facial images with
expressions that are divided into eight categories, and each cate-
gory is further divided into three levels of intensity. Each image
corresponds to(Figure 1): (1) a label pair, which consists of emotion
category and intensity; and (2) a 3D face model, which includes a
mesh model and FLAME parameters for shape, expression, and jaw
pose.

3.4 VOCATeeth dataset
We incorporate the mouth structure into all 123,341 models in the
VOCASET [7], forming the VOCATeeth dataset. It is utilized to gen-
erate lip-synchronized models incorporating the mouth structure,
hence improving the realism of face animation.

The teeth and tongue models are generated using FaceGen SDK1,
and subsequently, the upper and lower teeth models are manually
separated (Figure 2(a)above).We translate, scale, and rotate the teeth
1https://facegen.com/sdk.htm

Figure 2: The mouth structure. (a) The mouth structure in-
cludes teeth and tongue models. (b) The coordinate system
in the face model. (c) A complete face model with the mouth
structure.

and tongue models (Figure 2(a)below), generating a mouth template
to align with the FLAME topology. VOCASET comprises 12 subjects
and offers corresponding 12 face templates, each featuring a neutral
expression and closed mouth. Due to the non-rigid deformation
of the lips when talking, it is challenging to obtain a reasonable
teeth motion trajectory based on the vertex displacements of the
lip region. However, according to our observation, we discovered
that compared to the lips, the motion of the chin is more consistent
with the trajectory of the teeth. Thus, for each subject, we compute
the chin motion of each face model relative to the corresponding
template and migrated the motion to the mouth template, forming
the mouth model corresponding to that face model. Then, we merge
them to generate a complete head model containing the mouth
structure. The computational details are as follows:

For each subject, we first set up a coordinate system in the corre-
sponding face template (Figure 2(b)): the origin 𝑜 is at the center of
the facemodel, the line from right ear to left ear forms the x-axis and
determines the +𝑥 direction, the head is oriented in the +𝑦 direction,
and the face is oriented in the +𝑧 direction. A point 𝑃𝑛 in the chin
region and a point𝑄𝑛 below left ear are selected and projected onto
the𝑦𝑜𝑧 plane to obtain 𝑃

′
𝑛 and𝑄

′
𝑛 , respectively, and then connected

to obtain the line segment 𝑃
′
𝑛𝑄

′
𝑛 . Since all face models have the

same topology, we traverse the face models belonging to this sub-
ject other than the template, performing the following steps: The
corresponding points 𝑃𝑡 and𝑄𝑡 are selected, and projected onto the
𝑦𝑜𝑧 plane to obtain 𝑃

′
𝑡 and𝑄

′
𝑡 , respectively, and connected to obtain

the line segment 𝑃
′
𝑡𝑄

′
𝑡 . The angle 𝜃 between the two segments is

calculated. The mouth model 𝑀𝑚𝑜𝑢𝑡ℎ is obtained by keeping the
mouth template’s upper teeth model stationary and rotating the
lower teeth and the tongue model around a selected point in the
𝑦𝑜𝑧 plane, by the same angle 𝜃 . Subsequently, we integrate it with
the face model and obtain the complete head model(Figure 2(c)).
The complete head model consists of 15,051 vertices and 29,780
faces, with 10,028 vertices and 19,804 faces from the added mouth
structure.

We iterate through the 12 subjects to ensure that all VOCASET
models incorporate mouth structures, which ultimately constitute
the VOCATeeth dataset.
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Figure 3: The pipeline of our method. A face image and a speech clip are used to generate models with and without expressions,
which are fused with a FuNet network to obtain a complete face model. The output is fed into a skin-realistic renderer to
generate the final animation.

4 METHOD
Given a face image and a speech clip as inputs, we aim to generate
3D facial animations corresponding to the emotions in the speech
clip. The framework of our method is illustrated in Figure 3. Given a
face image 𝐼 , we first reconstruct the corresponding 3D face model
and remove the emotion to obtain a neutral face model𝑀𝑖𝑛 . Then,
we recognize the emotion of the input speech 𝑆 and retrieve an emo-
tional face model𝑀𝑒𝑚𝑜 that matches both the identity and emotion
from the Emolib database (Section 4.1). Subsequently, we generate a
lip-synchronized model𝑀𝑙𝑖𝑝 that contains a mouth structure from
𝑆 and𝑀𝑖𝑛 (Section 4.2). After that, the fusion network FuNet gen-
erates a fused model𝑀𝑓 𝑎𝑐𝑒 with both emotion and synchronized
lips from 𝑀𝑒𝑚𝑜 and 𝑀𝑙𝑖𝑝 (Section 4.3). Finally, the 𝑀𝑓 𝑎𝑐𝑒 model
undergoes the skin-realistic renderer to apply texture and form
video frames (Section 4.4).

Generation of the neutral face model corresponding to
input image. To provide identity information for the subsequent
lip-synchronized and face model generation, we generate a neu-
tral expression model 𝑀𝑖𝑛 based on the input image 𝐼 . We first
reconstruct the face model corresponding to the input image using
the method mentioned in Section 3.2. Then, we set its expression
parameters to zero, and convert it to a mesh model, thus obtaining
a neutral face model𝑀𝑖𝑛 without expression.

4.1 Emotional face model generation
To generate an emotional face model, we first retrieve the model
𝑀𝑒𝑚𝑜𝑟𝑖 in the Emolib (Section 3.3) that is most similar to the neutral
model𝑀𝑖𝑛 based on the emotion label pair (𝐶0, 𝐿0) (𝐶0 represents
the category of the emotion and 𝐿0 represents the intensity of the
emotion). The emotion label can either be predicted by speech
emotion recognition or provided by the user.

For automatic emotion label prediction, we employ the speech
emotion recognition framework [22]. This framework predicts nine
different types of emotions, and we exclude two emotion cate-
gories that are not available in Emolib, choosing only the remaining
seven as output. Its output 𝐸𝑚𝑜𝑂𝑢𝑡 is in the form : 𝐸𝑚𝑜𝑂𝑢𝑡 =

{𝑃𝑛𝑒𝑢𝑡𝑟𝑎𝑙 , 𝑃ℎ𝑎𝑝𝑝𝑦, 𝑃𝑎𝑛𝑔𝑟𝑦, 𝑃𝑠𝑎𝑑 , 𝑃𝑑𝑖𝑠𝑔𝑢𝑠𝑡𝑒𝑑 , 𝑃𝑓 𝑒𝑎𝑟 𝑓 𝑢𝑙 , 𝑃𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒𝑑 }.
The values indicate the probabilities that the input speech emotion
is neutral, happy, angry, sad, disgusted, fearful or surprised, respec-
tively. The category with the largest value is adopted as the 𝐶0 in
the label pair. As previous research [5] identifies the trend that the
intensity of an emotion is positively related to its probability, we
design a linear mapping method to obtain the corresponding emo-
tion intensity 𝐿0 from the speech recognition output. Subsequently,
we select the subset in Emolib corresponding to the intensity 𝐿0
in emotion category 𝐶0. In this subset, our method retrieves the
most similar model𝑀𝑒𝑚𝑜𝑟𝑖 for𝑀𝑖𝑛 based on the Euclidean distance
between their FLAME shape parameters.

To address fluctuations in both emotion categories and inten-
sity within speech over time, we segment the speech into short
clips lasting 𝑡 seconds. We then analyze each segment to iden-
tify the predominant emotions, enabling us to retrieve the corre-
sponding emotional model𝑀𝑒𝑚𝑜𝑟𝑖 . To ensure smooth transitions
between different emotion categories and intensities, we establish a
transition period 𝑡𝑡𝑟𝑎𝑛𝑠 . During the initial and final 𝑡𝑡𝑟𝑎𝑛𝑠 seconds
of each 𝑡-second window, we interpolate between the emotional
models of the current and adjacent windows using the formula
𝑀𝑒𝑚𝑜 = (1− 𝑗/𝑓 𝑛) ·𝑀𝑒𝑚𝑜𝑟𝑖1 + ( 𝑗/𝑓 𝑛) ·𝑀𝑒𝑚𝑜𝑟𝑖2, 𝑗 = {1, 2, · · · , 𝑓 𝑛}.
Here, 𝑓 𝑛 represents the number of frames in the transition period,
and 𝑀𝑒𝑚𝑜𝑟𝑖1 and 𝑀𝑒𝑚𝑜𝑟𝑖2 are the models for adjacent segments.
During the middle segment of each time window, 𝑀𝑒𝑚𝑜 remains
fixed at𝑀𝑒𝑚𝑜𝑟𝑖 . This principle extends to the initial 𝑡𝑡𝑟𝑎𝑛𝑠 seconds
of the first window and the final 𝑡𝑡𝑟𝑎𝑛𝑠 seconds of the last window,
where interpolation is unnecessary.

4.2 Lip-synchronized model generation
To generate a lip-synchronized model, our framework employs
a modified SelfTalk model [26]. The input of SelfTalk includes
identity information and audio features, which are extracted by
wav2vec2 [1] from the input speech 𝑆 . Through experimentation,
we noticed that using HuBert [13] for audio feature extraction
yields superior results. Thus, we substitute the usage of wav2vec2
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with HuBert. To augment the realism of the facial animation with
teeth and tongue, we incorporate the mouth structure into the
lip-synchronized model by retraining the modified SelfTalk model
using the VOCATeeth dataset (section 3.4). The input and output
dimensions of the modified SelfTalk are adjusted to (15051×3) to fit
the VOCATeeth dataset. The model𝑀𝑖𝑛 is incorporated with mouth
structure and, together with the input speech 𝑆 , is fed into the mod-
ified and retrained SelfTalk model, to generate a lip-synchronized
model sequence.

4.3 Fusion network
We propose a fusion network FuNet to fuse the emotional face
model𝑀𝑒𝑚𝑜 (Section 4.1) and the lip-synchronized face model𝑀𝑙𝑖𝑝

(Section 4.2) to generate anemotional lip-synchronzed face model
𝑀𝑓 𝑎𝑐𝑒 .

Architecture. The FuNet architecture (Figure 4) comprises four
convolutional layers, three residual blocks, and two fully connected
layers, with detailed parameter specifications provided in Table 2.
It should be clarified that the input to FuNet consists of two face
models, each comprising 5,023 vertices. The mouth region of the
model generated by FuNet is expected to be similar to that of𝑀𝑙𝑖𝑝 ,
which is determined by the design of the loss functions. To improve
fusion efficiency, we remove the mouth structure from𝑀𝑙𝑖𝑝 before
being used as input. Furthermore, the output of FuNet does not
include the mouth structure, and will be further merged with the
teeth and tongue models in the𝑀𝑙𝑖𝑝 as the final output𝑀𝑓 𝑎𝑐𝑒 . The
initial two convolutional layers are dedicated to extracting features
from the input data. The residual blocks accelerate the training
speed and facilitate better feature propagation. Subsequently, the
latter two convolutional layers refine the extracted features, thereby
augmenting the representation capability of the network. Finally,
the fully connected layers are applied to aggregate all features
before normalizing them to meet the dimension requirements of
FLAME models.

Convolution Fully ConnectedConvolution
Residual
Blocks

𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒

𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒

Figure 4: The architecture of FuNet. It includes four convolu-
tional layers, three residual blocks, and two fully connected
layers.

Loss function. There are four terms in loss functions of FuNet.
According to the description and annotations provided by FLAME,
the 3D face model could be segmented into different regions, includ-
ing the chin region C, the lip region L, the other region inside the
face F , and regions outside the face O (Figure 5 for more details).
In the following, 𝑣𝑙𝑖𝑝 are vertices of𝑀𝑙𝑖𝑝 , 𝑣𝑒𝑚𝑜 are vertices of𝑀𝑒𝑚𝑜

and 𝑣𝑜𝑢𝑡 are vertices of the fused model𝑀𝑓 𝑎𝑐𝑒 .

Table 2: The FuNet parameters. The first parameter in the
output denotes the number of convolutional kernels.

Type Kernel Stride Output Activation
Input - - 1 × 5023 × 6 -
Convolution 3 × 3 1 × 1 256 × 5023 × 6 LeakyReLU
Convolution 3 × 3 1 × 1 128 × 5023 × 6 LeakyReLU
Residual Blocks - - 128 × 5023 × 6 LeakyReLU
Residual Blocks - - 128 × 5023 × 6 LeakyReLU
Residual Blocks - - 128 × 5023 × 6 LeakyReLU
Convolution 3 × 3 1 × 1 64 × 5023 × 6 LeakyReLU
Convolution 3 × 3 1 × 1 1 × 5023 × 6 LeakyReLU
Fully connected - - 8192 Linear
Fully connected - - 5023 × 3 Linear

Lip region ℒ Chin region 𝒞 Face region ℱ Other region 𝒪

Figure 5: Different regions of the 3D face model.

(1) The lip-synchronized loss 𝐿𝑙𝑖𝑝 is defined for maintaining an
accurate correspondence between lip and speech:

𝐿𝑙𝑖𝑝 = ∥𝑣𝑜𝑢𝑡 − 𝑣𝑙𝑖𝑝 ∥22, 𝑣𝑜𝑢𝑡 , 𝑣𝑙𝑖𝑝 ∈ L . (2)

(2) The chin loss 𝐿𝑐ℎ𝑖 is defined to make the mouth region driven
by both speech and expression:

𝐿𝑐ℎ𝑖 = 𝑤1 ∗ ∥𝑣𝑜𝑢𝑡 − 𝑣𝑙𝑖𝑝 ∥22+
𝑤2 ∗ ∥𝑣𝑜𝑢𝑡 − 𝑣𝑒𝑚𝑜 ∥22,

(3)

where 𝑣𝑜𝑢𝑡 , 𝑣𝑙𝑖𝑝 and 𝑣𝑒𝑚𝑜 indicate the vertices that belong to the
chin region C.𝑤1 and𝑤2 are weights set by users.

(3) The expression loss 𝐿𝑒𝑥𝑝 is defined to ensure the fused model
contains the specified emotion:

𝐿𝑒𝑥𝑝 = ∥𝑣𝑜𝑢𝑡 − 𝑣𝑒𝑚𝑜 ∥22, 𝑣𝑜𝑢𝑡 , 𝑣𝑒𝑚𝑜 ∈ F . (4)

(4) The identity loss 𝐿𝑖𝑑 is defined for maintaining identity:

𝐿𝑖𝑑 = ∥𝑣𝑜𝑢𝑡 − 𝑣𝑙𝑖𝑝 ∥22, 𝑣𝑜𝑢𝑡 , 𝑣𝑙𝑖𝑝 ∈ O . (5)

The overall loss function is defined as follows:

𝐿 = 𝐿𝑙𝑖𝑝 + 𝐿𝑐ℎ𝑖 + 𝐿𝑒𝑥𝑝 + 𝐿𝑖𝑑 . (6)

Training. The training set consists of 81,223 model pairs. Each
pair includes a model with expression and a model without expres-
sion. The models with and without expressions are randomly paired.
The models without expressions are sourced from the VOCASET
dataset; they are used as the𝑀𝑙𝑖𝑝 input for FuNet. In addition, we
select 81,223 images (not included in Emolib) under categories other
than neutral in the AffectNet dataset and reconstruct these images
to obtain the corresponding 3D models with expressions, which
are used as the 𝑀𝑒𝑚𝑜 input for FuNet. Each 3D face model is rep-
resented as a tensor of 5023 × 3. When feeding the data into the
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neural network, it is essential to horizontally concatenate two 3D
face models to form a tensor of size 5023× 6. The parameters in the
chin loss are𝑤1 = 0.35 and𝑤2 = 0.65. We train the FuNet model on
a single NVIDIA GeForce RTX 3090 for 750 epochs with the Adam
optimizer (𝛽1 = 0.9, 𝛽2 = 0.999), with learning rate 𝑙𝑟 = 0.0001 and
batch size 𝑏𝑠 = 16.

4.4 Skin renderer
In this section, we develop a skin-realistic renderer based on the
realistic skin rendering model [25] to improve the realism of the
output animation. The inputs to the renderer are the face model
𝑀𝑓 𝑎𝑐𝑒 and a texture map 𝐼𝑡𝑒𝑥 reconstructed from the input image
𝐼 by the FLAME texture expansion2.

The rendering equation is defined as:

𝐿𝑜 (x𝑜 , 𝜔𝑜 ) =
∑︁
𝐴

∑︁
Ω+

𝑆 (x𝑜 , 𝜔𝑜 , x𝑖 , 𝜔𝑖 ) 𝐿𝑖 (x𝑖 , 𝜔𝑖 ) cos𝜃𝑖Δ𝜔𝑖Δ𝐴𝑖 , (7)

where the variables 𝑥𝑜 and 𝜔𝑜 denote the exiting point and the
outgoing direction, respectively. Similarly, 𝑥𝑖 and 𝜔𝑖 represent the
incident point and incident direction. Ω+ is the hemisphere deter-
mined by the surface normal and contains all possible incident light
directions 𝜔𝑖 . 𝜃𝑖 is the angle between the incident light direction
𝜔𝑖 and the surface normal direction. 𝐿𝑖 and 𝐴 denote the radiant
illumination and the surface of the object, respectively.

In this work, we use the BSSRDF equation proposed by Jensen [14]
to represent the term 𝑆 (x𝑜 , 𝜔𝑜 , x𝑖 , 𝜔𝑖 ), which contains the specular
reflection term 𝑆𝑟 (𝜔𝑜 , 𝜔𝑖 ) as well as the diffuse reflection term
𝑆𝑑 (x𝑜 , 𝜔𝑜 , x𝑖 , 𝜔𝑖 ):

𝑆 (x𝑜 , 𝜔𝑜 , x𝑖 , 𝜔𝑖 ) = 𝑆𝑟 (𝜔𝑜 , 𝜔𝑖 ) + 𝑆𝑑 (x𝑜 , 𝜔𝑜 , x𝑖 , 𝜔𝑖 ) . (8)

A modified Kelemen/Szirmary-Kalos BRDF [19] is used to simu-
late the specular reflection term 𝑆𝑟 :

𝑆𝑟 (𝜔𝑜 , 𝜔𝑖 ) =
𝐷 (𝜔𝑜 , 𝜔𝑖 , n𝑜 , 𝛼)𝐹 (𝜔𝑜 , 𝜔𝑖 )

ℎ · ℎ , (9)

where the Fresnel-Schlick equation [32] is used to approximate the
Fresnel equation 𝐹 (𝜔𝑜 , 𝜔𝑖 ). And ℎ denotes the half-angle vector
between the incident light direction and view direction. The Beck-
Mann normal distribution function [2] is used to calculate the ratio
of the microfacets that are oriented in the same direction as the
half-angle vector 𝐷 (𝜔𝑜 , 𝜔𝑖 , n𝑜 , 𝛼).

For highly scattering materials like skin, multiple scattering
dominates. Therefore, the proposed realistic skin renderer neglects
the influence of single scattering, and the term 𝑆𝑑 is defined as:

𝑆𝑑 (·) =
1
𝜋
𝐹𝑡 (x𝑜 , 𝜔𝑜 )𝑅𝑑 (𝑟 )𝐹𝑡 (x𝑖 , 𝜔𝑖 ), (10)

where 𝐹𝑡 is the Fresnel transmittance and 𝑅𝑑 (𝑟 ) denotes the diffu-
sion profile [15].

5 EXPERIMENT
5.1 Evaluation metrics
We follow previous works [10, 27, 31] to compute the Lip Vertex Er-
ror (LVE) to measure lip synchronization. This metric computes the
average 𝐿2 error of the lip region vertices. Given that our framework
generates animations with emotional expressions, solely measuring

2https://github.com/TimoBolkart/TF_FLAME/blob/master/fit_2D_landmarks.py

the lip region is insufficient. Therefore, we incorporate the Emo-
tional Vertex Error (EVE) proposed in EmoTalk [27] to assess the
maximum 𝐿2 error of the vertex coordinate displacement in the eye
and forehead regions.

5.2 Datasets
Three datasets, IEMOCAP [4], RAVDESS [21], and VOCASET, were
employed to evaluate our framework.

The VOCASET dataset contains about 29 minutes of 4D scans
captured at 60 fps and synchronized audio. The dataset has 12
subjects and 480 sequences of about 3-4 seconds. The sentences are
selected from a set of standardized protocols to maximize speech
diversity. Since the 3D face model provided in VOCASET does not
contain expressions, we only calculated the LVE results on it.

The IEMOCAP dataset includes 302 recorded conversation videos.
Each segment is annotated to determine whether it consists of one
or more emotions in nine distinct categories. Additionally, the at-
tributes of valence, arousal, and dominance are included. As this
dataset lacks videos of real people speaking alongside correspond-
ing audio, we used the results generated from this dataset only for
the user study.

The RAVDESS dataset includes recordings from 24 professional
actors. They read two sentences with different emotions: neutral,
happy, sad, angry, fear, surprised, and disgusted. Each expression
has two levels of emotional intensity. We performed a frame-by-
frame reconstruction of the video and calculated the EVE results
using the obtained 3D expressionmodel as ground truth. The results
generated on this dataset were also used for the user study.

5.3 Comparison with state-of-the-art methods
We compared our framework with nine state-of-the-art speech-
driven 3D avatar animation generation methods: VOCA [7], Face-
Former [10], MeshTalk [31], CodeTalker [40], SelfTalk [26], FaceD-
iffuser [34], DiffSpeaker [23], EmoTalk [27] and EMOTE [8]. As
far as we know, EmoTalk currently only supports several specific
identities, and MeshTalk doesn’t employ FLAME model, making
them difficult to generate facial animations with the identities in
the RAVDESS and VOCASET datasets, so we only compare with
them in the qualitative evaluation.

Qualitative evaluation. In Figure 6, we show comparisons of
results when the intensity of eight categories of emotions (neutral,
happy, angry, sad, disgust, fear, surprise, and contempt) is maxi-
mized (level=3). The first column is the user input image, and the
second column is the emotion label pair. It can be observed that
VOCA, FaceFormer, CodeTalker, SelfTalk, FaceDiffuser and DiffS-
peaker fail to reflect the emotions. AlthoughMeshTalk incorporates
subtle facial expressions like frowning and blinking, it still struggles
to discern the emotional states of the characters from their facial
expressions. EmoTalk, EMOTE and our method can generate obvi-
ous expressions. However, we note that the mouths of EMOTE and
EmoTalk avatars tend to be wide open in order to present obvious
expressions, which may significantly affect lip synchronization. In
addition, the EMOTE avatar lacked mouth structures, and EmoTalk
only filled the cavity by supplementing a few faces between the
upper and lower lips, both of which could not correctly reflect the
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Figure 6: The comparison results of state-of-the-art methods and ours. The face models in the same row are generated with the
same speech clip. It can be observed that our method has good lip synchronization while expressing speech emotion.

avatar’s teeth movements when speaking, affecting the sense of re-
alism. Nevertheless, our approach achieves a good balance between
lip synchronization and emotional performance.

Quantitative evaluation. We measured lip synchronization by
calculating the LVE on the test set of the VOCASET. As shown in
Table 3, our framework achieves the best lip synchronization, better
than other methods. The utilization of a modified SelfTalk model in
generating the lip-synchronizedmodel leads to a closer resemblance
to SelfTalk in the results, but better performance is achieved by
the replacement of the speech feature extraction module. In future
endeavors, the performance of LVE can be enhanced further by
using a superior model, and this flexibility is also an advantage
of our framework. EMOTE has the maximal LVE value, which
may be due to the fact that the mouths of avatars tend to be wide
open to present obvious expressions, resulting in unsatisfactory lip
synchronization.

The comparison of EVE was conducted solely on the RAVDESS
database due to the absence of facial expressions in the VOCASET
models and the unavailability of video in the IEMOCAP for recon-
structing face models. The ground-truth models were reconstructed
frame-by-frame from videos in RAVDESS. To verify the general-
ization performance of all the methods, we used their pretrained
models and test on the RAVDESS dataset. Evidently, our method
outperforms the other methods in terms of performance on EVE.
The disparity among emotionless methods is negligible, as their
models only produce neutral expressions, which are inconsistent
with the ground truth with emotion. It is observed that EMOTE
exhibits a higher EVE value, potentially attributed to its ability to

Table 3: LVE and EVE evaluation results. Our method outper-
forms other methods on both LVE and EVE.

Method LVE(×10−5) ↓ EVE(×10−5) ↓
VOCA 4.05 2.71

FaceFormer 3.81 2.73
CodeTalker 3.47 2.77
SelfTalk 2.88 2.92

FaceDiffuser 4.24 2.69
DiffSpeaker 3.32 2.77
EMOTE 6.46 3.13
Ours 2.74 1.34

generate highly obvious expressions. In contrast, the emotional
expression of the ground truth is less apparent, leading to a greater
disparity from the ground truth, which even surpasses the dif-
ference between neutral expressions and the ground truth. Our
model demonstrates superior generalization performance, possibly
attributed to the enhanced identity diversity of our approach in
comparison to EMOTE.

The aforementioned results demonstrate that our framework
achieves better results in terms of emotional expression while main-
taining good lip synchronization, thereby enhancing realism with
accurate preservation of speaking contents.

User study. 26 participants were recruited to evaluate the anima-
tion quality, including 13 males and 13 females ranging in age from



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: The user study results and the percentage indicate that our method is better than comparison methods.

Ours vs. Competitor Realism ↑ Lip Sync ↑
Sad Disgust Fear Angry Happy Surprise

Ours vs. VOCA 76.92% 80.77% 69.23% 69.23% 76.92% 69.23% 57.69%
Ours vs. FaceFormer 46.15% 50.00% 69.23% 57.69% 46.15% 57.69% 53.85%
Ours vs. MeshTalk 73.08% 73.08% 84.62% 73.08% 61.54% 80.77% 55.77%
Ours vs. CodeTalker 53.85% 50.00% 65.38% 73.08% 61.54% 69.23% 44.23%
Ours vs. SelfTalk 65.38% 53.85% 46.15% 80.77% 50.00% 46.15% 46.15%
Ours vs. FaceDiffuser 50.00% 73.08% 61.54% 53.84% 80.77% 69.23% 61.54%
Ours vs. DiffSpeaker 57.69% 65.38% 80.77% 69.23% 42.31% 73.08% 42.31%
Ours vs. EMOTE 76.92% 65.38% 84.62% 61.54% 42.31% 84.62% 84.62%
Ours vs. EmoTalk 80.77% 38.46% 73.08% 53.85% 50.00% 84.62% 71.16%

18 to 36. We used speech clips from the RAVDESS and IEMOCAP
datasets. Video pairs were presented randomly to participants, who
were asked to choose the better video in terms of realism and lip
synchronization. Each video pair contains a video generated by our
method and a video generated by other methods. The results are
shown in Table 4, which indicates the percentage of participants
who chose our method’s output over the other.

In terms of lip synchronization, our method achieved a notable
advantage over methods with emotions, including EMOTE and
EmoTalk. Compared to emotionless methods, we not only outper-
form other methods in quantitative results, but also have better
or comparable results for human perception. In terms of realism,
for the seven emotionless methods, our method has better results
in almost all emotion categories. This suggests that our proposed
scheme with emotion and mouth structure is effective in improv-
ing the realism of the animation. For methods with emotions, our
method has also achieved better results in most emotion categories
as well. This may be due to the addition ofmouth structure. EmoTalk
performs well under the disgust category, which may be due to the
fact that this type of expression involves more movement around
the lips, and we have made a small concession in the mouth move-
ment in order to maintain better lip synchronization. In addition, we
presented participants with the animation both with and without
the mouth structure, and all participants unanimously agreed that
the inclusion of the mouth structure enhanced animation realism.

Table 5: The results of the ablation study.

w/o 𝐿𝑙𝑖𝑝 w/o 𝐿𝑐ℎ𝑖 w/o 𝐿𝑒𝑥𝑝 w/o 𝐿𝑖𝑑 Ours

LVE(×10−5) ↓ 748.48 2.78 2.70 2.66 2.74
EVE(×10−5) ↓ 1.35 1.49 894.32 1.47 1.34

5.4 Ablation study
We conducted an ablation study on the loss functions, as shown
in Table 5. The absence of 𝐿𝑙𝑖𝑝 leads to a significant increase in
LVE, suggesting that this loss is critical for lip synchronization.
Although removing 𝐿𝑒𝑥𝑝 and 𝐿𝑖𝑑 would improve the LVE, this term
is also necessary since removing it would lead to an increase in
EVE. The lack of 𝐿𝑐ℎ𝑖 , 𝐿𝑒𝑥𝑝 , and 𝐿𝑖𝑑 greatly worsens EVE because

the regions they affect are within the regions evaluated for EVE. We
further conducted an ablation study on the choice of speech feature
extractors. Hubert yielded an LVE of 2.74 × 10−5, outperforming
wav2vec’s LVE of 2.89 × 10−5. Thus, Hubert was selected for our
framework. The results of the ablation experiments demonstrate
the indispensability of every loss function within the FuNet.

6 LIMITATION AND FUTUREWORK
The expression models in the framework are retrieved from a data-
base, which yields a higher diversity of expressions compared to di-
rectly reconstructing a dataset such as MEAD to obtain 3D training
data. Although we assume that when the database is large enough, a
model can be retrieved that accurately matches the identity informa-
tion of the input images, it is still possible that the retrieved models
do not represent the identity information very well. Currently we
incorporate identity information in the lip-synchronized model and
choose very similar identities in the emotional face model as well to
solve this problem. In future work, we will enhance the importance
of the identity information in the fusion network as well. In addi-
tion, there is a slight imbalance in the number of images within the
intensity levels under some emotion categories due to the biased
data distribution of AffectNet, which we will subsequently address
by optimizing the division approach or expanding the dataset.

7 CONCLUSION
Accurately conveying emotions is essential for improving the re-
alism of facial animations. In this paper, we present an Emolib
dataset containing 10,736 expression images in eight categories
with their corresponding emotion category and intensity labels, as
well as 3D models with expressions. We also propose ECAvatar, a
realistic 3D emotional facial animation framework, in which we
introduce a skin-realistic renderer to obtain highly realistic facial
animations that include mouth structures. Our framework, which
solely relies on unpaired training data, enables users to easily define
the avatar’s identity. Moreover, it automatically adjusts to present
various emotion categories and intensities based on input speech.
Experimental results show that compared with SOTA 3D facial
animation methods, our approach yields more realistic animations
(e.g., good emotional performance) and preserves satisfactory lip
synchronization.
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