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Supplementary Materials. This document provides additional details, analysis, and experimental
results. We begin by discussing the detailed experimental setup and implementation of the methods in
Section A. Then, we provide additional empirical experiments against several other defense methods
in Section B, and a discussion on the stealthiness of the backdoor images in the input space in
Section C. Finally, we provide the supporting proofs for the claims in the main paper in Section D.

A Detailed Experimental Setup

A.1 Datasets

As we described in the main paper, we use four datasets, MNIST, CIFAR10, GTSRB, and TinyIma-
genet, to evaluate our method. Note that MNIST, CIFAR10, and GTSRB have been widely used in
the literature of backdoor attacks on DNN. On the other hand, the use of a more complex dataset,
TinyImagenet, enables better evaluation for multiple-target backdoor attacks such as all-to-all, thanks
to the diversity of images in TinyImagenet and its large number of classes.

• MNIST [28] is a subset of the larger dataset available from the National Institute of Technology.
This dataset consists of 70,000 grayscale, 28 × 28 images, divided into a training set of 60,000
images and a test set of 10,000 images. We applied random cropping and random rotation as data
augmentation for the training process. During the evaluation stage, no augmentation is applied.
Link to the dataset: http://yann.lecun.com/exdb/mnist

• CIFAR-10 is first introduced by [25]. It is a labeled subset of the 80-millions-tiny-images dataset,
collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton, consists of 60,000 color images
at the resolution of 32 × 32, out of which 10,000 images are randomly selected as the query set,
and the remaining images used as the retrieval set. Link to the dataset: https://www.cs.toronto.edu/
~kriz/cifar.html

• GTSRB (German Traffic Sign Recognition Benchmark [48]) is used as an official dataset for the
challenge held at the International Joint Conference on Neural Network (IJCNN) 2011. GTSRB
consists of 60,000 images, divided into 43 classes, with resolutions varying from 32 × 32 to
250 × 250. The training set contains 39,209 images, while the test set has 12,630. In our
experiments, GTSRB input images are all resized into 32 × 32 pixels, then applied random crop
and random rotation in training. In the evaluation stage, no augmentation is used. Link to the
dataset: http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

• TinyImagenet is a smaller subset of the large-scale Imagenet dataset [11], which is introduced
in [57]. This dataset consists of 200 image classes. The training set has 500 images per class,
resulting in 100,000 images, while the test set has 50 images per class, resulting in 10,000 images.
TinyImagenet input images are all resized into 64 × 64 resolution. Random crop and random
rotation are applied in the training stage. No augmentation is used in the evaluation stage. Link to
the dataset: http://cs231n.stanford.edu/tiny-imagenet-200.zip
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A.2 Noise Generator Models

For MNIST, we use a self-defined autoencoder, which is detailed in Table 4. For the other datasets,
we employ the UNet architecture [43]. We observe only a slight performance difference between the
simpler autoencoder and the complex UNet on these datasets.

Table 4: Autoencoder-based generator network used in this paper.

Layer Filters Filter Size Stride Padding Activation
Conv2D 16 3⇥ 3 3 1 BatchNorm2D+ReLU

MaxPool2d - 2⇥ 2 2 0 -
Conv2D 64 3⇥ 3 2 1 BatchNorm2D+ReLU

MaxPool2d - 2⇥ 2 2 0 -
ConvTranspose2D 128 3⇥ 3 2 - BatchNorm2D+ReLU
ConvTranspose2D 64 5⇥ 5 3 1 BatchNorm2D+ReLU
ConvTranspose2D 1 2⇥ 2 2 1 BatchNorm2D+Tanh

A.3 Models

In this work, we use a simple CNN classifier for MNIST, which was also used in WaNet [39]. For
convenience, we include the detailed architecture in Table 5. For CIFAR10 and GTSRB datasets, we
use PreActResnet18 [20]. For TinyImagenet, we use Resnet18 [20].

Table 5: CNN model architecture for MNIST.

Layer Filters Filter Size Stride Padding Activation
Conv2D 32 3⇥ 3 2 1 ReLU
Conv2D 64 3⇥ 3 2 0 ReLU
Conv2D 64 3⇥ 3 2 0 ReLU
Linear 512 - - - ReLU

Conv2D 10 - - - Softmax

A.4 Training Hyperparameters

Table 6 provides additional details to Section 5.1 in the main paper.

Table 6: Experimental setup and parameters for the datasets we used in this paper.

MNIST CIFAR10 GTSRB TinyImagenet
Optimizer SGD SGD SGD SGD
Batch Size 128 128 128 128

Learning Rate 0.01 0.01 0.01 0.01
Learning Rate Schedule 10,20,30,40 100,200,300,400 100,200,300,400 100,200,300,400

Learning Rate Decay 0.1 0.1 0.1 0.1
Training Epochs 50 epochs 1000 epochs 1000 epochs 1000 epochs

WB Only
✏ 0.01 0.01 0.01 0.01
↵ 0.5 0.5 0.5 0.5
� 0.5 0.5 0.5 0.5

Stage I 50 epochs 50 epochs 50 epochs 50 epochs
T ’s Optimizer SGD SGD SGD SGD

T ’s Learning Rate 0.001 0.001 0.001 0.001
Clean Accuracy 0.99 0.94 0.99 0.57

In our experiments, choosing 0.5 for both ↵ and � allows us to achieve clean-data accuracy similar
to that of the vanilla classifier and state-of-the-art attack success rates (almost 100% in most of the
experiments).
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(a) MNIST All-to-one: WaNet (b) MNIST All-to-one: WB

(c) MNIST All-to-all: WaNet (d) MNIST All-to-all: WB

(e) CIFAR10 All-to-one: WaNet (f) CIFAR10 All-to-one: WB

(g) CIFAR10 All-to-all: WaNet (h) CIFAR10 All-to-all: WB

Figure 7: Characteristics of latent space. Ci: Clean samples with predicted label i. Bi: Backdoor
samples with predicted label i. Note that the numerical labels represent the encoded labels from
categorical classes.
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B Additional Defense Experiments

B.1 Backdoor Attack Performance

The standard deviations of the attack performance for WB are as follows: 0.0007 for MNIST, 0.0004
for CIFAR10, 0.0004 for GTSRB, 0.0007 for TinyImagenet. It can be seen that the standard deviations
are very small. We also compare to the performance reported in the Adversarial Embedding paper
here: 0.90 for CIFAR10 (significantly worse than 0.99 of both WaNet and WB), and 0.94 for GTSRB
(again, worse than 0.98 of WaNet and 0.99 of WB).

Table 7: Normalized Wasserstein distance of clean and poisoned samples for a predicted class.

Dataset Attack Setting Clean WaNet LIRA WB
MNIST all-to-one 0.010 ± 0.002 0.351 ± 0.002 0.325 ± 0.009 0.045 ± 0.005
MNIST all-to-all 0.006 ± 0.001 0.718 ± 0.004 0.840 ± 0.002 0.021 ± 0.002

CIFAR10 all-to-one 0.027 ± 0.006 0.253 ± 0.004 0.261 ± 0.003 0.084 ± 0.003
CIFAR10 all-to-all 0.027 ± 0.006 0.471 ± 0.003 0.463 ± 0.003 0.125 ± 0.004

Clean: distance between two random subsets of the clean data.
WaNet/LIRA/WB: distance between poisoned and clean samples for each attack method.

B.2 Latent Space Characteristics

In Section 5.3.1 of the main paper, we provide a visualization of the latent space of the clean and
backdoor poisoned samples of a specific predicted class. In this section, we provide an additional
inspection of the latent space. Specifically, Figure 7 shows the visualization of the latent space for all
data points, while Table 7 presents the Wasserstein distances between the clean and poisoned samples
from different classes that quantify the visual observation.

As we can observe from Figure 7, WB encourages poisoned samples to be indistinguishably closer
to the clean samples. In all-to-one cases, the poisoned samples are closer to the clean samples
of the target class (i.e., ‘C0’), while in the all-to-all cases, poisoned samples of different classes
separately become closer to the clean samples of those classes. In contrast, for the compared baseline,
WaNet, poisoned samples of a class are completely separated from the clean samples of that class.
Correspondingly, as we can observe in Table 7, the Wasserstein distances between the poisoned
samples and the clean samples are significantly smaller than the distances of the similar experiments
for the WaNet and LIRA.

B.3 Performance against Fine-pruning Defense

Fine-pruning [32] is a network analysis based defense method. Given a set of neurons of the neural
network classifier, it analyzes their activations on a set of clean images and detects the dormant
neurons, assuming they are more likely to tie to the backdoor. The dormant neurons are then gradually
pruned to mitigate the backdoor.

In Figure 8, we evaluate WB against fine-pruning by plotting the accuracies on the clean and backdoor
data when different numbers of the dormant neurons are pruned. It can be seen that at no point does
the backdoor accuracy drop considerably more significant than the clean accuracy. This suggests that
the backdoor mitigation defense of fine-pruning is also ineffective against WB.

C Visual Inspection Experiments

In this section, we study the stealthiness of the triggers generated by different backdoor attack methods.
As we can observe from Figure 9, the perturbation-based attacks (BadNets [18], Blended [8], SIG [2],
and ReFool [35]) can be easily detected through human inspection because of their noticeable visual
trigger patterns. In WaNet [39], while the triggers are less perceivable, we still find a considerable
amount of “difficult” cases where WaNet’s attacks can fail under human inspection. In contrast, the
images generated by our proposed method appear more natural and genuine.
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(a) All-to-one (b) All-to-one (c) All-to-one

(d) All-to-one (e) All-to-one (f) All-to-one

Figure 8: Performance against fine-pruning defense.

Figure 9: Backdoor images created from different backdoor methods. In BadNets and similar
perturbation-based methods, the trigger patterns are visible, which makes the attack very easy to
be detected. In WaNet and WB, the trigger patterns are more difficult to be detected. However, in
WaNet, edges from common shapes such as a circle, rhombus, or triangle are deformed (e.g., the
circle is not entirely round, or edges from rhombus or rectangles are not straight), thus the backdoor
can be detected with closer inspection.
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D Proof of Theorem 1

Theorem 1. When the latent space is the penultimate layer of a neural network, the proposed DSWD

distance is a valid distance function of probability measures in this space.

Proof. We first prove that DSWD satisfies the triangle inequality. Let F1, F2, and F3 be empirical
samples. Then, since the projections (i.e., F✓l

k = {✓Tl x : x 2 Fk} 8k) are linear, we have:
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where the first inequality is because F is a metric, and the second inequality follows from the
application of Minkowski inequality.

Since W(FWc,: ,FWc,:) = 0 for any c, it is trivial to see that R�(F ,F) = 0. For the reverse direction
of identity of discernibility, the proof can be laid out as follow: R(F1,F2) = 0 is equivalent to
W(FWc,:

c ,FWc,:

b ) = 0 for all c. Since it can be shown that FWc,:

b and FWc,:
c are injective, this implies

that F1 = F2.

Finally, since W(., .) is a non-negative and symmetric, R�(., .) is also non-negative and symmetric.

Therefore, DSWD is a valid distance.
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