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In the supplementary material we present the full version of the
ablation study section. In addition, we add three experiments with
chapter names marked in blue, including the impact of distillation
layers, robustness performance, and tracking results visualization,
thus to demonstrate the advantages of CKD in more detail.

0.1 Ablation Study
To verify the effectiveness of the proposed method, several ablation
studies are performed on RGBT234 and LasHeR datasets.

Table 1: Ablation study on the main components of CKD.

Pretrained model RGBT234 LasHeR
PR SR PR SR

baseline SOT 86.4 64.5 67.8 54.0
w/ SD SOT 86.4 65.0 68.9 54.5

w/ SD CD SOT 87.4 65.5 71.6 56.9
w/ SD CD MM SOT 88.6 66.1 72.3 57.4
w/ SD CD MM DropMAE 90.4 67.8 73.1 58.0

0.1.1 Component Analysis. In Table 1, we conduct ablation studies
on RGBT234 and LasHeR datasets to verify the effectiveness of
different designed modules in CKD. Our baseline structure is the
same as CKD, along with consistent training data and task losses,
to fairly verify the effectiveness of the proposed components.

w/ SD denotes the baseline equipped with style distillation,
which achieves a certain improvement, surpassing the baseline
by 0.5% in SR on RGBT234, and 1.1%/0.5% in PR/SR on LasHeR.
The experiment shows that aligning styles between modalities is
effective, but there are limitations.

w/ SD CD indicates that adding content distillation to w/ SD
results in significant performance improvements, achieving PR/SR
improvements of 1.0% /1.0% over baseline on RGBT234 and achiev-
ing PR/SR improvements of 3.8%/2.9% over baseline on LasHeR. The
experiment shows that keeping modality content representation
stable is crucial in performing style distillation between different
modalities. In other words, unconstrained style distillation could
harm modality content representation, which could explain the
limitations of w/ SD.

w/ SD CD MM represents that adding masked modeling to w/
SD CD, which further improves performance by 1.2%/0.6% in PR/SR
on RGBT234, and 0.7%/0.5% in PR/SR on LasHeR. The experiment
demonstrates the effectiveness of the masked modeling strategy. In
addition, it can be observed that the mask modeling strategy that
seamlessly integrates with style and content distillation improves
by 2.2%/1.6% in PR/SR on RGBT234, and 4.2%/3.4% in PR/SR on
LasHeR over baseline.

0.1.2 Impact of Pretrainedmodel. Wealso explore theDropMAE [7]
pretrained model trained on the Kinetics700 dataset [2] as our

Table 2: Ablation study on the different elimination scheme.

RGBT234 LasHeR MACs(G) FPS
PR SR PR SR

CKD𝑠𝑙𝑜𝑤 90.4 67.8 73.1 58.0 57.802 84.8
w/ CE [10] 88.7 66.5 73.0 58.0 42.735 96.4
w/ MCE 90.0 67.4 73.2 58.1 42.735 96.4

pretrained model, which further achieves significant performance
gains. Compared to the "SOT" pretrained model usually exploited
by existing RGBT tracking methods [1, 3–6, 8, 11], DropMAE can
bring superior performance to RGBT tracking. The experiment
provides insights to further improve RGBT performance.

0.1.3 Effectiveness of token elimination strategy. To verify the effec-
tiveness of the proposed multi-modal candidate token elimination
(MCE) strategy, we evaluate different token elimination methods
in Table 2. Here, CKD𝑠𝑙𝑜𝑤 represents the CKD method without a
token elimination strategy, but it is still faster than existing RGBT
trackers.

w/ CE [10] indicates that the two student branches individually
apply the candidate token elimination strategy, following [10]. How-
ever, although CE brings an improvement in tracking efficiency, it
also causes a significant performance drop.

w/ MCE indicates that the two student branches follow the
proposed multi-modal candidate token elimination strategy for
collaborative token elimination. It can be seen that MCE achieves
a balance between tracking efficiency and accuracy. In particular,
the introduction of MCE improves the tracking speed by 13.7% and
reduces MACs by 35.3%, and also improves tracking performance
on LasHeR. Although tracking performance on RGBT234 is slightly
degraded, it is consistently better than existing RGBT trackers.

0.1.4 Hyper-parameter sensitivity analysis. We analyze the param-
eter sensitivity as follows.

Figure 1: Ablation study of loss weights on LasHeR dataset.

Impact of loss weights.We explore the influence of different loss
weights between style and distillation losses on CKD performance
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in Figure 1. We set five different loss weight ratios, to explore RGBT
tracker in the optimized orientation of two kinds of losses. From
Figure 1 it can be observed that the two kinds of losses in CKD are
robust to the hyperparameters fo these weights. In addition, it can
be found that appropriately increasing the importance of style loss
in CKD brings better performance.

Table 3: Ablation study on different masked ratios.

RGBT234 LasHeR
PR SR PR NPR SR

CKD w/ mask 0% 87.4 65.5 71.6 67.5 56.9
CKD w/ mask 25% 88.6 66.1 72.3 68.1 57.4
CKD w/ mask 50% 88.2 65.1 71.4 67.2 56.9
CKD w/ mask 75% 88.2 64.3 70.6 66.7 56.4

Impact of masked ratios. As shown in Table 3, we analyze the
influence of different masked ratios on masked modeling strategy
in CKD. It can be observed that the performance of CKD is always
improved after the introduction of mask modeling, but the perfor-
mance decreases slightly with the increase of mask modeling. The
experiment shows that 25% mask ratio in CKD is best.

Table 4: Ablation study on the different distillation layers.

RGBT234 LasHeR
PR SR PR NPR SR

last 1 layer 87.6 65.6 71.5 67.2 56.8
last 6 layers 88.2 65.5 71.9 67.6 57.1
all layers (12) 88.6 66.1 72.3 68.1 57.4

Impact of distillation layers. In Table 4, we also explore the
impact of distillation with different number of layers on the per-
formance of CKD. It can be observed that the performance of CKD
is increases slightly with the increase of distillation layers. The
experiment shows that the current setting of all layers distillation
is optimal.

0.1.5 Analysis of feature decoupling scheme. In Table 5, we con-
struct several variants to verify the effectiveness of feature decou-
pling scheme.

baseline w/ IN denotes the introduction of instance normaliza-
tion in both student branches, which performs tracking with only
content features. The scheme exhibits some performance degrada-
tion compared to baseline. It shows that modality style features
certain discriminative information, which can lead to performance
loss when directly dropped, and thus it is key to find common
modality styles.

baseline w/ FD represents the introduction of non-decoupled
feature distillation (FD) only between two student branches. The
scheme shows some performance decrease compared to baseline,
suggesting that the non-decoupled distillation scheme may harm
the modal content representation, thus limiting performance.

baseline w/ SD is to perform distillation only in the style features
between two student branches, which achieves higher performance
compared to the non-decoupled distillation scheme. The experiment
further verifies that performing distillation for all modal features

Table 5: Ablation study on the feature decoupling scheme.

RGBT234 LasHeR
PR SR PR NPR SR

baseline 86.4 64.5 67.8 64.3 54.0
baseline w/ IN 85.6 63.7 67.1 63.2 53.4
baseline w/ FD 85.2 63.8 67.2 63.4 53.7
baseline w/ SD 86.4 65.0 68.9 64.3 54.5
baseline w/ CKD 87.4 65.5 71.6 67.5 56.9

is unnecessary, and also demonstrates that pursuing inter-modal
feature style consistency can effectively mitigate modality gap.

baseline w/ CKD is the coupled distillation scheme proposed
in this paper, which significantly improves the performance on
both datasets, thus further demonstrating the importance of fea-
ture decoupling scheme. Moreover, in comparison with the style
distillation scheme, it can be observed that even if only modal style
features are distilled, it is difficult to completely avoid causing harm
to the modal content representation, which leads to sub-optimal
performance.

Table 6: Ablation study on the different missing ratios.

Missing
challenge Tracker RGBT234 LasHeR

PR SR PR NPR SR
w/o RGB
(50%)

baseline 80.3 58.0 59.0 54.2 46.9
CKD 85.4 61.4 65.6 60.6 51.9

w/o TIR
(50%)

baseline 84.1 62.6 63.2 59.4 50.5
CKD 85.0 63.7 68.1 63.8 54.0

w/o RGB
(80%)

baseline 73.5 52.2 53.0 48.3 42.3
CKD 81.1 56.9 60.1 55.1 47.5

w/o TIR
(80%)

baseline 81.8 60.9 60.0 56.3 48.1
CKD 82.6 61.6 64.4 59.7 50.8

0.1.6 Robustness performance. In Table 6, we also explore the ro-
bustness of CKD with different modality miss ratios. We adopt a
random missing strategy for the test dataset, and copy the non-
missing modality data as the input compensation for missing modal-
ity. We construct two different miss ratios to more fully compare
the performance of CKD and baseline methods when encountering
the same miss scenario. It can be observed that the performance
of baseline shows a significant decline while the performance of
CKD is decreases slightly with the increase of missing ratios. The
experiment shows that our method is robust even in the missing
challenge.

In addition, it can be seen that there are significant differences
in the importance of different modalities. For example, in the exper-
iment with 80% missing ratio, the baseline method achieves 8.3%
(PR) performance difference between different missing modalities
in RGBT234, while the difference is only 1.5% (PR) in CKD. The ex-
periment indicates that CKD effectively eliminates the gap between
modalities, thus bridging the performance difference of different
modalities.

0.1.7 Visual analysis. In this section, we design three different
visualization strategies to show the advantage of CKD, including
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feature visualization, tracking results visualization and token elimi-
nate visualization.

Feature visualization. In Figure 2, we visualize and compare
the RGB and TIR content features extracted by the models trained
with different distillation techniques and the RGB and TIR con-
tent features extracted by the models not trained with distillation
methods. We also show their similarity relationships in the second
and four rows. Moreover, we present the distribution of the two
modality features between different models. Although the feature
distillation (FD) approach significantly narrows the inter-modal
feature distance between two modalities, as shown in (o) and (r), it
also leads to a perceptible difference between its feature content
(g)/(n) and the original feature content (a)/(h), which is likely to
harm the modality content representation. By adopting style dis-
tillation (SD), we can observe that SD achieves the preservation
of feature content (c)/(j) while reducing the inter-modal gap (q).
However, our visualization of the cosine similarity (f)/(m) between
(c)/(j) and (a)/(h) reveals that they share a low similarity, suggesting
that imperceptible variations in content features still occur in SD.
Finally, the proposed CKDmethod achieves a good balance between
inter-modal gap elimination and modality content representation
preservation, as shown in (e)/(l) and (p).

Tracking results visualization. In Figure 3, we visualize the
tracking results of CKD and other advanced RGBT trackers, in-
cluding SDSTrack [4], TBSI [5], ViPT [11] and APFNet [9]. In four
representative examples, it can be seen that our CKD method can
achieve far better tracking performance than existing algorithms
under different challenges, including (a) occlusion challenge, (b)
transparent target challenge, (c) background clutters challenge, and
(d) similar object interference challenge. The experiment demon-
strates that our method can fully cooperative information of two
modalities to handle challenging scenarios by breaking modality
gap.

Token eliminate visualization. In Figure 4, we visualize the
eliminate results of multi-modal candidate token eliminate (MCE)
and original single-modal candidate token eliminate CE [10]. In
first row, it can be observed that the CE strategy introduces inac-
curate elimination results in target region of RGB modality, which
may cause performance degradation. In contrast, MCE can provide
correct and consistent elimination results in both modalities. Simi-
lar situation occurs in the fourth row. In the TIR modality, the CE
strategy drops the target region’s token, while the MCE keeps the
target region’s token.
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Figure 2: Comparison of feature maps and T-SNE visualizations for different distillation methods. For T-SNE maps, they have
the same scale of axes. The hotter color in the first and third rows indicates more salient features, while in the second and four
rows the hotter color indicates more similar between the non-distilled (Base features) and distilled features, and vice versa. In
the five row, the yellow and purple color indicate the features of RGB and TIR modalities respectively.
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Figure 3: Comparison of tracking results for different RGBT tracking methods.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(b) MCE

Input Stage1 Stage2 Stage3 Input Stage1 Stage2 Stage3

(a) CE

Figure 4: Comparison of different candidate token eliminate methods. We choose two representative examples 𝑐𝑎𝑟𝑐𝑜𝑚𝑖𝑛𝑔𝑖𝑛𝑙𝑖𝑔ℎ𝑡

in the first two rows and 𝑐ℎ𝑖𝑙𝑑1 in the third four rows. Here, we adopt a black-gray mask in the first sequence to clearly show
the discarded tokens in the RGB modality, and a white-gray mask in the second sequence to more clearly show the discarded
tokens in the thermal modality.
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