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A Dataset Supplement

For a description of the RORCO dataset, please refer to Section[2, The dataset is intended broadly
for academic research, in particular designing estimators for causal inference. We hope the RORCO
dataset encourages more accurate estimators and more comprehensive evaluations. The dataset is
available in the naturalexperiments Python package The dataset can be directly downloaded
as a CSV from the Github repository Alternatively, after installing the naturalexperiments
package with pip, the covariates, outcomes, and treatment assignments can be directly loaded in
Python with the following code.

import naturalexperiments as ne

# Semi-synthetic version
X, y, z = ne.dataloaders["RORCO"] ()

# Observational version
X, y, z = ne.dataloaders ["RORCO Real"] ()

Repeated calls to the observational dataloader return the same outcomes and treatment assignment
whereas repeated calls to the semi-synthetic dataloader return newly generated outcomes and treat-
ment assignments. We provide an introductory demonstration with examples of the many tools in
naturalexperiments in the Github repository and, in Appendix B} we showcase almost all of the
code used to produce the results in the paper and appendices. The Croissant metadata is available
on the Github repositoryﬁ The authors bear all responsibility in case of a violation of rights. We
confirm the use of the MIT license The code and data will be stored and maintained indefinitely on
the Github repository. Interested researchers may email us directly or open issues. When the Dataset
nutrition label is approved, we will update the README.md file on the Github repository.

“https://github.com/rtealwitter/naturalexperiments
https://raw.githubusercontent.com/rtealwitter/naturalexperiments/main/
naturalexperiments/data/rorco/rorco_data.csv
%https://github.com/rtealwitter/naturalexperiments/blob/main/naturalexperiments/
data/rorco/metadata. json
'https://github.com/rtealwitter/naturalexperiments/blob/main/LICENSE
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B Using naturalexperiments

The following is the code used to produce almost all of the tables and figures in the paper and
appendices. We exclude the code to produce the ablation and the differential privacy heatmaps
because it is slightly longer.

import naturalexperiments as ne

# Dataset summary
ne.dataset_table(ne.dataloaders)

# Dataset plots e.g., outcome by propensity, calibration, etc.
ne.plot_all_data(ne.dataloaders)

# Estimates on RORCO Real

variance, times = ne.compute_estimates(methods, "RORCO Real", num_runs
=100)

ne.benchmark_table (variance, times)

# Benchmark

for dataset in ["ACIC 2016", "ACIC 2017", "IHDP", "JOBS", "NEWS", "
TWINS", "RORCO"]:
variance, times = ne.compute_variance (ne.methods, dataset,

num_runs=100)
ne.benchmark_table(variance, times)

# Benchmark by number of observations

use_methods = ["FlexTENet", "TNet", "TARNet", "RANet", "Double-Double"
, "Doubly Robust"]

methods = {method: ne.methods[method] for method in use_methods}

ns = list([x * 1000 for x in range(l, 16)1)

variance = ne.compute_variance_by_n(methods, "RORCO", ns=ns, num_runs=
100)
ne.plot_estimates (variance, xlabel = "Number of Observations")

# Benchmark by correlation

variance = ne.compute_variance_by_correlation(methods, "RORCO",
num_runs=100)
ne.plot_estimates (variance, xlabel = "Distance Correlation")

# Benchmark by cross entropy
use_methods = ["Regression Discontinuity", "Propensity Stratification"
"Adjusted Direct", "Off-policy",
"Double -Double", "Doubly Robust"]
methods = {method: ne.methods[method] for method in use_methods}

variance = ne.compute_variance_by_entropy(methods, "RORCO", num_runs=
100)
ne.plot_estimates(variance, xlabel = "Cross Entropy")
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C RORCO Real Estimates

Method Mean 1st Quartile 2nd Quartile 3rd Quartile Time (s)
Regression Discontinuity  1.54e-01  1.12e-01 1.65e-01 2.08e-01 8.61e-04
Propensity Stratification ~ -2.90e-01 -4.24e-01 -2.93e-01 -1.71e-01 2.63e-03
Direct Difference -8.78e-02  -8.78e-02 -8.78e-02 -8.78e-02 4.60e-04
Adjusted Direct 1.55e-02  -2.04e-02 1.06e-02 4.33e-02 1.10e+01
Horvitz-Thompson -5.84e-02  -8.34e-02 -6.36e-02 -3.15e-02 4.40e-04
Doubly Robust -3.91e-02  -6.62e-02 -4.19e-02 -1.60e-02 1.49e+01
TMLE 2.34e-01  -1.28e+00 4.46e-02 1.77e+00 2.18e+01
Off-policy -1.38e-02  -3.49¢-02 -1.33e-02 3.79¢-03 1.12e+01
Double-Double -5.72e-02  -8.19e-02 -6.28e-02 -2.78e-02 2.22e+01
Direct Prediction -2.23e-02  -6.71e-02 -2.53e-02 2.49e-02 1.12e+01
SNet -5.93e-02  -5.93e-02 -5.93e-02 -5.93e-02 4.04e+01
FlexTENet 2.99e-02  2.99¢-02 2.99¢-02 2.99¢-02 2.84e+01
OffsetNet 3.34e-02  3.34e-02 3.34e-02 3.34e-02 7.42e+00
TNet 5.43e-02  5.43e-02 5.43e-02 5.43e-02 7.84e+00
TARNet -2.90e-02  -2.90e-02 -2.90e-02 -2.90e-02 6.79e+00
DragonNet 5.36e-03  5.36e-03 5.36e-03 5.36e-03 9.33e+00
SNet3 -8.72e-03  -8.72¢-03 -8.72e-03 -8.72e-03 3.43e+01
DRNet -2.05e-02  -2.05e-02 -2.05e-02 -2.05e-02 1.45e+01
RANet -7.56e-03  -7.56e-03 -7.56e-03 -7.56e-03 1.23e+01
PWNet -1.29e-01  -1.29e-01 -1.29¢-01 -1.29¢-01 1.45e+01
RNet 3.62e-02  3.62e-02 3.62e-02 3.62e-02 1.05e+01
XNet 9.33e-02  9.33e-02 9.33e-02 9.33e-02 1.90e+01

Table 4: Estimates on the RORCO Real dataset. The outcomes are normalized: mean-centered and
divided by the standard deviation. There is surprising variation in the estimates from the lowest mean
estimate of —.607 to the highest of .459. Based on our benchmark, we find that Double-Double is

the most accurate in the natural setting experiment, suggesting a treatment effect of .081.
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D Double-Double Variance

Theorem 4.1. When the propensity scores are known exactly, the doubly robust estimator with split
training 7(z) is unbiased i.e., B, s, s,[7(z) — 7] = 0 with variance given by

Varl# (2) — 7] 221&&,52[( O [ 0 % ) 1fipi>2]

+E ZEZ,51,52 K?Jvz(z(jﬁl)) - ?z‘(z(jﬁo))> (gj(z(ml)) B gj(Z(HO)))] '

i#j

Proof. To simplify notation in the proof, we will drop the subscript on the expectation and variance.

Recall the estimator is given by
) . 0
) v — §i(2)
712&:1 - 7]121#1 .
Di 1—pi
By linearity of expectation we have:
n _ -

y,mz)%_ll &
Dbi

E[i(z)] = ~ > E b —ii(z)

i=1

Then, since the prediction ¢;(z) is independent of the treatment assignment z;, we can use the fact
that E[AB] = E[A] E[B] for indendent random variables A, B to obtain:

B ()] = = S Bl — @) Ellmi] /i — Bl — ()] E Lol /(1 - )

= % S ou —Eli(2)] - (1 — Elji(2)]

=1
_ Zyu) y© =

Above we used the fact that E[1,,—1] = p; and E[1, 1] = 1—p;. This is because the prediction §; (z)
is independent of the treatment assignment z;: Crucially, the functions used to learn the prediction
for 7 are not trained on ¢ itself.

We will next analyze the variance of the difference between the estimator and the treatment effect. In

order to simplify notation, let 7, = yi(l) — yz@) and

M _ - ©) _ &
. Y —9i(z) 1., = Y 9i(z) 4

ilz) = Di ' 1—p; AL

Then we have

n?Var[#(z) — 7] = E (Z(ﬁ(z) — Ti)> =F lZ(ﬁ(z) —7;)?

First, we will show that

n

Z(ﬁ-( - 7) ] EZ( zS()( X;)) 1;171‘_1_(%_(0) fz(og()(xl)) 1fipi> .

=1

E
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571 In order to simplify the notation, we will use §; = §;(z) when clear from context. We have

n

St | = 3B )= Y Bl s sl

i=1

E

572 In the first equality, we used llnearlty of expectation Whlle, in the second equality, we used the law of
573 iterated expectation. Fix Si, S5, z_;, then

(€]

2 2
~ (0) ~
. Yi —Yi Yi = —Yi
(7i(z) = 7:)* = pi ( Er—— (yz(l) - y§0))> + (1 -p) ( e (yil) - yE‘”))

(6)
W _ 2\ ® _ g, )
p:-[(y"%) —2 (y ) (v0 =) + (s =) }
Di Di
© _5\" 0 _ 4 >
+<1—pi>{ el B b el | Rt R (R } ™)
1—p; 1—p;

574 We foil out each term, divide by p;(1 — p;), and group the terms in blue. Then
ﬁﬁ=mﬂlIm[O%UV—2&%”+ﬁ)O—pO—QQQUV—EQU—ym(m+ywp)mﬂ—p»
+ ((yEO))2 — 25" + yz) pi +2 (yfo) A yy(o)) pi(1 = p;)
# (07 =2+ 62) 0 - ]
= ]ﬁ {(y,g]))z[l —pi — 2pi(1 —pi) + (1 — pi)pi]
+ (uf y{! )) (2pi (1 = pi) + 2pi(1 — pi) — 2pi(1 — pi)]
() s 20— )+ (1= ppd + (520" ) =200~ p) + 2541~ ) — 2i(1 — )]
+ (yzy,(o)) [=2pi(1 = pi) — 2pi + 2pi(1 = pi)] + () (pi + 1 — pi)} ®
575 We simplify the factors on the terms in red. Then

©) = m [(yfl>>2(1 —pi)*+ (yf)yz(o))?(l —pi)pi + ( 50)) (pi)?
(yzy,( )>2(1 —pi) — (yzyf )>2pi + (:%)2}

( Wt py )) *2@((1* i)Y ()ery(o))
pi(1 —pi)
(1fp1 i +piy” — 1)-)2
pi(1 —pi) ®
(=0 = 10 ) + i = % )
pi(l — i)

2
((“ ﬂ”()MPm“+@Pﬁ%Mm>l?m)- (10)

576 We can check the calculations from Equation[6]to Equation [9|using the WolframAlpha query linked
577 |here. The penultimate equality follows from the definition of §j;. Then plugging|10 into Equation[5
s78  yields Equation 4]

N
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Recall that zU—?) is the treatment assignment vector with z; set to b. Next, we will show that

E > () —1)(75(2) = 75) | =E |3 (5:297) = (297 (35(20) = 452

i#] i#]

(11
For notational brevity, we will use the shorthand
1 0 0 o 25 ~
g W@y w @y ™ i@
i i zi= 1— i ZiF -

where m; = p;1,,=1 + (1 — p;)1,,21. We have

E | (Fi(z) — ) (7(z) = 73) | = > _E[E[(fi(2) — 7:)(F(2) — 7)|81, S2,2_(5.53]]  (12)
i#] 1#]

where z_; ;y is the vector z with the 7th and jth elements removed. The equality follows from lin-

earity of expectation and the law of iterated expectation. We will analyze the conditional expectation

E [(i(z) — 7:)(7i(2) — 73)|S1, S2, 2 (5,33

(z1) _ o (z3) _ o~ z
= <(_1)1—21‘, Y; yz(Z) _ Ti> <(_1)1—zj y] y]( ) _ T]> Sh 527 Z{,L’J}‘|
Uy 7Tj
(z:) _ 5 (,(G—2)) (z3) _ o (g(i—20)
= Z 7Ti7rj ((_1)1—% Y; y;r(z 7 ) _Ti> ((_1)1—zj y] y;( ) —Tj
g J
zi,2;€{0,1}
(zi) _ s, (i—25) (25) _ & (o (i—z)
h i VA J N VA
— Z 7Ti7rj ((_1)1—@(_1)1—4 (yl Y ( i)fryj y]( ))
zi,2;€{0,1} L)
) = i(22) ) = (e
—(=1)= P = (=1)7% P Ti + Tﬂ'j). (13)

The first equality follows by the definition of 7; and 7;. The second equality follows by expanding the
expectation over z; and z;. The third equality follows by expanding the product of the two terms. We
will first analyze the two cross-terms. Without loss of generality, we will analyze the first cross-term.
We have

L2, e . =, L e W) = Ga(z0=))
=7 <—<1 — )" = 5297 = p; (1" — (207 )) (14)
L) )+l ()

=7 (pj (yfl) — i(z07D) = yl0 ?}i(z<ﬁ”)) (15)
+-p) ( SRR C))

=7 (" = 4" + =) =) = 1" =) = 7m. (16)

Distributing the sum and plugging in Equation [16|twice, we have

={ X D7EED () - aE) (7 - g @) | -y

zi,2;€4{0,1}
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sso  Then we have + 7i7; equal to

(s = 967N (17 = 5327)) = (" -
=~ (" =) (7 iy @) +
~0:(2970) (" ;2

(" =0y e 0) !

= (27" (5(20) — g <z<H0>>)
4 ( (0) y](l)) _y® (y§0) yf
= (@i(z(j—ﬂ)) _ g)i(z(j_*o))) (gj(Z(Hl)) _

so0 Plugging Equation [T8] back into Equation [I3 and then back into Equation [T2] yields Equation [TT.
so1  Finally, the claimed variance in Equation [3|follows from Equations 4] and [TT}
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ses. E  Connection to Doubly Robust Estimator

se4 The Double-Double estimator described in Algorithm [T is equivalent to a doubly robust estimator
s95 with the same learned functions. We show the algebraic equivalence below.

s96 We used the learned prediction
" (1 2(0
i(z) = (1 — pi)fz(,g(i) (xi) + pifz(7;(i)(xi)~

597 in the estimator

12( > it g2, >
z;=1 ) zi#1 | -
nz:l

1_pz

ses  Plugging in the prediction, the estimator is then

Z,;:l

n 1 (1 ~(0
Ly~ <y< (=) 5 (k) = i f% s (x0) .
Di

yz@) (1_pz)fzs()( X;) — szz( ;(1)(’(1)
- 1.1

n (1) (1)
1 Yi — s ( i) -
T T g L(x) |1, =
i3 (< Di +f, S(n(x ) = a5 (% )> i=1
(0) _ 7(0) .
<HS()(X) s (%0) + Fl50) (% >>1 ¢1>
1 _pl v l 2
n 1 D . ©  #0)
flz wl 7% CHY - O o),
= n — Di zi=1 1 s zl;él 5 (i) \Xi 2.5(i) (X

599 The final expression is a doubly robust estimator with the same learned functions.
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F Extended Related Work

There are many approaches to treatment effect estimation in the literature. Some of the ap-
proaches, like estimators for time series data [BCG17, WSBGI8| and design based controls
[CD20, Kal18, [ADR21], IAAM ™22, [HSSZ23], are inappropriate for our setting because we only
have one measurement of the outcomes and no control over which observations receive the treatment.

We use propensity scores to account for the probability that an observation received the treatment.
There are many estimators that use propensity scores like propensity score matching and propensity
stratification [Aus11,|Lin14,|AS15]. However, in natural experiments, the propensity scores tend to
be close to 0 or 1 so propensity score matching and stratification give high variance estimates because
of the imbalance in the number of observations that received the treatment or control. Instead, we
focus on inverse propensity score weighting and a popular method called the Horvitz-Thompson
estimator [HTS52, BHAB1S8|]. While the Horvitz-Thompson estimator is similarly prone to high
variance, it is common to reduce the variance by adjusting the estimator with a prediction.

There are many estimators that use predictions including regression adjustment, regression disconti-
nuity, and direct regression on the propensity scores [Rhol0}|CKLP17}|CT22]. Some prior work on
regression based adjustment estimators tend to make strong assumptions, for example that outcomes
are a linear function of the covariates or that the treatment effect is additive [Ros02, TDZLO8, INW21al.
For example, regression discontinuity assumes that the treatment effect is not correlated with propen-
sity scores and so can be accurately estimated from observations with similar propensity scores
[ILO8]. Some work on designing estimators with propensity scores and regression adjustments tend
to describe the asymptotic variance at the expense of the constants that effect the performance in the
finite setting [Fre08, BLBT09, Ken23].

There are several estimators with theoretical guarantees use include propensity scores and learned
predictions. Targeted maximum likelihood estimation (TMLE) refines an initial prediction for
treatment effect estimation using propensity scores [VALR' 11| [SR17, [Ken23]. Doubly robust
estimators are designed to yield asymptotically correct results if they have accurate predictions of
either the propensity scores or the outcomes under the treatment and control [SRR99,IKS07]. Doubly
robust estimators have been extensively studied and optimized in the setting where predictions are
linear function [VV 15! Tan20].

Recently, there has been substantial work designing neural network architectures and loss functions
to estimate treatment effects. DragonNet uses a specialized architecture and targeted regularization
[SBV19]. XNet and RANet uses a regression-adjusted pseudo-outcome [KSBY 19, ICVdS21al.
OffsetNET estimates an offset and TNet uses a vanilla neural network architecture while FlexTENET,
SNets, and TARNet use ideas from multi-task and representation learning [CVdS21b]. RNet uses a
two-stage optimization approach [NW21b]. PWNet is designed for the Horvitz-Thompson estimator
[CVdS21a]]. DRNet is designed for a doubly robust estimator [[Ken23].

Our work is most similar to two recent papers that have analyzed the Horvitz-Thompson estimator
with predictions in the finite population setting. Ghadiri et al. prove theoretical bounds on the
variance when the propensity scores are all uniform and the prediction is learned from a linear
function [GAM™24]. We consider a similar estimator but in the natural experiment setting for general
probabilities and with a more powerful prediction learned from nonlinear functions. However, since
the functions we use are in general neural networks, we do not give guarantees on the quality of the
prediction. The estimator we propose is similar to the Off-policy estimator given by Mou et al. but
differs in three ways [MWB22]. First, we learn one function for the treatment outcomes and one for
the control outcomes instead of the single function learned by Mou et al. Second, the loss we use to
learn the function has an additional multiplicative factor that we theoretically justify. Third, a term in
their final estimator has a factor of % that we do not have. Together, the differences in our estimator
improve its performance substantially over the Mou et al. Off-policy estimator.
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G Description of Other Estimators

Regression Discontinuity The estimator takes the difference between outcomes under the treatment
and control in a small region of propensity scores. Let S, = {i : 5 —w < p; g + w}. The

estimator is given by mean({y") : i € S,,,z; = 1}) — mean({y®) : 6 S 2i # 1})

Propensity Stratification The estimator takes the average of the difference between mean treatment
outcome and mean control outcome over ¢ different g-quantiles of the propensity scores. The
estimator is given by

q

1 k
- mean({y, ’ : <pz§721_1
: Z[ (® fam
1
— mean({y " - kol 7 <pi < S,Zi # 1})]

Direct Difference The most naive estimator takes the difference between the outcomes in
the treatment group and the outcomes in the control group. The estimator is given by

) ( )
2y 1( 1.=1 127;&1)

Adjusted Direct The estimator adjusts the direct estimate by learning a prediction y ~ y(1,_; +
y(o)]lz;ﬂ. The estimator is given by % Dy ((yz(l) — 91,1 — (yi(o) — gi)lzi;ﬁl) .

Horvitz-Thompson The estimator accounts for the (potentially) non-uniform propensity scores.
€ (0)
Horvitz-Thompson estimator is - 3" | y; sim1 — lyj—pi]lzﬁgl. Notice that when p; = % for all ,

the Horvitz-Thompson estlmator is equlvalent to the direct estimate.

Doubly Robust Estimator In addition to accounting for the propensity scores, the estimator uses

y1(1) :[/7(1)

learned predictions §(V ~ y() and y(© ~ y(®. The estimator is + i P

(0) _5(0)
S+ 3.

Targeted Maximum Likelihood Estimator (TMLE) The TMLE adjusts the learned predictions
with an additional regression step. Because of its complexity, we do not describe the full estimator
here and instead refer readers to the Step-by-Step Guide in Schuler and Rose [SR17].

zi=1 —

Off-policy The off-policy estimator due to Mou et al. The off-policy estimator is similar to Double-
Double except that estimator learns a single function with a loss weighted by 1,1+ 7=2 =2 s, 1.

In addition the final estimator differs by a factor of two on some of the terms

Direct Prediction The estimator takes the difference between predictions for the outcomes under the

treatment and control. The estimator learns a prediction v ~yW1, ; and y© ~ y© 1,.1. The
estimator is given by 2 3" | (yfl) yfo))

There are many ways to learn functions for the direct predictions. An extensive line of recent
work uses sophisticated neural network architectures and loss functions to account for confounding
and other issues. We compare against many of these approaches as implemented in the CATENet
benchmarkf®| [CVdS21al [CVAS21b).

8github.com/AliciaCurth/CATENets
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H Differential Privacy Connection

The second term in the variance described in Theorem .1 measures how much changing an observa-
tion from the treatment to the control group (and vice versa) affects the adjustment term. Because the
second term is O for observations in the same partition, notice that the second term would disappear if
we only used half the data for estimating (instead of both learning and estimating). In some sense, we
can think of the term as the cost of using the same data twice. Since the adjustment term consists of
the prediction for the treatment and control outcomes, the second term measures how much removing
the observation from the treatment training set and putting it into the control training set (and vice
versa) affect the estimators. The quantity is closely related to the requirement of differentially private
learning: removing an observation from the training set should not change the learned model too
much. Inspired by this connection, we explore whether a popular differentially private learning
technique called DP-SGD improves performance [ACG 16, PHK23]. At each stage of gradient
descent, DP-SGD clips the magnitude of the gradient and adds a noise term. From the hyperparameter
search in Figure[7} we find that DP-SGD does not improve the estimator. One explanation is that the
second term tends to be very small: On the RORCO dataset, we find that the second term is roughly
10-30,

Squared Error of Off-policy Estimator

Squared Error of 3D Estimator

1072 3x107

2x107

ning Rate

Gradient Clip Value

Lea

6x107

4x107%

& z[@ z/& dg» zbw zl@ 6@, f\ & P O I T
& F F A S B A N A A
Noise Multiplier Noise Multiplier

Figure 7: We conduct a hyperparameter search Figure 8: Together, the two heatmaps suggest
for the Double-Double estimator with differen- that the Double-Double estimator with differen-
tially private learning. The learning rate con- tially private learning achieves lower squared
trols the step size in gradient descent while error and is more robust to hyperparameter
the noise multiplier controls the magnitude of choices. We use the heatmaps to choose the
the noise added to each gradient. Each square hyperparameters for the Off-policy + DP and
represents the mean squared error on the semi- Double-Double + DP estimators in Table

synthetic data over 100 runs.
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I Benchmark on Additional Datasets

We evaluate the performance of estimators on other datasets. As in our RORCO benchmark, the
following table is based on (at least) 100 random runs where the randomness is over the data
generation process, propensity score estimation, and any internal randomness in the algorithms. For
datasets that do not have both treatment and control outcomes for every observation (ACIC 2016,
ACIC 2017, Jobs, and News), we use the synthetic propensity scores and outcomes that we designed
for the RORCO semi-synthetic dataset.

Method Mean 1st Quartile 2nd Quartile 3rd Quartile Time (s)
Regression Discontinuity  1.46e-03  6.33e-04 1.09e-03 1.95e-03 1.05e-03
Propensity Stratification = 1.61e-03  1.25e-03 1.54e-03 1.88e-03 2.98e-03
Direct Difference 4.45e-01  3.85e-01 4.34e-01 5.03e-01 4.92e-04
Adjusted Direct 5.78¢-03  5.11e-03 5.78e-03 6.35e-03 1.35e+01
Horvitz-Thompson 5.46e-03  7.03e-04 3.60e-03 7.41e-03 4.79e-04
TMLE 1.42e-01  5.11e-03 2.81e-02 8.59¢-02 2.69e+01
Oft-policy 3.64e-03  2.03e-03 3.24e-03 4.84e-03 1.43e+01
Double-Double 1.03e-04  1.03e-05 4.53e-05 1.18e-04 2.80e+01
Doubly Robust 1.67e-06  1.55e-07 6.29e-07 2.41e-06 2.19e+01
Direct Prediction 5.08e-03  1.37e-03 3.69¢-03 7.63e-03 1.38e+01
SNet 5.67e-02  1.53e-02 4.99e-02 9.58e-02 2.39e+01
FlexTENet 6.65e-04  6.07e-05 1.78e-04 4.16e-04 1.50e+02
OffsetNet 9.26e-04  6.43e-04 8.80e-04 1.07e-03 1.37e+02
TNet 7.59e-04 | 2.05e-05 9.02e-05 2.66e-04 1.21e+02
TARNet 6.84e-04  3.03e-05 1.06e-04 2.45e-04 1.06e+02
DragonNet 2.07e-02  7.07e-03 1.83e-02 3.22e-02 5.66e+00
SNet3 3.98e-02  7.13e-03 2.83e-02 6.37e-02 1.46e+01
DRNet 1.41e+01 1.32e-03 6.56e-03 3.61e-02 1.31e+02
RANet 7.63e-04  2.53e-05 8.49e-05 2.48e-04 1.95e+02
PWNet 1.21e+01  4.43e-02 4.83e-01 6.66e+00 1.30e+02
RNet 5.09¢-03  4.50e-03 5.04e-03 5.72¢-03 6.43e+01
XNet 6.74e-04  3.09e-05 4.16e-04 9.68e-04 2.41e+02

Table 5: Squared error on the semi-synthetic ACIC 2016 dataset.
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Method Mean 1st Quartile 2nd Quartile 3rd Quartile Time (s)

Regression Discontinuity  2.77e-03  1.69e-03 2.30e-03 3.58e-03 1.01e-03
Propensity Stratification  1.61e-03  1.17e-03 1.61e-03 1.96e-03 2.79e-03
Direct Difference 4.18e-01  3.64e-01 4.10e-01 4.61e-01 4.91e-04
Adjusted Direct 5.74e-03  5.05e-03 5.72e-03 6.43e-03 1.10e+01
Horvitz-Thompson 5.98e-03  8.61e-04 3.08e-03 7.72e-03 4.70e-04
TMLE 3.47e-01  8.57e-03 3.63e-02 1.74e-01 2.33e+01
Oft-policy 4.79e-03  2.53e-03 3.82e-03 6.54e-03 2.00e+01
Double-Double 6.61e-05  7.67e-06 3.71e-05 9.04e-05 3.96e+01
Doubly Robust 1.91e-06  1.32e-07 6.63e-07 2.17e-06 1.95e+01
Direct Prediction 4.23e-03  6.91e-04 2.73e-03 6.54e-03 1.28e+01
SNet 4.79¢-02  1.12e-02 3.88e-02 7.13e-02 2.02e+01
FlexTENet 5.37e-04  6.12e-05 1.78e-04 4.01e-04 1.48e+02
OffsetNet 8.82e-04  5.67e-04 7.68e-04 1.10e-03 1.32e+02
TNet 1.42e-03 = 2.97e-05 1.45e-04 4.59%e-04 1.14e+02
TARNet 1.87e-04 3.11e-05 1.12e-04 2.53e-04 1.02e+02
DragonNet 2.17e-02  1.02e-02 1.77e-02 2.94e-02 4.35e+00
SNet3 3.35e-02  5.25e-03 1.57e-02 5.48e-02 1.35e+01
DRNet 1.80e+02  5.76e-04 1.83e-03 8.69¢-03 1.20e+02
RANet 1.42e-03  3.56e-05 1.41e-04 4.02e-04 1.84e+02
PWNet 2.28e+01  1.09e-02 2.84e-01 1.81e+00 1.19e+02
RNet 4.96e-03  4.37e-03 4.82e-03 5.60e-03 5.86e+01
XNet 8.89e-04  8.33e-05 1.98e-04 1.16e-03 2.24e+02

Table 6: Squared error on the semi-synthetic ACIC 2017 dataset.

Method Mean 1st Quartile 2nd Quartile 3rd Quartile Time (s)
Regression Discontinuity  2.26e+00 1.54e-01 2.40e-01 3.35e+00 8.37e-04
Propensity Stratification ~ 1.39e+00  8.90e-03 2.54e-02 2.07e-01 1.92e-03
Direct Difference 4.23e+02  3.09e+01 6.48e+01 1.61e+02 4.19e-04
Adjusted Direct 8.59e+00  3.09e+00 3.75e+00 4.94e+00 2.10e+00
Horvitz-Thompson 3.71e-01  1.72e-02 4.81e-02 2.13e-01 3.85e-04
TMLE 5.22e4+00  6.73e-02 3.13e-01 1.60e+00 3.98e+00
Off-policy 5.44e-01  3.23e-01 4.75e-01 6.91e-01 2.01e+00
Double-Double 2.01e-01  3.29e-02 1.15e-01 3.02e-01 4.00e+00
Doubly Robust 7.67e-02  2.17e-03 5.59¢-03 2.43e-02 3.32e+00
Direct Prediction 1.86e+00 1.10e-02 3.97e-02 2.12e-01 2.08e+00
FlexTENet 1.03e+01  1.72e-02 5.91e-01 1.24e+00 1.03e+01
OffsetNet 3.64e+00 5.66e-02 1.91e-01 7.04e-01 3.95e+00
TNet 4.38e-01  4.00e-02 3.34e-01 5.98e-01 4.51e+00
TARNet 5.16e+00 = 1.04e-02 2.46e-01 8.00e-01 3.44e+00
SNet3 3.77e+00 4.46e-01 7.55e-01 1.09e+00 1.33e+01
DRNet 9.79¢-01  5.71e-02 9.00e-02 4.38e-01 8.99e+00
RANet 3.43e-01  3.90e-02 1.47e-01 5.80e-01 7.58e+00
PWNet 9.61e+00 4.85e-02 5.57e-01 1.24e+00 8.82e+00
RNet 1.66e+00 2.83e-02 2.08e-01 1.17e4+00 6.50e+00
XNet 6.13e-01  1.44e-02 9.30e-02 2.35e-01 1.10e+01

Table 7: Squared error on the IHDP dataset.
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Method Mean 1st Quartile 2nd Quartile 3rd Quartile Time (s)

Regression Discontinuity  3.27e-03  1.47e-03 2.63e-03 4.27e-03 8.39e-04
Propensity Stratification  9.73e-04  4.03e-04 6.05e-04 1.06e-03 1.88e-03
Direct Difference 1.84e-01 1.11e-01 1.70e-01 2.26e-01 4.14e-04
Adjusted Direct 2.17e-03  1.17e-03 1.92e-03 2.59e-03 1.59e+00
Horvitz-Thompson 5.85e-03  3.42e-04 1.71e-03 7.87e-03 3.81e-04
TMLE 3.43e-03  1.19e-04 7.15e-04 3.49e-03 3.40e+00
Oft-policy 1.15e-03  3.94e-04 6.85e-04 1.04e-03 1.84e+00
Double-Double 1.40e-04  6.04e-06 4.01e-05 1.43e-04 3.56e+00
Doubly Robust 3.06e-05 8.12e-07 4.32e-06 1.41e-05 2.92e+00
Direct Prediction 1.55e-03  9.36e-05 4.43e-04 1.51e-03 1.80e+00
SNet 4.88e-03 4.17e-04 1.80e-03 5.01e-03 2.96e+01
FlexTENet 2.25e-03  5.90e-05 3.35e-04 1.58e-03 8.35e+01
OffsetNet 2.63e-04 4.93e-05 1.52e-04 3.50e-04 6.23e+01
TNet 3.23e-03  2.04e-04 8.16e-04 2.90e-03 4.63e+01
TARNet 2.05e-03  1.09e-04 4.18e-04 1.57e-03 4.84e+01
DragonNet 7.78e-03  5.25e-04 2.44e-03 7.85e-03 2.55e+00
SNet3 4.98e-03  5.24e-04 1.91e-03 5.25e-03 2.14e+01
DRNet 2.94e-03  7.18e-05 4.92e-04 2.42e-03 5.64e+01
RANet 3.25¢-03  2.16e-04 9.16e-04 2.96e-03 8.09e+01
PWNet 8.08e-03  9.05e-04 3.59¢-03 9.82e-03 4.93e+01
RNet 5.68e-04  2.52e-04 4.76e-04 7.19e-04 2.73e+01
XNet 5.99e-04 1.17e-05 6.61e-05 3.31e-04 1.01e+02

Table 8: Squared error on the semi-synthetic JOBS dataset.

Method Mean 1st Quartile 2nd Quartile 3rd Quartile Time (s)
Regression Discontinuity  2.28e-03  1.23e-03 2.09e-03 3.25e-03 1.16e-03
Propensity Stratification = 4.96e-04 3.11e-04 5.02e-04 6.15e-04 2.90e-03
Direct Difference 8.14e-02  3.39e-02 7.18e-02 1.27e-01 4.86e-04
Adjusted Direct 6.00e-04  2.14e-04 4.78e-04 8.84e-04 1.20e+01
Horvitz-Thompson 7.31e-04  7.56e-05 2.73e-04 8.64e-04 4.79e-04
TMLE 2.48e-03  5.72e-06 3.21e-05 1.93e-04 2.49e+01
Off-policy 5.30e-04 2.51e-04 4.77e-04 7.28e-04 1.27e+01
Double-Double 1.33e-07 2.91e-09 1.84e-08 8.87e-08 2.54e+01
Doubly Robust 3.68e-08 9.92e-10 9.88e-09 4.63e-08 2.04e+01
Direct Prediction 1.30e-05  1.13e-06 4.41e-06 1.64e-05 1.24e+01
SNet 2.27e-04  2.85e-05 1.36e-04 3.19¢-04 7.60e+01
FlexTENet 2.92e-05 4.28e-06 1.36e-05 2.89e-05 1.82e+02
OffsetNet 2.66e-05 2.43e-06 1.02e-05 3.05e-05 1.33e+02
TNet 2.26e-05 2.24e-06 1.18e-05 2.69¢-05 1.26e+02
TARNet 2.73e-05 1.23e-06 1.14e-05 3.26e-05 9.01e+01
DragonNet 4.90e-05 2.26e-06 2.43e-05 5.97e-05 3.83e+01
SNet3 3.88e-04  3.90e-05 1.88e-04 4.79e-04 6.14e+01
DRNet 2.83e-05 1.40e-06 8.82e-06 1.91e-05 1.90e+02
RANet 2.16e-05 3.34e-06 1.10e-05 3.26e-05 1.91e+02
PWNet 6.40e-04  4.49¢-05 2.93e-04 8.10e-04 1.45e+02
RNet 4.37e-05 5.20e-06 2.13e-05 6.29e-05 6.31e+01
XNet 5.69e-06 2.70e-07 1.02e-06 5.90e-06 2.41e+02

Table 9: Squared error on the semi-synthetic NEWS dataset.
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Method Mean 1st Quartile 2nd Quartile 3rd Quartile Time (s)

Regression Discontinuity =~ 4.27e-05  2.40e-05 3.84e-05 6.08e-05 1.11e-03
Propensity Stratification ~ 3.28e-05  3.53e-06 1.44e-05 5.11e-05 3.09e-03
Direct Difference 2.45e-05  2.56e-06 1.02e-05 3.66e-05 4.86e-04
Adjusted Direct 1.73e-01  1.25e-03 4.45e-03 2.79e-02 1.22e+01
Horvitz-Thompson 8.52e-05  8.84e-06 3.95e-05 9.34e-05 4.65e-04
TMLE 2.66e+00  2.60e-02 1.05e-01 2.87e-01 2.48e+01
Oft-policy 8.65e-03  6.14e-04 2.60e-03 8.86e-03 1.24e+01
Double-Double 9.95e-03  5.25e-04 2.69e-03 1.01e-02 2.46e+01
Doubly Robust 1.89e-02  2.20e-04 1.30e-03 5.40e-03 2.10e+01
Direct Prediction 1.53e-01  2.01e-02 8.36e-02 2.24e-01 1.26e+01
FlexTENet 9.36e+01  1.80e-01 1.68e+00 1.22e+01 2.04e+01
OffsetNet 1.19e+00  2.78e-02 8.62e-02 5.83e-01 1.61e+01
TNet 2.16e+01  3.08e-02 2.49¢-01 9.05e-01 1.01e+01
TARNet 4.06e+00 4.86e-02 1.66e-01 8.02e-01 9.54e+00
RANet 1.04e+01  1.02e-01 5.73e-01 4.25e+00 1.72e+01

Table 10: Squared error on the TWINS dataset.
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1e5 Colorado Schools by Rural Indicator

Latitude

Figure 9: A map of schools in Colorado. The
color indicates whether a school is “rural”. At
the suggestion of RORCO, we only consider
rural schools because, in rural areas, it is a more
reasonable assumption that students attend the
school closest to their medical provider.
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Figure 11: Histogram of CMAS scores by grade
for rural schools.
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Rural Schools in Colorado by RORCO Treatment

Latitude

Longitude

Figure 10: A map of rural K-12 public schools
in Colorado. The color indicates whether each
grade at the associated school “received” the
RORCO treatment. We determine that a grade
received the treatment if nearby RORCO clinics
gave books to more than half the number of
students in the grade.
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Figure 12: Histogram of propensity scores.
Since the dataset is imbalanced (roughly one
quarter of observations receive the treatment),
the propensities are skewed to 0.



Table 11: A summary of covariates in the RORCO dataset.

count mean std min 50% max
Low Grade 4178 28.3492 29.4807 2 6 90
High Grade 4178 73.2312 24.9566 20 80 120
Latitude 4178 39.0379 1.02844  37.0191 39.2469  40.8236
Longitude 4178 -105.645 1.64942  -108.904 -105.52 -102.123
County Code 4178 33.529 18.9398 1 32 98
District Code 4178 1756.8 1150.84 50 1500 8001
K-12 Count 4178 284.362 148.374 25 259.5 1132
Free Lunch 4178 92.7475 74.8659 0 75 418
Reduced Lunch 4178 24.432 18.3776 0 21 139
Paid Lunch 4178 146.765 111.575 0 128 816
Free And Reduced Count 4178 117.18 87.8908 0 99 496
% Free 4178 0.330949  0.191124 0 0.32 0.831
% Reduced 4178  0.0887836 0.0487366 0 0.09 0.253
% Free And Reduced 4178 0.419733  0.218246 0 0.42 0.908
Pk-12 Pupil Membership 4178 295.502 149.433 25 271 1132
Sped Count 4178 39.2197 23.048 0 35 130
Sped Pct 4178 0.132976  0.0442545 0 0.131 0.316
El Count 4178 34.6029 51.1494 0 12 234
El Pct 4178  0.0994809  0.131769 0 0.042 0.764
Homeless Count 4178 3.51843 6.58953 0 0 52
Homeless Pct 4178 0.01232  0.0285948 0 0 0.254
Gifted And Talented Count 4178 13.4165 19.9115 0 7 193
Gt Pct 4178  0.0411024 0.0424374 0 0.031 0.275
Online Count 4178 2.98923 29.0468 0 0 373
Online Pct 4178  0.0128119  0.109844 0 0 1
Section 504 Count 4178 5.07157 8.05086 0 0 95
Section 504 Pct 4178  0.0161197 0.0217525 0 0 0.125
Immigrant Count 4178 2.53614 7.83388 0 0 71
Immigrant Pct 4178 0.00640522 0.0184535 0 0 0.158
Migrant Count 4178 0.83102 3.05824 0 0 22
Migrant Pct 4178 0.00275108 0.0106982 0 0 0.082
Distr Code 4178 1756.8 1150.84 50 1500 8001
Pre-K 4178 11.14 19.1539 0 0 108
Half-Day K 4178  0.0143609  0.168886 0 0 3
Full-Day K 4178 22.0682 24.3982 0 17 98
2019-2020 students Counted 4178 322.656 170.878 1 299 1202
Days In Session Reported 4178 141.349 25.7376 15 145 230
Attendance Rate* 4178 0.940132  0.0597037 0 0.946 1.181
Truancy Rate** 4178  0.0130524  0.017604 0 0.01 0.415
Days Attended 4178 41074.1 23406.6 0 37366.1 179937
student Days Excused Absence 4178 1955 1811.02 0 1740.25 23719.8
student Days Unexcused Absence 4178 565.83 650.018 0 382.5 7129.1
Days Possible Attendance 4178 43591.3 24766.8 15 39675 187764
County Code 4178 33.529 18.9398 1 32 98
Teacher FTE 4178 20.5824 9.55585 2.1 19.4 67.7
District Code 4178 1804.14 1261.19 50 1510 8001
FTE 4178 51.6705 183.902 0 0 1130.07
Average Salary 4178 22468.9 27367.3 0 0 78568
FTE 4178 288.719 689.855 0 86.2612  4053.69
Average Salary 4178 51776.5 11894.6 0 50639 88981
Num_From_Rorco 4178 15.8511 29.9759 0 0 237
Capacity 4178 58.2461 45.6389 0 45 306
Half_Rorco 4178 0.229536  0.420585 0 0 1
Nearby_students 4178 3651.82 2726.3 7 3290 9949
Is_Rural 4178 1 0 1 1 1
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