
Supplementary Material for “(Almost) Free Incentivized
Exploration from Decentralized Learning Agents”

Chengshuai Shi, Haifeng Xu, Wei Xiong, and Cong Shen

A Discussions of Duration of the Observing Phase

In Section 3.3, the duration of the observing phase is specified as κ(T ) = T
2 , and we here discuss the

influence of this choice and other available choices. On one hand, intuitively, if the observing phase
lasts longer, more “free pulls” can be leveraged by the principal. On the other hand, there should be
sufficient time reserved for adaptive adjustments, i.e., the incentivizing phase; otherwise, the principal
cannot guarantee the success of best arm identification. It thus requires a careful trade-off between
more “free pulls” and sufficient adaptation.

If the principal knows the parameter ∆min of the global game, i.e., the global sub-optimality gap,
with Theorems 1 and 2, she can specify κ(T ) = κo(T ) := T − 16K log(KTδ )

∆2
min

+
64MK log log(KTδ )

∆2
min

=

T − O(log(T )), which is an upper bound of the required number of pulls on local arms without
incentives. However, it is often impossible for principal to have such information. Since best arm
identification is the primal task of the principal, we choose to specify T − κ(T ) to be ω(log(T )), i.e.,
with an order higher than log(T ), to guarantee sufficient times are left for the incentivizing phase,
and the adopted κ(T ) = T

2 is an exemplary choice among others, e.g., T4 ,
√
T . As shown in the later

proofs for Theorems 1 and 2, the amount of free pulls is of order O(log(κ(T ))). Thus, while these
choices (κo(T ), T2 ,

T
4 ,
√
T , etc) seemingly distinct with each other, the amount of free pulls they

provide does not differ much.

In practical applications, it is also conceivable to perform estimation of ∆min during the game with
µ̂k(t), i.e., ∆̂min(t), and use the estimation to determine κ(T ). However, it is difficult to provide a
rigorous theoretical analysis for such an adaptive approach.

B Proof of Lemma 1

Lemma 5 (Restatement of Lemma 1). Under the “Take-or-Ban” incentive-provision protocol,
following incentives, whenever offered, is optimal in terms of the expected cumulative rewards
(compared to not following) for every agent.

Proof. We fix an arbitrary agent m. Her local action πm(t) is made with the history Hm(t) :=
{πm(τ), Xπm(τ),m(τ), Im(τ)|τ ≤ t− 1} and the current incentives Im(t), where Im(t) :=
{Ik,m(t)|∀k ∈ [K]}. Thus, we can write πm(t) = Πm(Hm(t), Im(t)), where Πm is the strat-
egy that maps the history and current incentives to actions.

Key to our proof is to argue that if strategy Πm does not always follow the incentives, then another
strategy Π′m which always follows the incentives whenever offered will do better in expectation.
Formally, Π′m is defined as follows based on a modified history H ′m(t) and current incentive Im(t):

• When there is no incentive, strategy Π′m follows the decisions from Πm using the mod-
ified history H ′m(t) and the observations are added to the modified history. Formally, if
∀k ∈ [K], Ik,m(t) = 0, then π′m(t) = Π′m(Hm(t), Im(t)) = Πm(H ′m(t), Im(t)) and
observations {π′m(t), Xπ′m(t),m(t), Im(t)} are added to H ′m(t+ 1).

• When there are incentives and Πm follows the incentive, Π′m also takes the incentive and
adds observations to the modified history. Formally, if there exists k ∈ [K] such that
Ik,m(t) = 1 while Π(H ′m(t), Im(t)) = k, then π′m(t) = Π′m(Hm(t), Im(t)) = k and
observations {π′m(t), Xπ′m(t),m(t), Im(t)} are added to H ′m(t+ 1).

• When there are incentives but Πm does not take them, Π′m always takes the incentive, but im-
portantly does not add observations to the modified history. Formally, if there exists k ∈ [K]
such that Ik,m(t) = 1 but Πm(H ′m(t), Im(t)) 6= k, then π′m(t) = Π′m(Hm(t), Im(t)) = k
and no changes are made to the modified history, i.e., H ′m(t+ 1) = H ′m(t).
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If strategy Πm does not always take the incentives, there must be a time step s, ∃k ∈ [K], Ik,m(s) = 1
but Πm(Hm(s)) 6= k. After time s, the agent is banned from taking incentives any more. The
expected cumulative reward of π can thus be decomposed as

E[RΠm
m (T )] = E

[
s−1∑
t=1

(Xπm(t),m(t) + Iπm(t),m(t)) +

T∑
t=s

Xπm(t),m(t)

]
.

With strategy Π′m, for time step t < s, H ′m(t), π′m(t) are the same as Hm(t), πm(t). Thus, the
cumulative reward of the designed Π′m can also be decomposed as

E[R
Π′m
m (T )]

=E

[
T∑
t=1

(Xπ′m(t),m(t) + Iπ′m(t),m(t))

]

=E

[
s−1∑
t=1

(Xπ′m(t),m(t) + Iπ′m(t),m(t)) +

T∑
t=s

(Xπ′m(t),m(t) + Iπ′m(t),m(t))

]

=E

[
s−1∑
t=1

(Xπm(t),m(t) + Iπm(t),m(t)) +

T∑
t=s

(Xπ′m(t),m(t) + Iπ′m(t),m(t))

]

≥E

s−1∑
t=1

(Xπm(t),m(t) + Iπm(t),m(t)) +
∑

t∈[s,T ]/τs,Tm

Xπ′m(t),m(t) + |τs,Tm |


where τs,Tm denotes the set of time slots that principal provides incentives in time interval [s, T ], i.e.,
τs,Tm = {t ∈ [s, T ]|∃k ∈ [K], Ik,m(t) = 1}.
Since the observation from incentives are not counted in H ′m(t), the distribution of
{H ′m(t)|t ∈ [s, T ]/τs,Tm } is the same as the distribution of {Hm(t)|t ∈ [s, T − |τs,Tm |]}, which fur-
ther means the distribution of {π′m(t)|t ∈ [s, T ]/τs,Tm } is the same with {πm(t)|t ∈ [s, T − |τs,Tm |]}.
Thus, we can get

E

 ∑
t∈[s,T ]/τs,Tm

Xπ′m(t),m(t)

 = E

 ∑
t∈[s,T−|τs,Tm |]

Xπm(t),m(t)

 .
With this result, it holds that

E[RΠm
m (T )]

=E

[
s−1∑
t=1

(Xπm(t),m(t) + Iπm(t),m(t)) +

T∑
t=s

Xπm(t),m(t)

]

=E

s−1∑
t=1

(Xπm(t),m(t) + Iπm(t),m(t)) +

T−|τs,Tm |∑
t=s

Xπm(t),m(t) +

T∑
t=T−|τs,Tm |+1

Xπm(t),m(t)


≤E

s−1∑
t=1

(Xπm(t),m(t) + Iπm(t),m(t)) +
∑

t∈[s,T ]/τs,Tm

Xπ′m(t),m(t) + |τs,Tm |


≤E[R

Π′m
m (T )].

Thus, strategy Π′m always follows incentives and provides at least the same expected cumulative
rewards as strategy Πm, which does not always follow incentives. The lemma is thus proved.

C Proof of Lemma 2

Lemma 6 (Restatement of Lemma 2). Denote

H :=

{
∀t ∈

[
T

2
+ 1, T

]
,∀k ∈ [K], |µ̂k(t− 1)− µk| ≤ CBk(t− 1)

}
.
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When the horizon T is sufficiently large, it holds that P(H) ≥ 1− δ.

Proof. Using the Cauchy-Shwarz inequality, we have∑
m∈[M ]

Nk,m(t− 1) (µk,m − µ̂k,m(t− 1))
2 ≤ θ

⇒
∑

m∈[M ]

1

Nk,m(t− 1)

∑
m∈[M ]

Nk,m(t− 1)(µk,m − µ̂k,m(t− 1))2 ≤
∑

m∈[M ]

θ

Nk,m(t− 1)

⇒

 ∑
m∈[M ]

(µk,m − µ̂k,m(t− 1))

2

≤
∑

m∈[M ]

θ

Nk,m(t− 1)

⇒ 1

M

∣∣∣∣∣∣
∑

m∈[M ]

(µk,m − µ̂k,m(t− 1))

∣∣∣∣∣∣ ≤ 1

M

√√√√ ∑
m∈[M ]

θ

Nk,m(t− 1)

⇒|µ̂k(t− 1)− µk| ≤
1

M

√√√√ ∑
m∈[M ]

θ

Nk,m(t− 1)
.

Now with the critical concentration inequality given by Lemma 7 presented in the following, and
θ = log

(
KT
δ

)
+ 4M log log

(
KT
δ

)
, the above implication further indicates that

P [|µ̂k(t− 1)− µk| ≤ CBk(t− 1)]

≥P

 ∑
m∈[M ]

Nk,m(t− 1) (µk,m − µ̂k,m(t− 1))
2 ≤ θ


=1− P

 ∑
m∈[M ]

Nk,m(t− 1) (µk,m − µ̂k,m(t− 1))
2 ≥ θ


≥1− 2eM+1

(
2
(
log
(
KT
δ

)
+ 4M log log

(
KT
δ

))2
log(KTδ )

M

)M
· 1

(log(KTδ ))4M︸ ︷︷ ︸
:=term (a)

· δ
KT

,

where the last inequality is from Lemma 7 and term (a) is of order O( MMeM

logM (KT/δ)
). Thus, when T is

sufficiently large, P [|µ̂k(t− 1)− µk| ≤ CBk(t− 1)] ≥ 1− δ
KT . Finally, with a union bound over

t ∈ [T/2 + 1, T ] and k ∈ [K], the lemma can be proved.

Lemma 7. For any t ∈ [T ], any k ∈ [K], and any θ ≥M + 1, we have

P

 ∑
m∈[M ]

Nk,m(t− 1) (µk,m − µ̂k,m(t− 1))
2 ≥ θ

 ≤ 2eM+1

(
(θ − 1)dθ log(t)e

M

)M
e−θ.

Proof. The proof follows the ideas from Theorem 2 in Magureanu et al. (2014) and Theorem 22 in
Perrault (2020). To prove Lemma 7, it suffices to prove the following two inequalities:

P

 ∑
m∈[M ]

Nk,m(t− 1)
(
(µk,m − µ̂k,m(t− 1))+

)2 ≥ θ

2

 ≤ eM+1

(
(θ − 1)dθ log(t)e

M

)M
e−θ;

(7)

P

 ∑
m∈[M ]

Nk,m(t− 1)
(
(µk,m − µ̂k,m(t− 1))−

)2 ≥ θ

2

 ≤ eM+1

(
(θ − 1)dθ log(t)e

M

)M
e−θ,

(8)
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where x+ = max{x, 0} and x− = min{x, 0}.
We first focus on proving Eqn. (7) and the same techniques can be applied to derive Eqn. (8). We fix
some θ ≥M + 1, and define the desired event as:

A(t) :=

 ∑
m∈[M ]

Nk,m(t− 1)
(
(µk,m − µ̂k,m(t− 1))+

)2 ≥ θ

2

 ,

and a partition of all possible pulling times as:

∀d ∈ NM ,Bd(t) :=
⋂

m∈[M ]

{(
θ

θ − 1

)dm−1

≤ Nk,m(t− 1) <

(
θ

θ − 1

)dm}
.

Since each number of pulls Nk,m(t − 1) for m ∈ [M ] is bounded by t, the number of possible

d ∈ NM such that P(Bd(t)) > 0 is bounded by
⌈

log(t)
log(θ/(θ−1))

⌉M
. With the following Lemma 8 and

a union bound, we can get

P(A(t)) ≤
∑
d

P(A(t) ∩Bd(t))

≤
⌈

log(t)

log(θ/(θ − 1)

⌉M (
(θ − 1)e

M

)M
e1−θ

≤ eM+1

(
(θ − 1)dθ log(t)e

M

)M
e−θ

where the last inequality is from log( θ
θ−1 ) = log(1 + 1

θ−1 ) ≥ 1/(θ−1)
1+1/(θ−1) = 1

θ .

Lemma 8. Let d ∈ NM . Then P(A(t) ∩Bd(t)) ≤
(

(θ−1)e
M

)M
e1−θ.

Proof. Let ζ ∈ RM+ . When events

Bd(t) =
⋂

m∈[M ]

{(
θ

θ − 1

)dm−1

≤ Nk,m(t− 1) ≤
(

θ

θ − 1

)dm}
and

A′(t) :=
⋂

m∈[M ]

{
Nk,m(t− 1)((µk,m − µ̂k,m(t− 1))+)2 >

ζm
2

}
,

happen, ∀m ∈ [M ], it holds that

µk,m − µ̂k,m(t− 1) >

√
ζm

2Nk,m(t− 1)
≥ εm :=

√
ζm

2(θ/(θ − 1))dm
.

Thus, the above events A′(t) and Bd(t) further imply

θ − 1

θ

∑
m∈[M ]

ζm

=
∑

m∈[M ]

2

(
θ

θ − 1

)dm−1

ε2
m

≤
∑

m∈[M ]

2Nk,m(t− 1)ε2
m

=
∑

m∈[M ]

4Nk,m(t− 1)εm × εm −
∑

m∈[M ]

Nk,m(t− 1)
1

8
(4εm)2
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≤
∑

m∈[M ]

4Nk,m(t− 1)εm(µk,m − µ̂k,m(t− 1))−
∑

m∈[M ]

Nk,m(t− 1)
1

8
(4εm)2

=
∑

m∈[M ]

t−1∑
τ=1

4εm1{πm(τ) = k}(µk,m −Xk,m(τ))−
∑

m∈[M ]

t−1∑
τ=1

1

8
(4εm1{πm(τ) = k})2

≤
∑

m∈[M ]

t−1∑
τ=1

4εm1{πm(τ) = k}(µk,m −Xk,m(τ))

︸ ︷︷ ︸
:=C1(t)

−
∑

m∈[M ]

t−1∑
τ=1

logE [exp (4εm1{πm(τ) = k}(µk,m −Xk,m(τ)))]

︸ ︷︷ ︸
:=C2(t)

,

where the last inequality is because µk,m −Xk,m(τ) is 1
2 -sub-Gaussian and it holds that

E [exp(4εm1{πm(τ) = k}(µk,m −Xk,m(τ)))] ≤ exp

(
1

8
(4εm1{πm(τ) = k})2

)
With these results, we can further get

P(A′(t) ∩Bd(t)) ≤P

θ − 1

θ

∑
m∈[M ]

ζm ≤ C1 − C2


(a)

≤ exp

−θ − 1

θ

∑
m∈[M ]

ζm

E [exp [C1(t)− C2(t)]]

(b)
= exp

−θ − 1

θ

∑
m∈[M ]

ζm


where inequality (a) is the standard Markov inequality, and (b) is from simple algebraic multiplication.

Note that

P(A′(t) ∩Bd(t)) = P

 ⋂
m∈[M ]

{
2I{Bd(t)}Nk,m(t− 1)

(
(µk,m − µ̂k,m(t− 1))+

)2
> ζm

}
and

P(A(t) ∩Bd(t)) = P

 ∑
m∈[M ]

2I{Bd(t)}Nk,m(t− 1)
(
(µk,m − µ̂k,m(t− 1))+

)2
> θ

 .
Thus, with G = M and a = θ−1

θ in the following Lemma 9, we can finally have

P(A(t) ∩Bk(t)) ≤
(

(θ − 1)e

M

)M
e1−θ.

Lemma 9 (Lemma 8 from Magureanu et al. (2014)). Let G ≥ 2, a ≥ 0. Let Z ∈ RG be a random
variable such that ∀ζ ∈ RG+

P [Z ≥ ζ] ≤ exp

−a ∑
g∈[G]

ζg

 .
Then for θ ≥ G

a , we have

P

∑
g∈[G]

Zg ≥ θ

 ≤ (aθe
G

)G
e−aθ.

5



D Proof of Lemma 3

Lemma 10 (Restatement of Lemma 3). When eventH happens, ∀t ∈ [T2 + 1, T ], we have k∗ ∈ S(t),
i.e., the optimal global arm would not be eliminated. Moreover, it suffices to eliminate arm k 6= k∗ at
time t, i.e., k /∈ S(t), when

∀m ∈ [M ], Nk,m(t− 1), Nk∗,m(t− 1) ≥ 16 log(KT/δ)

M∆2
k

+
64 log log(KT/δ)

∆2
k

.

Proof. When eventH defined in Lemma 2 happens, ∀t ∈ [T2 + 1, T ],∀k ∈ S(t− 1), it holds

µ̂k∗(t− 1) + CBk∗(t− 1) ≥ µ∗ ≥ µk ≥ µ̂k(t− 1)− CBk(t− 1).

Thus, the optimal global arm would not be eliminated.

Then, as indicated in Eqn. (3), when µ̂k∗(t)− CBk∗(t) ≥ µ̂k + CBk(t), arm k 6= k∗ is ensured to
be eliminated from the active arm set. Further, we note that when

∀m ∈ [M ], Nk,m(t− 1), Nk∗,m(t− 1) ≥
16
(
log(KTδ ) + 4M log log(KTδ )

)
M∆2

k

,

it holds that

µ̂k∗(t− 1)− CBk∗(t− 1) ≥ µk∗ − 2CBk∗(t− 1) ≥ µk∗ −
∆k

2
;

µ̂k(t− 1) + CBk(t− 1) ≤ µk + 2CBk(t− 1) ≤ µk +
∆k

2
,

which means it suffices to eliminate arm k.

E Proof of Lemma 4

In this section, the proof of Lemma 4 is provided, Note that in the following proofs, we consider the
standard bandit setting without incentives, i.e., the agent runs α-UCB on her local bandit game. The
proof presented here is largely inspired by Rangi et al. (2021).
Lemma 11. For horizon Λ, define event

Gm :=

{
∀k ∈ [K],∀t ∈

[
Λ

2
+ 1,

3Λ

4

]
, |µ̂k,m(t− 1)− µk,m| ≤

√
3 log(t)

2Nk,m(t− 1)

}
.

It holds that P[Gm] ≥ 1− 2K
Λ .

Proof.

P(Ḡm) = P

[
∃k ∈ [K],∃t ∈

[
Λ

2
+ 1,

3Λ

4

]
, |µ̂k,m(t− 1)− µk,m| >

√
3 log(t)

2Nk,m(t− 1)

]

≤
∑
k∈[K]

3Λ
4∑

t= Λ
2 +1

P

[
|µ̂k,m(t− 1)− µk,m| >

√
3 log(t)

2Nk,m(t− 1)

]

≤
∑
k∈[K]

3Λ
4∑

t= Λ
2 +1

t−1∑
τ=1

P

[
|µ̂k,m(t− 1)− µk,m| >

√
3 log(t)

2Nk,m(t− 1)
, Nk,m(t− 1) = τ

]

≤
∑
k∈[K]

3Λ
4∑

t= Λ
2 +1

t−1∑
τ=1

P

[
|µ̂k,m(t− 1)− µk,m| >

√
3 log(t)

2τ
,Nk,m(t− 1) = τ

]

≤
∑
k∈[K]

3Λ
4∑

t= Λ
2 +1

t−1∑
τ=1

2 exp

(
−2 · 3 log(t)

2τ
· τ
)
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=
∑
k∈[K]

3Λ
4∑

t= Λ
2 +1

2

t2

≤ 2K

Λ
.

Lemma 12 (Restatement of Lemma 4). When Λ satisfies Λ
log2(Λ)

> 4K(α−3/2)2

∆4
min,m

, the α-UCB algo-

rithm with α ≥ 3
2 satisfies that

P
[
∀k ∈ [K], Nw

k,m(Λ) ≥
(
√
α−
√

1.5)2 log(Λ
2 )

4∆2
k,m

]
≥ 1− 2K

Λ
. (9)

Proof. To ease the exposition, the superscript in Nw
k,m(t) is omitted in this proof as Nk,m(t), but

note that this proof discusses the behavior of α-UCB without incentives. For horizon Λ satisfying
Λ

log2(Λ)
> 4K(α−3/2)2

∆4
min,m

, Lemma 4 indicates that event

Em := {∀k ∈ [K], Nk,m(Λ) ≥ Fk,m(Λ)}

happens with a probability at least 1 − 2K
Λ , where Fk,m(Λ) :=

(
√
α−
√

1.5)2 log( Λ
2 )

4∆2
k,m

. To prove this

lemma, it suffices to prove that P[Ēm] ≤ 2K
Λ .

With

Gm :=

{
∀k ∈ [K],∀t ∈

[
Λ

2
+ 1,

3Λ

4

]
, |µ̂k,m(t− 1)− µk,m| ≤

√
3 log(t)

2Nk,m(t− 1)

}
from Lemma 11, we have that

P [Gm] ≥ 1− 2K

Λ
.

Thus, it suffices to prove that with event Gm happening, event Ēm does not happen.

We prove it by contradiction. Assume that while event Gm happens, the event Ēm also happens, which
means there exists arm k such thatNk,m(Λ) ≤ Fk,m(Λ). Then, for the interval [Λ

2 +1, 3Λ
4 ], we divide

it into Fk,m(Λ) blocks, and each block has length Λ
4Fk,m(Λ) . With the pigeonhole principle, there must

exist one block [t1, t3], in which arm k is not pulled, i.e., Nk,m(t3) = Nk,m(t1 − 1) ≤ Fk,m(Λ).

With event Gm happening, for arm k, it holds that ∀t ∈ [t1, t3],

µ̂k,m(t− 1) +

√
α log(t)

Nk,m(t− 1)

=µ̂k,m(t− 1) +

√
3 log(t)

2Nk,m(t− 1)
+

(
√
α−

√
3

2

)√
log(t)

Nk,m(t− 1)

≥µk,m +

(
√
α−

√
3

2

)√
log(t)

Nk,m(t− 1)

≥µk,m +

(
√
α−

√
3

2

)√
log(Λ

2 )

Fk,m(Λ)

=µk,m + 2∆k,m

≥µ∗,m + ∆k,m.

We then make the following claim that

∀j ∈ [K]/k,Nj,m(t3)−Nj,m(t1 − 1) ≤ Nmax :=
4(
√
α+

√
3/2)2 log( 3Λ

4 )

∆2
k,m

.
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If this claim does not hold, then there exists arm i ∈ [K]/k such that

Ni,m(t3)−Ni,m(t1 − 1) > Nmax,m,

which further means there exists t2 ∈ [t1, t3] such that

Ni,m(t2 − 1)−Ni,m(t1 − 1) = Nmax

and arm i is pulled at time t2. For this arm i, at time t2, with event Gm, we have

µ̂i,m(t2 − 1) +

√
α log(t2)

Ni,m(t2 − 1)

≤µi,m +

√
3 log(t2)

2Ni,m(t2 − 1)
+

√
α log(t2)

Ni,m(t2 − 1)

≤µ∗,m +

(
√
α+

√
3

2

)√
log(t2)

Ni,m(t2 − 1)

≤µ∗,m +

(
√
α+

√
3

2

)√
log( 3Λ

4 )

Nmax

=µ∗,m +
∆k,m

2
.

With the property proved above for arm k, i.e.,

µ̂k,m(t2 − 1) +

√
α log(t2)

Nk,m(t2 − 1)
≥ µ∗,m + ∆k,m,

we can observe that arm i cannot be pulled at time t2, which leads to a contradiction and thus proves
the claim.

Since arm k is not pulled in [t1, t3], other arms must be pulled sufficiently. Using the above claim, it
must hold that∑

j∈[K]/k

Nj,m(t3)−Nj,m(t1 − 1) = t3 − t1 + 1

⇒(K − 1)Nmax ≥ t3 − t1 + 1 =
Λ

4Fk,m(Λ)

⇒Nmax ≥
Λ

4KFk,m(Λ)

⇒
4(
√
α+

√
3/2)2 log( 3Λ

4 )

∆2
k,m

= Nmax ≥
Λ

4KFk(Λ)
=

Λ

4K

4∆2
k,m

(
√
α−

√
3/2)2 log(Λ

2 )

⇒ Λ

log2(Λ)
≤ 4K(α− 3/2)2

∆4
k,m

≤ 4K(α− 3/2)2

∆4
min,m

,

which contradicts with the requirement for Λ in Lemma 4. This concludes the proof.

F Proof of Theorem 1

Theorem 3 (Restatement of Theorem 1). It is the best interest for every agent to always accept the
incentivized explorations under the “Take-or-Ban” protocol. Moreover, if the agents’ local strategy
is consistent without incentives and the horizon T is sufficiently large, the OTI algorithm satisfies
that P[k̂∗(T ) = k∗] ≥ 1− δ, and the expected cumulative incentives are bounded as

E[C(T )] = O

( ∑
k∈[K]

∑
m∈[M ]

[
log(KTδ )

M∆2
k

+
log log(KTδ )

∆2
k

−min

{
T

2
,

log(T2 )

KL(µk,m, µ∗,m)

}]+)
,

where x+ := max{x, 0}.
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Proof. First, with Lemma 1, always following the incentives provides higher expected cumulative
rewards than not always following. Thus, it is the best interest for every agent to always accept the
incentivized explorations under the “Take-or-Ban” protocol.

As shown in Lemma 2, event H happens with probability at least 1 − δ. When event H happens,
the optimal global arm would not be eliminated from the active arm set, which means the best arm
identification succeeds as long as all other sub-optimal arms are eliminated. Thus, it suffices to
analyze how many incentives are needed to eliminate all other sub-optimal arms.

Conditioned on eventH, we make the following claim regarding the cumulative incentives:

∀k ∈ [K],∀m ∈ [M ], Ck,m(T ) ≤ Zk,m(T ) :=

[
16
(
log(KTδ ) + 4M log log(KTδ )

)
M∆2

k

−Nw
k,m(

T

2
)

]+

,

where Ck,m(T ) :=
∑T
t=1 Ik,m(t) denotes the cumulative incentives on agent m’s arm k.

To prove this claim, we first assume that there exists an arm-agent pair, namely, (k′,m′), such that
Ck′,m′(T ) > Zk′,m′(T ). We assume k′ is not the optimal arm k∗ here, but the same analysis applies
for k∗ with minor changes. Thus, there must exist t′ ∈ [T2 +1, T ] such thatCk′,m′(t′−1) = Zk′,m′(T )
while Ik′,m′(t′) = 1. Equivalently, we have

Nk′,m′(t
′ − 1) ≥

16
(
log(KTδ ) + 4M log log(KTδ )

)
M∆2

k′
,

and agent m′ is incentivized to explore arm k′ at time t′, i.e., k̄(t′) = k′ and m̄(t′) = m′.

However, since m̄(t′) = arg minm∈[M ]Nk̄(t′),m(t′ − 1), it holds that

∀m ∈ [M ], Nk′,m(t′ − 1) ≥
16
(
log(KTδ ) + 4M log log(KTδ )

)
M∆2

k′
,

which means CBk′(t′ − 1) ≤ ∆k′
4 . Since k̄(t′) = arg mink∈S(t) CBk(t′ − 1), it must have that

∀k ∈ S(t− 1), CBk(t′ − 1) ≤ ∆k′

4
.

Thus, it raises a contradiction because

µ̂k∗(t
′ − 1)− CBk∗(t′ − 1) ≥ µk∗ − 2CBk∗(t− 1) ≥ µk∗ −

∆k′

2
;

µ̂k′(t
′ − 1) + CBk(t′ − 1) ≤ µk′ + 2CBk′(t

′ − 1) ≤ µk′ +
∆k′

2
,

which means that arm k′ should have been eliminated and thus cannot be incentivized.

With the above claim proved, the expected cumulative incentives can be bounded as

E[C(T )] = E

 ∑
k∈[K]

∑
m∈[M ]

Ck,m(T )


≤ E

 ∑
k∈[K]

∑
m∈[M ]

[
16
(
log(KTδ ) + 4M log log(KTδ )

)
M∆2

k

−Nw
k,m(

T

2
)

]+


=
∑
k∈[K]

∑
m∈[M ]

[
16 log(KTδ )

M∆2
k

+
64 log log(KTδ )

∆2
k

− E
[
Nw
k,m(

T

2
)

]]+

. (10)

With Eqn. (1) from Lai and Robbins (1985), if the agents’ local strategies are consistent, with horizon
Γ, ∀k 6= k∗,m, it holds that

lim inf
Γ→∞

E[Nw
k,m(Γ)]

log(Γ)
≥ 1

KL(µk,m, µ∗,m)
,
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which is also stated in Eqn. (1). Thus, there exists Γ0 such that ∀Γ > Γ0, it holds that E[Nw
k,m(Γ)] ≥

log(Γ)
KL(µk,m,µ∗,m) . For k∗,m, since the local strategies are consistent, ∀ψ > 0, E[Nw

k∗,m,m
(Γ)] ≥

Γ− o(Γψ). Thus, it holds that ∀k ∈ [K], ∀ψ > 0,

E
[
Nw
k,m(

T

2
)

]
= Ω

(
min

{
T

2
,

log(T2 )

KL(µk,m, µ∗,m)

})
, (11)

where the minimal takes care of KL(µk,m, µ∗,m) = 0 for arm k∗. By plugging Eqn. (11) into
Eqn. (10), Theorem 1 is proved.

G Proof of Theorem 2

Theorem 4 (Restatement of Theorem 2). While the agents run α-UCB algorithms with α ≥ 3
2 and

the horizon T is sufficiently large, the OTI algorithm satisfies that P[k̂∗(T ) = k∗] ≥ 1− δ. Moreover,
it holds that

P
[
C(T ) = O

( ∑
k∈[K]

∑
m∈[M ]

[
log(KTδ )

M∆2
k

+
log log(KTδ )

∆2
k

−
α log(T2 )

∆2
k,m

]+)]
≥ 1− 4MK

T
.

Proof. Theorem 2 can be proved by plugging the UCB lower bound in Lemma 4 (instead of Eqn. (1))
into the above proof of Theorem 1.

H Experimental Details

The codes and instructions for the experiments are publicly available at https://github.com/
ShenGroup/Observe_then_Incentivize. The experiments are light in computation, and were
all performed on a mainstream PC. A few details for the experimental setups are provided in this
section. First, if there are more than one arm remaining active at horizon T , OTI should output the
one with the largest sample mean. This approach takes care of the scenarios with an extremely small
(or even zero) global sub-optimality gap. Second, we find that while the O(log log( 1

δ )) term in the
confidence bound in Eqn. (2) is required theoretically, it is not very helpful in practice and sometimes
even degrades the overall performance. Thus, in the simulation of OTI, the confidence bound is
specified as CBk(t − 1) = 1

M

√
(
∑
m∈[M ]

1
Nk,m(t−1) ) log(KT/δ). It is also interesting for future

works to see whether the confidence bound in Eqn. (2) can be tightened so that the O(log log( 1
δ ))

term can be removed theoretically.

Figure 3: OTI with stochastic agent be-
haviors.

For all the simulations in Section 6, the rewards are set to
follow Bernoulli distributions. Futhermore, in the exper-
iments of Fig. 2(d), the local game instances are chosen
with the following schemes to have meaningful compar-
isons with different number of involving agents. First,
a mean vector ν with 30 arms is specified to be linearly
distributed in [0.4, 0.545], i.e., with gaps 0.005. Then, for
each arm k ∈ [K], the mean µk,m of each playerm ∈ [M ]
is set as a sample from a truncated Gaussian distribution
between 0 and 1 with mean νk and variance 0.01. After
this random sampling process, the local games are chosen.
Then, if the corresponding global game has a sub-optimal
gap ∆min ∈ [4.5, 5.5] × 10−3, this instance is adopted;
otherwise, a new instance is generated. This approach
avoids the scenarios that with the number of involving
agents increasing, the global game becomes more and more uniform, which makes comparisons with
different M unfair.

Finally, additional experiments are performed to show that when dealing with relatively simple agents,
OTI can be implemented with less restrictive incentive-provision protocols. In other words, the
“Take-or-Ban” protocol is for theoretical rigor but may not be necessary in applications. Specifically,
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the agents are set to take the incentives with probability 0.8 and refuse with probability 0.2. Also,
the principal never bans the agent regardless of their behaviors. Using the same game instance as in
Fig. 2(a), we note that with such stochastic agent behaviors, OTI can still always identify the global
optimal arm correctly. The spent incentives are shown in Fig. 3, which even slightly improve the
performance in Fig. 2(b). This result also illustrates the robustness of OTI.
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