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A Glossary

We provide a glossary of terms, definitions, and symbols that we introduce throughout the paper,
streamlined in one place.

A.1 Definitions Reference

hyper-hyperparameters (hyper-HPs) are HPO-procedure-input values, such as the spacing between
different points in the grid for grid search and the distributions to sample from in random search.

Definition 1. A log ¢ records all the choices and measurements made during an HPO run, including
the total time T' it took to run. It has all necessary information to make the HPO run reproducible.

Definition 2. An HPO procedure H is a tuple (H,.,C, A, A, M, G, X) where H, is a randomized
algorithm, C is a set of allowable hyper-HPs (i.e., allowable configurations for H.), A is a set of
allowable HPs (i.e., of HP sets \), A is a training algorithm (e.g. SGD), M is a model (e.g. VGG16),
G is a PRNG, and X is some dataset (usually split into train and validation sets). When run, H, takes
as input a hyper-HP configuration ¢ € C and a random seed r € I, then proceeds to run Ay (on M
using G(r) and data® from X ) some number of times for different HPs \ € A. Finally, H, outputs a
tuple (\*, 0), where \* is the HP configuration chosen by HPO and { is the log documenting the run.

Definition 3. An epistemic hyperparameter optimization procedure (EHPO) is a tuple (H,F)
where H is a set of HPO procedures H (Definition 2) and F is a function that maps a set of HPO
logs L (Definition 1) to a set of logical formulas P, i.e. F (L) = P. An execution of EHPO involves
running each H € H some number of times (each run produces a log ) and then evaluating F on the
set of logs L produced in order to output the conclusions F (L) we draw from all of the HPO runs.

Definition 4. A randomized strategy o is a function that specifies which action the demon will take.
Given L, its current set of logs, o (L) gives a distribution over concrete actions, where each action
is either 1) running a new H with its choice of hyper-HPs c and seed r 2) erasing some logs, or 3)
returning. We let X denote the set of all such strategies.

Definition 5. Let o[L] denote the logs output from executing strategy o on logs L, and let T, (L)
denote the total time spent during execution. 1,(L) is equivalent to the sum of the times T it took
each HPO procedure H € H executed in strategy o to run. Note that both o[L] and 7,(L) are
random variables, as a function of the randomness of selecting G and the actions sampled from o(L).
For any formula p and any t € R, we say L |= Oup, i.e. “L models that it is possible p in time t,” if

there exists a strategy o € X, such that P(c[L] = p) =1 and E[r,(L)] < t.

Definition 6. For any formula p, we say L = Bp, “L models our beliefinp”, if p € F(L).

Definition 7. Suppose that we are given a naive EHPO procedure ({H}, F,,), in which H is random
search and is the only HPO in our EHPO, and F, is a “naive” belief function associated with a naive
reasoner B3,. For any K, R € N, we define the “(K, R)-defended” belief function F, for a skeptical

reasoner B, as the following conclusion-drawing procedure. First, F, only makes conclusion set
P, from a single log { with K * R trials; otherwise, it concludes nothing, outputting (. Second, F,

splits the single { into R logs {1, (s, ..., R, each containing K independent-random-search trials.'’
Finally, F, outputs the intersection of what the naive reasoner would have output on each log ¢;,

F({f}) =P. = F({t}) N Fa{2}) 0 -+ N Ful{€r}).
Equivalently, {0} |= B.p only if {{;} |= Byp for all i.

Definition 2 does not preclude cross-validation, as this can be part of H.,. The input dataset X can be split
in various ways, as a function of the random seed 7.
"9This is not generally allowable. F. can do this because random-search logs contain interchangeable trials.
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A.2 Symbols and Acronyms Reference

Term Explanation Example
HPO Acronym for hyperparameter optimization
J, K Used as examples of arbitrary optimizers
P Arbitrary atomic proposition
p.q, ¢ Used as arbitrary or (when specified) specific logical ~p = “Non-adaptive optimizers
formulas have higher test accuracy than
adaptive optimizers."
HP(s) Acronym for hyperparameter(s)
tel, Log (Definition 1); log set Figure 5; Log for running HPO
using SGD
T The total time it took to run HPO to produce a log ¢
T A set of integers Typically the 64-bit integers
T Random seed; r € Z
G Pseudo-random number generator; G(r); G : T — Z°°
PRNG Acronym for pseudo-random number generator; G
H HPO procedure (Definition 2) SGD, VGG-16 grid search exper-
iment
H, A randomized algorithm used in H Random search
ceC Hyper-HP configuration; of set of allowable such con-  powers-of-2 grid spacing; config-
figurations for H. urations the demon has access to
AE AN HP config. used to run an HPO pass; of allowable HP o = 1 in Wilson; allowable «
configs., determined by ¢; A* is the output HP config.  values, e.g. [.001,.01, 1]
that performs the best
A; Ax Training algorithm; parameterized by HPs A SGD; SGD witha =1
M; My Model; parameterized by HPs A VGG16
X A dataset CIFAR-10
@ Learning rate Figure 2, o =1
€ Adam-specific HP Figure 2, we set € = 10'?
EHPO Epistemic HPO (Definition 3) Our defended random search in
Section 5
H Set of HPO procedures H
P Set of concluded logical formulas; p € P
F A function that maps a set of HPO logs £ to a set of  F. (skeptical belief function); F,
logical formulas P (naive belief function)
O Modal logic operator for “necessary” Op reads “It is necessary that p
O Modal logic operator for “possible” Op reads “It is possible that p
F Indicates a theorem of propositional logic F Q — 0Q (necessitation)
O EHPO modal operator (Section 4.2; Definition 5)
B Belief modal operator B, (skeptical belief); B, (naive
belief)
ocEX A randomized strategy function that specifies EHPO
actions; set of all such strategies (Section 4.2, Definition
4)
(L) Distribution over concrete actions for log set
alL] The logs output from running o on £
To (L) Total time spent executing o[L]
E Denotes “models" L |= O¢p: £ model that p is pos-
sible in ¢
¥ Renyi-oo-divergence constant upper bound (Theorem 1)
K, R Numbers of independent random search trials (Section
5)
K Subsampling size (Algorithm 1) We set k = 11 (Section 5)
M Subsampling budget (Algorithm 1) We set M = 10000 (Section 5)
) Skeptical reasoner conclusion threshold (Algorithm 1) See Table 1
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B Section 2 Appendix: Additional Notes on the Preliminaries

The code for running these experiments can be found at https://github.com/pastadl/
deception.

B.1 Empirical Deception Illustration using Wilson et al. [72]
B.1.1 Why we chose Wilson et al. [72]

We elaborate on why we specifically chose Wilson et al. [72] as our running example of hyper-
parameter deception. There are four main reasons why we thought this was the right example to
focus on for an illustration. First, the experiment involves optimizers known across ML (e.g. SGD,
Adam), a model frequently used for benchmark tasks (VGG16) and a commonly-used benchmark
dataset (CIFAR-10). Unlike other examples of hyperparameter deception, one does not need highly-
specialized domain knowledge to understand the issue [16, 49]. Second, the paper is exceptionally
well-cited and known in the literature, so many folks in the community are familiar with its results.
Third, we were certain that we could demonstrate hyperparameter deception before we ran our
experiments; we observe that Adam’s update rule basically simulates Heavy Ball when its € parameter
is set high enough. So, we were confident that we could (at the very least) get Adam to perform as
well as Heavy Ball via changing hyper-HPs, which would demonstrate hyperparameter deception.
We then found further support for this observation in concurrent work [65], which cited earlier work
[11] that also observes this. Fourth, the claim in Wilson et al. [72] is fairly broad. They make a
claim about adaptive vs. non-adaptive optimizers, more generally. If the claim had been narrower —
about small € values for numerical stability, then perhaps hyperparameter deception would not have
occurred. In general, we note that narrower claims could help avoid deception.

B.2 Expanded empirical results

We elaborate on the results we present in Section 2.

B.2.1 Experimental setup

We replicate and run a variant of Wilson et al. [72]’s VGG16 experiment on CIFAR-10, using SGD,
Heavy Ball, and Adam as the optimizers.

We launch each run on a local machine configured with a 4-core 2.6GHz Inter (R) Xeon(R) CPU,
8GB memory and an NIVIDIA GTX 2080Ti GPU.

Following the exact configuration from Wilson et al. [72], we set the mini-batch size to be 128, the
momentum constant to be 0.9 and the weight decay to be 0.0005.

The learning rate is scheduled to follow a linear rule: The learning rate is decayed by a factor of 10
every 25 epochs. The total number of epochs is set to be 250.

For the CIFAR-10 dataset, we apply random horizontal flipping and normalization. Note that Wilson
et al. [72] does not apply random cropping on CIFAR-10; thus we omit this step to be consistent with
their approach. We adopt the standard cross entropy loss.

For each HPO setting, we run 5 times and average the results and include error bars two standard
deviations above and below the mean.

B.2.2 Associated results and logs

In line with our notion of a log (Definition 1), we provide data tables (Figures 5, 6, and 7) that
correspond with our results graphed in the Figures 2, 3, 4.
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Figure 2: Full test accuracy results of VGG-16 on CIFAR-10 for SGD and Heavy Ball learning rate
() HPO. Error bars indicate two standard deviations above and below the mean. Each HPO setting
is measured with five replicates. We achieve similar performance as Wilson et al. [72].
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of learning rates tested. On the right, we zoom in on the portion of results where the best test accuracy
occurs. These results reflect what Wilson et al. [72] showed, but with tuning over e (small values).
Each HP setting is used to train VGG-16 on CIFAR-10 five times, and the error bars represent two
standard deviations above and below the mean test accuracy.
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Figure 5: Heatmap logs of test accuracy of VGG-16 on CIFAR-10 for SGD and Heavy Ball for each

initial learning rate and random seed. These logs correspond to the results graphed in Figure 2.
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B.3 Empirical Deception Illustration using Merity et al. [51]

In addition to the computer vision experiments of Wilson et al. [72], we also show a separate line
of experiments from NLP: training an LSTM on Wikitext-2 using Nesterov and Heavy Ball as the
optimizers. We illustrate deception (i.e., the possibility of drawing inconsistent conclusions) using
two different sets of hyper-HPs to configure HPO grids for tuning the learning rate. We run ten
replicates for each optimizer / grid combination (a total of 40 runs). We run these experiments using
the same hardware as described in Appendix B.2.1.
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(@) (b)
Figure 8: Demonstrating the possibility of drawing inconsistent conclusions from HPO (what we
shorthand hyperparameter deception) LSTM on Wikitext-2 using Nesterov and Heavy Ball as the
optimizers. Each box plot represents a log. In (a), we use the grid « = 1, 5, 10, 15, 20, 25, 30, 35, 40,
from which we can reasonably conclude that Nesterov outperforms HB. In (b), we use the grid
a = 10, 20, 30, 40, from which we can reasonably conclude that HB outperforms Nesterov.

C Section 3 Appendix: Epistemic Hyperparameter Optimization

C.1 Additional concrete interpretations of EHPO

For concision, in the main text we focus on examples of EHPO procedures that compare the perfor-
mance of different optimizers. However, it is worth noting that our definition of EHPO (Definition 3)
is more expansive than this setting. For example, it is possible to run EHPO to compare different
models (perhaps, though not necessarily, keeping the optimizer fixed), to draw conclusions about the
relative performance of different models on different learning tasks.

C.2 Descartes’ Evil Demon Thought Experiment

Our formalization was inspired by Descartes’ evil genius/demon thought experiment. This experiment
more generally relates to his use of systematic doubt in The Meditations more broadly. It is this
doubt/skepticism (and its relationship to possibility) that we find useful for the framing of an
imaginary, worst-case adversary. In particular, we draw on the following quote, from which we came
up with the term hyperparameter deception:

I will suppose...an evil genius, supremely powerful and clever, who has directed his
entire effort at deceiving me. I will regard the heavens, the air, the earth, colors,
shapes, sounds, and all external things as nothing but the bedeviling hoaxes of
my dreams, with which he lays snares for my credulity...even if it is not within my
power to know anything true, it certainly is within my power to take care resolutely
to withhold my assent to what is false, lest this deceiver, however powerful, however
clever he may be, have any effect on me. — Descartes
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Figure 9: How the authors imagine the EHPO-running demon

For more on the long (and rich) history of the use of imaginary demons and devils as adversaries—
notably a different conception of an adversary than the potential real threats posed in computer
security research—we refer the reader to Canales [9].

D Section 4 Appendix: Modal Logic Formalization

D.1 Further Background on Modal Logic

We first provide the necessary background on modal logic, which will inform the proofs in this
appendix (Appendix D.1.1). We then describe our possibility logic—a logic for representing the
possible results of the evil demon running EHPO—and prove that it is a valid modal logic (Appendix
D.2.1). We then present a primer on modal belief logic (Appendix D.2.4), and suggest a proof for the
validity of combining our modal possibility logic with modal belief logic (Appendix D.2.5).

D.1.1 Axioms from Kripke Semantics

Kripke semantics in modal logic inherits all of the the axioms from propositional logic, which assigns
values 7" and F’ to each atom p, and adds two operators, one for representing necessity (LJ) and one
for possibility (().

» [p reads “It is necessary that p".

e Op reads “It is possible that p".

The ¢ operator is just syntactic sugar, as it can be represented in terms of — and [J:

Op=-0-p (1
which can be read as:

“It is possible that p" is equivalent to “It is not necessary that not p.'
The complete set of rules is as follows:

* Every atom p is a sentence.
e If D is a sentence, then

— =D is a sentence.
— 0D is a sentence.
— QD is a sentence.

e If D and E are sentences, then

— D A FE is a sentence.
— DV FE is a sentence.
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— D — FE is a sentence.
— D < FE'is a sentence
* O(D — &) — (OD — TE) (Distribution)

e D — [OD (Necessitation)

D.1.2 Possible Worlds Semantics

Modal logic introduces a notion of possible worlds. Broadly speaking, a possible world represents
the state of how the world is or potentially could be [10, 24]. Informally, [1D means that D is true at
every world (Equation 2); ¢D means that D is true at some world (Equation 3).

Possible worlds give a different semantics from more familiar propositional logic. In the latter,
we assign truth values {7, F'} to propositional variables p € P, from which we can construct and
evaluate sentences D € D in a truth table. In the former, we introduce a set of possible worlds, W,
for which each w € W has own truth value for each p. This means that the value of each p can differ
across different worlds w. Modal logic introduces the idea of valuation function,

V: (W x D) — {T,F}

to assign truth values to logical sentences at different worlds. This in turn allows us to express the
formulas, axioms, and inference rules of propositional logic in terms of V. For example,

V(w,-D)=T < V(w,D) =F

There are other rules that each correspond to a traditional truth-table sentence evaluation, but
conditioned on the world in which the evaluation occurs. We omit these for brevity and refer the
reader to Chellas [10].

We do include the valuation rules for the [J and ¢ operators that modal logic introduces (Equations 2
& 3). To do so, we need to introduce one more concept: The accessibility relation, R. R provides
a frame of reference for one particular possible world to access other possible worlds; it is a way
from moving from world to world. So, for an informal example, Rw; w2 means that ws is possible
relative to wy, i.e. we can reach wo from w;. Such a relation allows for a world to be possible relative
potentially to some worlds but not others. More formally,

RCWxW

Overall, the important point is that we have a collection of worlds WV, an accessibility relation R, and
a valuation function V, which together defines a Kripke model, which captures this system:

M= (W,R,V)

Finally, we can give the valuation function rules for [J and ¢:

V(w,0D) =T + Yo', (Rww' — V(w',D) =T) )

V(w,0D) =T < Fu', (Rww' AV(w',D) =T) (3)

Informally, for L1D to be true in a world, it must be true in every possible world that is reachable by
that world. For { D to be true in a world, it must be true in some possible world that is reachable by
that world.
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D.2 Our Multimodal Logic Formulation
D.2.1 A Logic for Reasoning about the Conclusion of EHPO

As in Section 4, we can define the well-formed formulas of our indexed modal logic!! recursively in
Backus-Naur form, where ¢ is any real number and P is any atomic proposition

k=P|-k|kAK|Ok “4)

where x is a well-formed formula.

As we note in Section 4, where we first present this form of defining modal-logic, [ is syntactic
sugar, with Op = —0—p (which remains true for our indexed modal logic). Similarly, “or” has
pV q = -(—p A —q) and “implies” has p — ¢ = —p V ¢, which is why we do not include them for
brevity in this recursive definition.

We explicitly define the relevant semantics for ¢, for reasoning about the demon’s behavior in running
EHPO. For clarity, we replicate that definition of the semantics of expressing the possible outcomes
of EHPO conducted in bounded time (Definitions 4 & 5, respectively) below:

Definition. A randomized strategy o is a function that specifies which action the demon will take.
Given L, its current set of logs, o (L) gives a distribution over concrete actions, where each action
is either 1) running a new H with its choice of hyper-HPs c and seed r 2) erasing some logs, or 3)
returning. We let X denote the set of all such strategies.

We can now define what the demon can reliably bring about, in terms of executing a strategy in
bounded time:

Definition. Let o[L] denote the logs output from executing strategy o on logs L, and let To (L)
denote the total time spent during execution. 7,(L) is equivalent to the sum of the times T it took
each HPO procedure H € H executed in strategy o to run. Note that both o[L] and 7,(L) are
random variables, as a function of the randomness of selecting G and the actions sampled from o (L).
For any formula p and any t € R, we say L |= Oup, i.e. “L models that it is possible p in time t,” if

there exists a strategy o € &, suchthat P(c[L] Ep) =1 and E[r,(L)] < t.

D.2.2 A Possible Worlds Interpretation

Drawing on the possible worlds semantics that modal logic provides (Section D.1.2), we can define
specific possible worlds semantics for our logic for expressing the actions of the demon in EHPO
from above.

Definition 8. A possible world represents the set of logs L the demon has produced at time 7,(L)
(i.e., after concluding running EHPO) and the set of formulas P that are modeled from L via F.

Therefore, different possible worlds represent the states that could have existed if the evil demon had
executed different strategies (Definition 4). In other words, if it had performed EHPO with different
learning algorithms, different HPO procedures, different hyper-hyperparameter settings, different
amounts of time (less than the total upper bound), different learning tasks, different models, etc... to
produce a different set of logs £ and corresponding set of conclusions P.

In this formulation, the demon has knowledge of all possible worlds; it is trying to fool us about
the relative performance of algorithms by showing as an intentionally deceptive world. Informally,
moving from world to world (via an accessibility relation) corresponds to the demon running more
passes of HPO to produce more logs to include in L.

D.2.3 Syntax and Semantics for the Logic Modeling the Demon Running the EHPO

We provide proofs and intuitions of the axioms of our EHPO logic in this section, based on a
correspondence with un-indexed modal logic.

"For an example of another indexed modal logic concerning probability, please refer to Heifeitz and Mongin
[33].
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We remind the reader that the following are the axioms of our indexed modal logic:

Fp—q) — (0w — O1q) (necessitation + distribution)
p— Op (reflexivity)

010sp — Q145D (transitivity)

Osip — Oip (symmetry),

Oit(p A q) = (Op A O1q) (distribution over A )

In short, to summarize these semantics—the demon has knowledge of all possible hyper-
hyperparameters, and it can pick whichever ones it wants to run EHPO within a bounded time
budget ¢ to realize the outcomes it wants: ¢;p means it can realize p.

We inherit distribution and necessitation from un-indexed modal logic; they are axiomatic based on
Kripke semantics. We provide greater intuition and proofs below.

Notes on necessitation for [J;:

Necessitation for our indexed necessary operator can be written as follows:

Fp—Op

As we note in Section 4, |- just means here that p is a theorem of propositional logic. So, if pis a
theorem, then so is [J;p. By theorem we just mean that p is provable by our axioms (these being the
only assumptions we can use); so whenever p fits this definition, we can say [;p.

For our semantics, this just means that when p is a theorem, it is necessary that p in time .

Distribution for [J;:

Oi(p — q) — (Cip — Uiq)

We provide three ways to verify distribution over implication for 0J;. From this, we will prove
distribution over implication for {;

A. The first follows from an argument about the semantics of possible worlds from the Kripke
model of our system (Sections D.1.2 & D.2.2).

i. It is fair to reason that distribution is self-evident given the definitions of implication
(—, formed from — and V in our syntax for well-formed formulas for our EPHO logic,
given at (4) and necessity (O, formed from — and ¢, in our syntax for well-formed
formulas for our EHPO logic, given at (4)).

ii. Similarly, we can further support this via our semantics of possible worlds.
We can understand [, p to mean, informally, that it an adversary does adopt a strategy
o that is guaranteed to cause the desired conclusion p to be the case while take at most
time ¢ in expectation. Formally, as an “necessary” analog to the semantics of ¢ given
in Definition 5:
For any formula p, we say £ |= O;p if and only if

Vo e, Plo[L] Ep) =1 A E[r,(L)] <t

Given p — ¢ is true in all accessible worlds (i.e, the definition of necessary), then we
can say that ¢ is true in all accessible worlds whenever p is true in all accessible worlds.
As in i. above, this just follows / is axiomatic from the definitions of necessity and
implication for Kripke semantics.

B. We can also prove distribution by contradiction.
i. Suppose that the distribution axiom does not hold. That is, the hypothesis
Oi(p — q)
is true and the conclusion
Uip — Uig
is false.
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ii.

iii.

iv.

Vi.

vil.

viii.

By similar reasoning, from above [;p — [J,q being false, we can say that [, p is true
and [, q is false.

We can use Modal Axiom M (reflexivity, proven in the next section) to say L;p — p.
Since [;p is true, we can use modus ponens to determine that p is true.

We can also say
Oilp—q) = (p—9q) (By Modal Axiom M (reflexivity))

Since we [0 (p — ¢) is true from above, we can conclude via modus ponens that p — ¢
must also be true.

We concluded above that p is true, so we can again use modus ponens and the fact that
p — q is true to conclude that q is true.

By necessitation, we can then also say ¢ — [J;q, and conclude that [, q is true. This is
a contradiction, as above we said that [J; is false.

Therefore, by contradiction, C;(p — ¢) — (O¢p — O4q) is proved.

C. We can separately take an intuitionistic approach to verify the distribution axiom [1, 5]:

i
ii.
iii.
iv.

V.

Vi.
vii.

Let b be an actual proof of p — ¢ so that we can say a.b is a proof of [, (p — ¢).
Let d be an actual proof of p so that we can say c.d is a proof of [, p.

From i. and ii., b(d) is an actual proof of g, i.e. b (an actual proof of p — ¢) is supplied
d (an actual proof of p), and therefore can conclude ¢ via an actual proof.

From iii., we can say this results in a proof of [l;q, i.e. e.[b(d)].

The above i.-iv. describes a function, f : a.b — f(,.p). In other words, given any
proof a.b (i.e., of (J;(p — ¢)) we can return function f(, ), which turns any proof
c.d (i.e., of O;p) into a proof e.[b(d)] (i.e., of O;q).

f(a.v) 18 thus a proof of [lyp — [q.

From i.-vi., we gone from a.b (a proof of O;(p — ¢)) to a proof of (;p — g, i.e.
have intuitionistically shown that (;(p — ¢q) — (Owp — 0iq)

Distribution and ¢;:

We provide the following axiom in our logic:

Fp—q) — (Ow— 019) (necessitation and distribution)

and we now demonstrate it to be valid.

Fp—q) — Op—q) (necessitation)
— Oi(—q — —p) (modus tollens)
— (O04~q — O;—p) (distribution)
= (-0—p — -0;—q) (modus tollens)
= (Otp = 01q) (Ora = —04—a)
This concludes our proof, for how the axioms are jointly stated.
Further, we could also say
(p—q) = Olp— ) (Modal axiom M (reflexivity))

And therefore also derive distribution over implication for possibility:

Ot(p = q) = (Owp — Orq)

Modal Axiom M: Reflexivity
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p— Oup

This axiom follows from how we have defined the semantics of our indexed modal logic (Definition
5). It follows from the fact that the demon could choose to do nothing.

We can provide a bit more color to the above as follows:

We can also derive this rule from necessitation, defined above (and from the general intuition /
semantics of modal logic that necessity implies possibility). First, we can say that necessity implies
possibility. We can see this a) from a possible worlds perspective and b) directly from our axioms.
From a possible worlds perspective, this follows from the definition of the operators. Necessity means
that there is truth at every accessible possible world, while possibility means there is truth at some
accessible possible world, which puts that possible truth in time ¢ as a subset of necessary truth in
time ¢. From the axioms, we verify

Cp — Osp (Theorem to verify, which also corresponds to Modal Axiom D (serial))
=iV Oup (Applying p — q is equiv. —p V q)
Oi—p V Oup (By modal conversion, —=[;p — Q1—p)
)

(Which for our semantics is tautological

That is, in time ¢ it is possible that p or it is possible that p, which allows for us also to not conclude
anything (in the case that the demon chooses to do nothing).

We can then say,

(Oip — p) = Owp (By necessitation and Oyp — O4p)
p— Oup (By concluding p from necessitation)

Another way to understand this axiom is again in terms of possible worlds. We can say in our system
that every world is possible in relation to itself. This corresponds to the accessibility relation Rww.
As such, an equivalent way to model reflexivity is in terms of the following:

Oip —p

That is, if [J;p holds in world w, then p also holds in world w, as is the case for Rww. We can see
this by proving [;p — p by contradiction. Assuming this were false, we would need to construct
a world w in which Oyp is true and p is false. If U;p is true at world w, then by definition p is true
at every world that w accesses. For our purposes, this holds, as [J;p means that it is necessary for
p to be the case in time ¢; any world that we access from this world w (i.e. by say increasing time,
running more HPO) would require p to hold. Since Rww means that w accesses itself, that means
that p must also be true at w, yielding the contradiction.

Modal Axiom 4: Transitivity

<>t<>sp — <>t+sp (5)

We can similarly understand transitivity to be valid intuitively from the behavior of the demon and in
relation to the semantics of our possible worlds. We do an abbreviated treatment (in relation to what
we say for reflexivity above) for brevity.

In terms of the demon, we note that in our semantics {);p means that it is possible for the demon to
bring about conclusion p via its choices in time ¢. Similarly, we could say the same for ¢p; this
means it is possible for the demon to bring about conclusion p in time s. If it is possible in time ¢ that
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it is possible in time s to bring about p, this is equivalent in our semantics to saying that it is possible
in time ¢ + s to bring about conclusion p.

We can understand this rule (perhaps more clearly) in terms of possible worlds and accessibility
relations.

For worlds w,,,

Ywy, Vws, Yws, Rwiws A Rwsws — Rwiws

In other words, this accessibility relation indicates that if w; accesses ws and if wo accesses ws, then
w1 accesses ws.

For understanding this in terms of relative possibility, we could frame this as, if w3 is possible relative
to we and if wy is possible relative to wy, then ws is possible relative to w;. For our semantics of the
demon, this means that in some time if in some time b we can get to some possible world w3 from
when we’re in wo and in time a we can get to some possible world wo when we’re in w1, then in time
a + b we can get to ws from wy

This axiom is akin to us regarding a string of exclusively possible or exclusively necessary modal
operators as just one possible or necessary modal operator, respectively; we regard then regard sum of
times as the amount of time it takes to bring about p (again, being necessary or possible, respectively).

Modal Axiom 5: Symmetry

Osep — Oyp (6)

We can similarly understand that our modal logic is symmetric; this is valid intuitively from the
behavior of the demon. We further abbreviate our treatment for brevity. In terms of the demon, we
note that in our semantics {sp means that it is possible for the demon to bring about conclusion p via
its choices in time s. We can also say [J;p means that it is necessary for the demon to bring about p
in time ¢. If it is possible in time s that it is necessary in time s to bring about p, this is equivalent in
our semantics to saying that it is necessary in time ¢ to bring about conclusion p. In other words, we
can disregard would could have possibly happened in time s from the demon’s behavior and only
regard what was necessary in time ¢ for the demon to do in order to bring about p.

As another example, consider our reduction of §;—(;p to = p in our proof for deriving a defended
reasoner in Section 5. While the intuitive English reading (“It’s possible that it’s not possible that
p") does not seem equivalent to this reduction (“It’s not possible that p), it is in fact valid for our
semantics. Think of this in terms of the demon. If p cannot be brought about in time ¢ in expectation
(where t is a reasonable upper bound on compute time), then that’s the end of it; it doesn’t matter
which operators come before it (any number of ¢; or [J;). Adding possibility or necessity before that
condition doesn’t change that fact that it, for that upper bound ¢, it is not possible to bring about p.

This axiom is akin to us just regarding the rightmost modal operator when we have a mix of modal
operators applied iteratively; we can disregard what was possible or necessary in the time prior to
the rightmost operator, and say that what we can say about a sentence p (whether it is possible or
necessary) just relates to how much time the last operator required to bring about p.

Derived axioms
We can similarly derive other axioms of our indexed modal logic, form the axioms above. Notably,

[J; distributes over A

Oi(p A q) = (Oep A Diq) (O distributes over M)
Inner proof 1
PANgq
p
(pAhq) —p
Oi((p A q) = p) (Necessitation)

30



Oe(p A q) = Oip (Distribution)

Uip (By assuming the hypothesis)

Inner proof 2

PAg

q

(PAq)—q
Oi((pAgq) = q) (Necessitation)
Oi(p A q) = Oig (Distribution)
Oiq (By assuming the hypothesis)
Up A Qg (By inner proof 1, inner proof 2, assuming the hypothesis)

We can show a similar result for ¢; and A, omitted for brevity.

. distributes over

Ot(pV @) = (Otp V O1q) (O distributes over V)
—Oi=(pV q) = (Owp V Orq) (Ora = —0—a)
—i(=p A =gq) — (Otp V O1q) (=(a Vv b) = (—a A b))
=(Oi=p ATi=q) = (Owp V O1q) (O; distributes over M)
(=Os=p V —0=q) = (Oep V O1q) (~(a Ab) = (ma V —b))
(OpV Orq) = (Osp V Orq) (Ota = ~O¢—a)

We can show a similar result for [1; and Vv, omitted for brevity.

D.2.4 Syntax and Semantics for the Logic of our Belief in EHPO Conclusions

The logic of belief is a type of modal logic, called doxastic logic [35], where the modal operator 13 is
used to express belief!? Different types of reasoners can be defined using axioms that involve B [67].

We can formulate the doxastic logic of belief in Backus-Naur form:

For any atomic proposition P, we define recursively a well-formed formula ¢ as
¢p=P|-¢|oN¢|Bo ()

where B means “It is believed that ¢". We interpret this recursively where p is the base case, meaning
that ¢ is p if it is an atom, —¢ is well-formed if ¢ is well-formed. We can also define V, —, and >
from — and A, as in propositional logic.

As stated in the belief logic portion of Section 4, we model a consistent Type 1 reasoner [67], which
has access to all of propositional logic, has their beliefs logical closed under modus ponens, and does
not derive contradictions. In other words, we have the following axioms:

-(Bp A B—p) = Bp — —B-p
which is the consistency axiom,
Fp— Bp
which is akin to Necessitation above in Section D.1.1 and means that we believe all tautologies, and
B(p = q) = (Bp — Bq)

which means that belief distributes over implication. This notably does not include

2Computer scientists do not tend to distinguish between the logic of knowledge (epistemic) and the logic of
belief (doxastic) [63].
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Bp —p

which essentially means that we do not allow for believing p to entail concluding p. This corresponds
to us actually wanting to run hyperparameter optimization before we conclude anything to be true.
We do not just want to conclude something to be true based only on a priori information. This is
akin to picking folkore parameters and concluding they are optimal without running hyperparameter
optimization.

D.2.5 Combining Logics

It is a well known result that we can combine modal logics to make a multimodal logic [61]. In
particular, we refer the reader to results on fusion [68].

For a brief intuition, we are able to combine our EHPO logic with belief logic since we are operating
over the same set of possible worlds. The results of running EHPO produce a particular possible
world, to which we apply our logic of belief in order to reason about the conclusions drawn in that
world.

D.2.6 Our Combined, Multimodal Logic and Expressing Hyperparameter Deception

We develop the following multimodal logic, which we also state in Section 4:

V=Pl | YAY | 0| By
D.2.7 Axioms

We give this multimodal logic semantics to express our ¢-non-deceptiveness axiom, which we repeat
below for completeness:

For any formula p,
= (OeBp A O:B-p)

We can similarly express the ¢-non-deceptiveness axiom:

For any formula p,
OtBp — =01 B-p

We can also express a t-deceptiveness-axiom:

For any formula p,
OtBp A OeB—p

To reiterate, multimodal just means that we have multiple different modes of reasoning, in this case
our ¢; semantics for the demon doing EHPO and our consistent Type 1 reasoner operator B.

Given a reasonable maximum time budget ¢, we say that EHPO is ¢-non-deceptive if it satisfies all of
axioms above. Moreover, based on this notion of ¢-non-deceptiveness, we can express what it means
to have a defense to being deceived.

D.2.8 Some notes on strength of belief and belief update

There are potentially interesting connections between our work on defending against hyperparameter
deception and belief update [19]. Notably, one could view our notion of skeptical belief as related to
work done on "strength of belief" and belief update, or dynamic doxastic logic [43, 63, 71]. Instead
of picking an EHPO runtime a priori and then running a defended EHPO and at the end evaluating
whether or not we believe the conclusions we draw, we could iteratively update and test our belief
and terminate if a certain belief threshold is met. In such quantitative theories of belief change, the
degree of acceptance of a sentence is represented by a numerical value. Those numerical values can
be updated in light of new information (so-called “soft" information updates) [2, 70]. Exploring this
is out of scope for our work here, but could be an interesting future research direction for how to
reason about empirical results that imply inconsistent conclusions.

32



E Section 5 Appendix: Additional Notes on Defenses

E.1 Proving a defended reasoners

Suppose that we have been drawing conclusions using some “naive” belief operator B, (based on a
conclusion function JF,) that satisfies the axioms of Section 4.3. We want to use 3, to construct a
new operator 53, which is guaranteed to be deception-free. One straightforward way to do this is to
define the belief operator B, such that for any statement p,

Bip = Bap A =By

That is, we conclude p only if both our naive reasoner would have concluded p, and it is impossible
for an adversary to get it to conclude —p in time ¢. This enables us to show ¢-non-deceptiveness,
following directly from the axioms in a proof by contradiction: Suppose B, can be deceived, i.e.
OiByp N\ Qi B—p is True:

Rule
OBip = Ot (Bap A =0 Ba—p) Applying ¢, to the definition of B.p (1)
= Ot (=0:Ba—p) Reducing a conjunction to either of its terms: (a A b) — b
— 0By p Symmetry; dropping all but the right-most operator: +(0:a) — Ora

We provide more detail on these transformations than we do in the main text. The first application is
simple; we just put parentheses around our definition of B, and apply {; to it. The second step is
also simple. We apply a change to whats inside the parentheses, i.e. just the definition of B,. Because
this is a conjunction, in order for it to be true, both components have to be true. So, we can reduce
the conjunction to just it’s second term.

The part that is more unfamiliar is the application of Modal Axiom 5 (Symmetry) to reduce the
number of ¢; operators. We provide this example above in Section D, where we explain why Modal
Axiom 5 holds for our EHPO logic semantics. We reiterate here for clarity:

While the intuitive English reading (“It’s possible that it’s not possible that p") does not seem
equivalent to this reduction (“It’s not possible that p), it is in fact valid for our semantics. Think of this
in terms of the demon. If p cannot be brought about in time ¢ in expectation (where ¢ is a reasonable
upper bound on compute time), then that’s the end of it; it doesn’t matter which operators come
before it (any number of ¢; or ;). Adding possibility or necessity before that condition doesn’t
change that fact that it, for that upper bound £, it is not possible to bring about p.

We then pause to apply our axioms to the right side of the conjunction, {:5,—p :

Rule
OiBBi—p = Ot (Ba—p A =01 Bap) Applying . to the definition of B.—p (1)
= OtBa—p A OO Bap Distributing {; over A: O¢(a A b) — (Ora A Orb)
— OtBa—p Reducing a conjunction to either of its terms: (a Ab) — a

This transformation is much like the one above. We similarly apply O to the definition of B..

We then distribute ¢, over the definition, which holds for our logic since possibility distributes over
and. We prove this for our logic in Section D, and provide an intuitive explanation here. If it is
possible in time ¢ to bring about a particular formula, then it must also be possible to bring about the
sub-conditions that compose that formula in time ¢. If this were not the case, then we would not be
able to satisfy bringing about the whole formula in time ¢.

Lastly, as in the first example, we reduce the conjunction to one of its terms (this time taking the first,
rather than the second).

We now bring both sides of the conjunction back together: O;B.pAOB—p = OBy pAOBy—p.
The right-hand side is of the form —a A a, which must be False. This contradicts our initial assumption
that B, is t-deceptive (i.e., O:B.p A OiB.—p is True). Therefore, B, is t-non-deceptive.
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E.2 Theoretically Validating Defenses to Hyperparameter Deception

We prove Theorem 1:

Theorem 1. Suppose that the set of allowable hyper-HPs C of H is constrained, such that any two
allowable random-search distributions |« and v have Renyi-oo-divergence at most a constant, i.e.
Do (pul|lv) < 7. The (K, R)-defended random-search EHPO of Definition 7 is guaranteed to be

t-non-deceptive if we set R > \/texp(y7K)/K = O(V/1).

Suppose we are considering HPO via random search [4], in which the set of allowable hyper-
hyperparameters contains tuples (u, M), where p is a distribution over all possible hyperparameter
sets A and M is the number of different hyperparameter configuration trials to run. This set S is the
Cartesian product of the set of allowable distributions D (1 € D) and M.

Suppose that for any two allowable distributions y, v € D and any event A (a measurable subset of
A), u(A) < e7-v(A) (i.e., the Renyi co-divergence between any pair of distributions is at most ).
This bounds how much the choice of hyper-hyperparameter can affect the hyperparameters in HPO.

We also suppose we start from a naive reasoner (expressed via the operator B,), which draws
conclusions based on a log with K trials. For this scenario, we are only concerned with the reasoner’s
conclusions from K-trial logs. We therefore assume w.l.o.g. that the reasoner draws no conclusions
unless presented with exactly one log with exactly K trials.

For some constant R € N, we construct a new reasoner B, that does the following: It draws
conclusions only from a single log with exactly K R trials (otherwise it concludes nothing). To
evaluate a proposition p, it splits the log into R groups of K trials each, evaluates 3,, on p on each of
those R groups, and then concludes p only if B,, also concluded p on all R groups.

Now consider a particular (arbitrary) proposition p. Since 5, draws conclusions based on only a
single log, any strategy o for the demon is equivalent to one that maintains at most one log at all
times (the “best” log it found so far for its purposes, as it can discard the rest).

Let ) be the supremum, taken over all allowable distributions i, of the probability that running a
group of K random search trials using that distribution will result in a log that would convince the 5,,
of p. Similarly, let (), be the supremum, taken over all allowable distributions v, of the probability
that running a group of K trials using that distribution will result in a log that would convince B,, of
Observe that (@ is the probability of an event in a product distribution of K independent random
variables each distributed according to u, and similarly for (Q—,, and the corresponding events are
disjoint. By independent additivity of the Renyi divergence, the Renyi co-divergence between these
corresponding product measures will be vK. It follows that

1-Q = exp(—7K)Q-

and

1 - Q- > exp(—yK)Q

From here it’s fairly easy to conclude that

2
O = (oK)

Now, an EHPO procedure using random search with K R trials will convince B, of p with probability
QF, since all R independently sampled groups of K trials must “hit” and each hit happens with
probability Q. Thus, the expected time it will take the fastest strategy to convince us of pis Q- K R.
Similarly, the fastest strategy to convince us of —p takes expected time Q=% - KR.

Suppose now, by way of contradiction, that the ¢-non-deceptiveness axiom is violated, and there are
strategies that can achieve both of these in time at most £. That is,

QB . KR<t and Q-F-KR<t
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From here, it’s fairly easy to conclude that
KR\ VR
ara-za(E0)"

Combining this with our conclusion above gives

KR\"F _ 1
t ~ 1+ exp(—K)’

It’s clear that we can cause this to be violated by setting R to be large enough. Observe that

1
1+ exp(—K)

(K;R)”R < exp(—exp(—7K)).

Taking the root of both sides gives

< exp(— exp(—7K)),

SO

KR\ Fown=m 1
- < Z.
()=

To simplify this expression, let 5 denote

B = Rexp(—K).

BK /B _ 1
(texp(vK)> “e
_[texp(—9K)
f= [
(1 Ve
— < =,

) <.

But this is impossible, as the minimum of z* occurs above 1/e. This setting of R gives

So that

Finally, we set R such that

To give

texp(vK)

I = 0(Vh).

R = pexp(7K) =

This shows that, for this task, if we run our constructed EHPO with R = O(\/f) assigned in this way,
it will be guaranteed to be ¢-non-deceptive.
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E.3 Defense Experiments

In this section we provide more information about the implementation of a random-search-based
defense to hyperparameter deception in Wilson et al. [72], which we discuss in Section 5.

E.3.1 Our Implemented Defense Algorithm

The defense we implement in our experiments is a bit different than what we describe in our
theoretical results in Section 5. In particular, in practice it is easier to implement subsampling rather
than resampling.

Protocol of Selecting Hyper-HPs. As partially illustrated in Figure 1 and elaborated on in Appendix
B, Wilson et al. [72]’s choice of hyper-HPs does not capture the space where Adam effectively
simulates Heavy Ball. In Wilson et al. [72]i, Adam-specific HPs like numerical variable € = 10—8
[42] are treated as constants, leading to a biased HP-search space.

In contrast, we select the hyper-HPs of e following a dynamic searching protocol:

Inspired by [11], we start from a wide range € € [10712, 10'2] as a wide search space. We iteratively
select powers-of-10 grids that are uniformly spaced in the logarithmic scale of the current range. For
instance, the selected grids for the prior range would be {10712, 10711 ... 10!, 10'2}. We perform
a single run on each grid selected, and shrink the range towards grids where the best performance
are achieved. The shrinkage follows the policy of either x 10 to the lower boundary or x0.1 to the
upper boundary. For example, for the prior range, we found the best performance is achieved on grid
10*!, so we multiply the lower boundary 10~'? with 10 and shift the range to € € [1071%,10'2]. Our
protocol terminates with ¢ € [101°, 10'?] as the final hyper-HPs that we use for our defended random
search EHPO.

Scaling Learning Rate 7. Note that directly applying the hyper-HP of ¢ € [10'°, 10'2] to Adam
would lead to extremely slow convergence, since essentially large ¢ indicates a small effective learning
rate 7). Similar to Choi et al. [11], we explore a shifted hyper-HPs for the 7, scaled proportionally
with e. Specifically, note that a large ¢ would make the update of Adam approach the update rule in
the Heavy Ball method; for any randomly selected € € [10'°,10'2], we perform the random search
of n/e instead of 7 itself in the space of [0.5,0.7], which is the search space of HB’s learning rate
shown in [72].

E.3.2 Experimental setup

We follow the setup from [72], where the details are specified in Section B.2.1.

E.3.3 Code

The code for running these experiments can be found at https://github.com/pastadl/
deception.

E.3.4 Associated results and logs

In line with our notion of a log, we provide heatmaps of our logs in Figures 13, 14 and that correspond
with our results in Section 5. We note that the performance of Heavy Ball for some random seeds is
very bad (e.g., 10% test accuracy). The performance varies widely — also nearing 92% for different
random seeds. We affirm that this is the search space that yields the best results for Heavy Ball
(92%).

The results for Heavy Ball exhibit large variance. This illustrates a strength of our defensed: it
actually helps with robustness against potentially making the wrong conclusion about Heavy Ball’s
performance (more generally), due to not making conclusions off of a single result (and perhaps
using a random seed for which performance is particularly bad). We make a different claim about
relative algorithm performance than Wilson et al. [72] about Heavy Ball (i.e., we do not claim that it
is better than Adam); but we do not reach this conclusion for the wrong reason (i.e., that we got one
bad Heavy Ball result for a particular random seed).
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Figure 10: Heatmap logs of SGD defended random search. Redder rows indicate higher test accuracy.
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Figure 12: Heatmap logs of Adam defended random search. Redder rows indicate higher test

accuracy.
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Figure 13: Heatmap logs of test accuracy of VGG-16 on CIFAR-10 for Adam vs. SGD using our
defended random search EHPO. Red indicates higher test accuracy for the given random seed.
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Figure 14: Heatmap logs of test accuracy of VGG-16 on CIFAR-10 for Adam vs. Heavy Ball (HB)
using our defended random search EHPO. Red indicates higher test accuracy for the given random
seed.
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F Section 6 Appendix: Additional Notes on Conclusion

F.1 Additional Practical Takeaways

In our conclusion in Section 6, we note the following practical takeaways:

* Researchers should have their own notion of skepticism, appropriate to their specific task.
There is no one-size-fits-all defense solution. Our results are broad insights about defended EHPO:
A defended EHPO is always possible, but finding an efficient one will depend on the task.

* Researchers should make explicit how they choose hyper-HPs. What is reasonable is ultimately
a function of what the ML community accepts. Being explicit, rather than eliding hyper-HP choices,
is essential for helping decide what is reasonable. As a heuristic, we recommend setting hyper-HPs
such that they include HPs for which the optimizers’ performance starts to degrade, as we do above.

¢ Avoiding hyperparameter deception is just as important as reproducibility. We have shown
that reproducibility [7, 29, 34, 57, 64] is only part of the story for ensuring reliability. While
necessary for guarding against brittle findings, it is not sufficient. We can replicate results—even
statistically significant ones—that suggest conclusions that are altogether wrong.

We elaborate here that our defended random search EHPO indicates a particular form of skepticism
that may (or may not) be appropriate to different ML tasks. That is, we suggest a defended EHPO, but
do not claim that that EHPO is optimal or suited for all tasks. Even though it may not be optimal, the
guarantees it affords would translate to other tasks (so long as the assumption is maintained that there
is an upper bound on how much the hyper-HPs can control the HPs). So, while we do not necessarily
encourage practitioners to use our particular defended EHPO, we do not discourage it either. The
main take away is that practitioners should develop their own notion of skepticism (appropriate to
their particular task) and be explicit about the assumptions they rely on when selecting hyper-HPs.
The way one chooses hyper-HPs should be defensible.

When in doubt, as a heuristic we recommend using a search space that includes where an algorithm’s
performance starts to degrade (to be assured that a maximum, even if a local one, has been found).
We refer to our dynamic two-phase protocol (which we describe in detail in Appendix E.3.1) as an
example of how to do this. We first do a broad (but coarse) search. We used grid search for that initial
sweep. Random search may be a better choice for some tasks. We were familiar with Wilson et al.
[72] (and many have written about it), and felt confident that grid search would capture the space
well based on the results that others have also reported on this task. We then used this first sweep
to determine which hyper-HPs we should use for our second, finer-grained sweep. We apply our
more expensive, defended EHPO for this second sweep, using the hyper-HPs we selected from the
first sweep. In other words, we spent a bit of time/our compute budget justifying to ourselves that
we were picking reasonable hyperparameters — instead of just picking one grid or range for random
search to sample, and hoping that our results would be representative of other search spaces.

F.2 Broader Impact

As we suggest in Section 5, our work can be considered as related to (but orthogonal with) with
prior studies on reproducibility as advocating for more robust scientific practices in ML research.
In particular, our work complements prior empirical studies that shine a light on reliability issues
in ML—issues that relate particularly to traditionally underspecified choices in hyperparameter
optimization [11, 48, 65]. In contrast to this prior work, which illustrates the issue with experiments,
we provide a theoretical contribution that enables ML practitioners and researchers to defend against
unreliable, inconsistent HPO. We provide a theoretically-backed mechanism to promote and facilitate
more trustworthy norms and practices in ML research.

More broadly, our work can be understood as a mechanism for dealing with measurement bias—the
misalignment between what one intends to measure and what they are actually measuring—for
overall ML algorithm performance. While alleviating measurement bias is by no means novel to
more mature branches of science [28], including other fields of computing [54], until recently it has
been under-explored in ML. Beginning in the last couple of years, measurement bias is now coming
under increased scrutiny with respect to the origins of empirical gains in ML [22, 53]. In current
work, it is often difficult to disentangle whether the concluded measured performance gains are due
to properties of the training algorithm or to fortuitous HP selection. Our formalization, rather than
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allowing HPO choices to potentially obscure empirical results, provides confidence in the conclusions
we can draw about overall algorithm performance.

Our work also highlights how there is a human element, not a just statistical one, to bias in ML,
pipelines: Practitioners make decisions about HPO that can heavily influence performance (e.g.,
choice of hyper-hyperparameters). The human element of biasing solution spaces has been discussed
in sociotechnical writing [14, 23, 66], in AI [52], in the context of “p-hacking” or “fishing expeditions"
for results that fit a desired pattern [25], and was also the focus of Professor Isbell [40]’s NeurIPS
2020 keynote. Formalizing the process for how to draw conclusions from HPO, as we do here, has
the potential to alleviate the effects of this type of human bias in ML systems.

Lastly, our insights concerning robustness also extend to growing areas in ML that use learning to
guide hyperparemeter selection, such as meta-learning and neural architecture search [8, 17, 38, 39,
75]. While the assisting learning agents in those methods guide choosing hyperparameters for the
trained output model, their own hyperparameters tend to be either manually tuned or chosen with
more traditional HPO strategies, like grid search [74]. In other words, these processes can exhibit
the bias problem discussed above and are therefore potentially subject to hyperparameter deception,
which can be mitigated by the work we present here.
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