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ABSTRACT

Interpretability remains a central barrier to the safe deployment of large lan-
guage models (LLMs) in high-stakes domains such as neurodegenerative disease
diagnosis. In Alzheimer’s disease (AD), early and explainable predictions are crit-
ical for clinical decision-making, yet attribution-based methods (e.g., saliency
maps, SHAP) often suffer from inconsistency due to the polysemantic nature of
LLM representations. Mechanistic interpretability promises to uncover more
coherent features, but it is not directly aligned with individual model outputs,
limiting its applicability in practice. To address these limitations, we propose a
unified interpretability framework that integrates attributional and mechanistic
perspectives via monosemantic feature extraction. First, we evaluate six com-
mon attribution techniques and further develop an explanation-optimization
step that updates explanations to reduce inter-method variability and improve
clarity. In the second stage, we train sparse autoencoders (SAEs) to transform
LLM activations into a disentangled latent space in which each dimension cor-
responds to a coherent semantic concept. This monosemantic representation
enables more structured and interpretable attribution analysis. We then com-
pare feature attributions in this latent space with those from the original model,
demonstrating improved robustness and semantic clarity. Evaluations on in-
distribution (IID) and out-of-distribution (OOD) Alzheimer’s cohorts across
binary and three-class classification tasks confirm the effectiveness of our frame-
work. By bridging attributional relevance and mechanistic clarity, our approach
provides more trustworthy, consistent, and human-aligned explanations, and
reveals clinically meaningful patterns in multimodal AD data. This work takes
a step toward safer and more reliable integration of LLMs into cognitive health
applications and clinical workflows.

A TECHNICAL APPENDICES

A.1 ATTRIBUTIONAL THEORY AND METHODS

Attribution explainability methods follow the framework of additive feature attribution, where the
explanation model g ( f ,x) is represented as a linear function of simplified input features:

g ( f ,x) =φ0 +
M∑

i=1
φi xi (1)

Here, f is the predictive model, φi ∈R is the attribution (importance) assigned to feature xi , and
M is the number of simplified input features.

For this study, we employed six well-established attributional interpretability methods applied to
large language models (LLMs), denoted as K = 6: Feature Ablation, Layer Activations (which cap-
ture the embedding activation space of a specific layer of interest within the LLM), Layer DeepLIFT
SHAP, Layer Gradient SHAP (Lundberg & Lee, 2017), Layer Integrated Gradients (Sundararajan
et al., 2017), and Layer Gradient × Activation.
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To align these layer-wise interpretability methods with the additive feature attribution framework,
we reinterpret the internal activations (i.e., latent units) of a network layer L as simplified input
features. The objective is to estimate an attribution score φi for each unit, where φi ∈R quantifies
the contribution of the corresponding neuron to the model’s prediction.

Layer SHAP implementations: This directly corresponds to the Shapley formulation:

φi =
∑

S⊆F \{i }

|S|!(|F |− |S|−1)!

|F |!
[

fS∪{i }(xS∪{i })− fS (xS )
]

(2)

In practice, Deep SHAP approximates this using sampling and a chain-rule based linearization
over network layers Lundberg & Lee (2017). Gradient SHAP assumes that input features are
independent and that the explanation model is linear, allowing explanations to be expressed as an
additive composition of feature contributions. Under these assumptions, SHAP values (Lundberg
& Lee, 2017) can be approximated by computing the expected gradients over a distribution of
perturbed inputs. Specifically, Gaussian noise is added to each input feature to generate multiple
baseline samples, and the resulting gradients are averaged to approximate SHAP attributions.

Activation Attribution: This method treats the raw activation aL
i (x) as proportional to its impor-

tance in the output. In the additive form:

φi = aL
i (x) (3)

Assuming linearity between layer L and the output, activations themselves serve as proxy contri-
butions.

Gradient × Activation Attribution: This method computes the element-wise product between the
activation values and the gradients of the model output with respect to those activations, thereby
capturing the first-order sensitivity of the output to the neurons in the layer. To this end, the
method estimates the first-order sensitivity of the output with respect to the activation:

φi = aL
i (x) · ∂ f

∂aL
i

(x) (4)

This corresponds to a local linear approximation (first-order Taylor expansion) of the model at x,
akin to DeepLIFT and the SHAP linearization used in DeepLift SHAP (Lundberg & Lee, 2017).

Feature Ablation Attribution: This attributional interpretability technique is a perturbation-
based approach to estimating attributions. It involves replacing the input or output values of a
selected layer with a given baseline or reference value and computing the resulting change in
the model’s output. By default, each neuron (i.e., scalar input or output value) within the layer is
ablated independently. For neuron group S ⊆ {1, . . . ,dL}, the perturbed activation is:

ãL
i =

{
bL

i if i ∈ S,

aL
i (x) otherwise,

(5)

and the attribution is the marginal effect:

φS = f
(
x; ãL

S

)− f (x) (6)

All attribution methods were applied to the final (22nd) layer of the MODERN-BERT LLM—the
model variant that achieved the highest classification accuracy in our evaluations (see Suple-
mentary material section 1.1). These formulations allow us to ground various neural attribution
techniques within a unified additive explanation model, facilitating their comparison and hy-
bridization under shared theoretical assumptions.
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A.2 ATTRIBUTIONAL EXPLANATION OPTIMIZER FRAMEWORK

Let A = {A1, A2, . . . , AK } denote the set of K = 6 attribution methods applied to the final layer L of
the model f . Each method Ak generates an attribution vector φ(k) = [φ(k)

1 ,φ(k)
2 , . . . ,φ(k)

M ], where M
is the number of latent features (neurons) in layer L. The goal is to derive a unified attribution
vector φ̄ that captures the consensus explanation across methods.

A.2.1 SCORING AND WEIGHTING ATTRIBUTION METHODS

Each attribution vector φ(k) is evaluated using the following quality metrics:

A.2.2 EVALUATION INTERPRETABILITY METRICS

We evaluate the robustness of each attribution method Ak using the following stability metrics:

Relative Input Stability (RIS):

M (k)
RIS = RIS( f ,φ(k);x) = ∥x∥p

∥φ(k)(x)∥p
max

x′∈Nx, ŷx′=ŷx

∥φ(k)(x)−φ(k)(x′)∥p

∥x−x′∥p
(7)

Relative Output Stability (ROS):

M (k)
ROS = ROS( f ,φ(k);x) = ∥ f (x)∥p

∥φ(k)(x)∥p
max

x′∈Nx, ŷx′=ŷx

∥φ(k)(x)−φ(k)(x′)∥p

∥ f (x)− f (x′)∥p
(8)

Here, Nx denotes a neighborhood of perturbed inputs x′ around x, and ŷx is the predicted class
label. Both metrics measure the relative sensitivity of the attribution vector φ(k) to perturbations
in the input or output space.

Sparseness Metric: We quantify the sparseness of the attribution vector φ(k) ∈ Rd using the
Gini Index, a measure of inequality that has been shown to satisfy several desirable properties
for evaluating sparseness Chalasani et al. (2020). This formulation is adopted in the context of
explaining neural network predictions Chalasani et al. (2020).

Let v ∈Rd
≥0 be a non-negative vector. Denote by v(k) the k-th smallest element in v after sorting it

in non-decreasing order. Then, the Gini Index G(v) ∈ [0,1] is defined as:

G(v) = 1−2
d∑

k=1

v(k)

∥v∥1
·
(

d −k +0.5

d

)
, (9)

where ∥v∥1 =∑d
i=1 vi is the ℓ1-norm of v . To evaluate the sparseness of an attribution vector φ(k),

we apply the Gini Index to the vector of its absolute values:

Sparseness
(
φ(k)

)
=G

(∣∣∣φ(k)
∣∣∣) ,

where
∣∣φ(k)

∣∣= (
|φ(k)

1 |, |φ(k)
2 |, . . . , |φ(k)

d |
)
.

Higher values of G
(∣∣φ(k)

∣∣) indicate greater sparseness. In the extreme case, if only one component
is non-zero, the Gini Index reaches its maximum value of 1, indicating perfect sparseness. If all
components are equal, the Gini Index is 0.

A.2.3 AGGREGATION OF ATTRIBUTIONS

The weighted average attribution vector φ̄ is calculated as:

φ̄=
K∑

k=1
wk ·φ(k) (10)

This vector serves as the target explanation for the optimization process.

3
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A.2.4 EXPLANATION RECONSTRUCTION VIA ENCODER–DECODER MODELS

An encoder–decoder model is trained to generate a reconstructed explanation φ̂ from the original
input x . Two architectures are considered the Diffusion UNet1D Ronneberger et al. (2015) and the
x-transformer autoencoder Vaswani et al. (2017); Nguyen & Salazar (2019).

Diffusion model: The diffusion model follows the basic structure of a 1-dimensional U-Net and
is trained using diffusion principles. In this framework, diffusion models Ho et al. (2020) are latent
variable models in which the observed data φ(k)

0 is gradually corrupted through a forward noising

process, producing a sequence of latent variables φ(k)
1:T . A corresponding reverse process is then

learned to recover the original data from noise. The mathematical formulation is as follows:

FORWARD PROCESS: A fixed Markov chain progressively adds Gaussian noise to the data:

q(φ(k)
1:T |φ(k)

0 ) :=
T∏

t=1
q(φ(k)

t |φ(k)
t−1), q(φ(k)

t |φ(k)
t−1) :=N (φ(k)

t ;
√

1−βtφ
(k)
t−1,βt I) (11)

Alternatively, sampling from the forward process at an arbitrary timestep t is possible in closed
form:

q(φ(k)
t |φ(k)

0 ) =N (φ(k)
t ;

√
ᾱtφ

(k)
0 , (1− ᾱt )I), (12)

where αt := 1−βt and ᾱt :=∏t
s=1αs .

REVERSE PROCESS: A learned time-reversal model with Gaussian transitions:

pθ(φ(k)
0:T ) := p(φ(k)

T )
T∏

t=1
pθ(φ(k)

t−1|φ(k)
t ), pθ(φ(k)

t−1|φ(k)
t ) :=N (φ(k)

t−1;µθ(φ(k)
t , t ),Σθ(φ(k)

t , t )), (13)

where p(φ(k)
T ) :=N (φ(k)

T ;0,I).

TRAINING OBJECTIVE: The training objective of diffusion models is based on a variational bound,
which includes Kullback–Leibler (KL) divergence terms. The KL term comparing the true posterior
from the forward process and the model’s learned reverse process is written as:

KL
(
q(φ(k)

t−1 |φ(k)
t ,φ(k)

0 )∥pθ(φ(k)
t−1 |φ(k)

t )
)

(14)

Both distributions are Gaussian:

q(φ(k)
t−1 |φ(k)

t ,φ(k)
0 ) =N (φ(k)

t−1; µ̃t (φ(k)
t ,φ(k)

0 ), β̃t I) (15)

pθ(φ(k)
t−1 |φ(k)

t ) =N (φ(k)
t−1;µθ(φ(k)

t , t ),σ2
t I) (16)

The closed-form KL divergence between two Gaussians N (µ1,σ2
1I) and N (µ2,σ2

2I) in d-
dimensions is:

KL = 1

2

[
log

(
σ2

2

σ2
1

)
+ σ2

1 +∥µ1 −µ2∥2

σ2
2

−d

]
(17)

In our setting, this term is computed for each timestep t and summed across all steps:

L1:T−1 =
T∑

t=2
Eq(φ(k)

0 ,φ(k)
t )

[
KL

(
q(φ(k)

t−1 |φ(k)
t ,φ(k)

0 )∥pθ(φ(k)
t−1 |φ(k)

t )
)]

(18)

This forms a core part of the evidence lower bound (ELBO) optimized during training. Using
variational inference, we minimize the negative ELBO:

L = Eq

[
− log p(φ(k)

T )+
T∑

t=1
KL

(
q(φ(k)

t−1|φ(k)
t ,φ(k)

0 )∥pθ(φ(k)
t−1|φ(k)

t )
)
− log pθ(φ(k)

0 |φ(k)
1 )

]
. (19)

Each KL term compares Gaussian distributions and can be computed in closed form. The posterior
q(φ(k)

t−1|φ(k)
t ,φ(k)

0 ) is also Gaussian:

q(φ(k)
t−1|φ(k)

t ,φ(k)
0 ) =N (φ(k)

t−1;µ̃t (φ(k)
t ,φ(k)

0 ), β̃t I), (20)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with:

µ̃t (φ(k)
t ,φ(k)

0 ) =
p
ᾱt−1βt

1− ᾱt
φ(k)

0 +
p
αt (1− ᾱt−1)

1− ᾱt
φ(k)

t , (21)

β̃t = 1− ᾱt−1

1− ᾱt
βt . (22)

SIMPLIFIED TRAINING LOSS: The common parameterization rewrites the objective as denoising
score matching:

Lsimple(θ) := Et ,φ(k)
0 ,ϵ

[∥∥∥ϵ−ϵθ(
√
ᾱtφ

(k)
0 +

√
1− ᾱtϵ, t )

∥∥∥2
]

, (23)

where ϵ∼N (0,I) and ϵθ is the neural network trained to predict noise.

In our implementation we compute the total loss for the diffusion model as:

Lsimilarity(φ̂,φ̄) =Lsimilarity(θ) = 1

K +1

K∑
l=0

L (l )
simple(θ) (24)

x-Transformer: Let the input sequence be:

φ(k) = [φ(k)
1 ,φ(k)

2 , . . . ,φ(k)
T ] ∈RT×din

where din = 7 is the input dimensionality and T = 512 is the sequence length. We consider a
Transformer-based encoder-decoder architecture operating on input sequencesΦ(k) ∈RB×T×din

at diffusion step k, where: B is the batch size, T is the sequence length, din is the input feature
dimension, andΦ(k) is the input sequence at step k.

The processing pipeline is mathematically formulated as follows:

INPUT PROJECTION AND POSITIONAL ENCODING: We first project the input to the model dimension
d and add positional encodings:

X0 = WinΦ
(k) +P, X0 ∈RB×T×d (25)

where: Win ∈Rdin×d is a learnable linear projection matrix, and P ∈R1×T×d is a learnable positional
embedding matrix.

ENCODER: MULTI-HEAD SELF-ATTENTION LAYERS: The encoder consists of Le stacked multi-head
self-attention (MHSA) layers:

Henc = MHSALe ◦ · · · ◦MHSA1(X0) (26)

where each MHSA layer performs:

MHSA(X) = Softmax

(
QK⊤√

dh

)
V (27)

with: Q,K,V: Query, Key, and Value matrices obtained via learned linear projections, and dh : the
dimensionality of each attention head.

DECODER INPUT PROJECTION: During training, the decoder may receive the ground-truth output
Φ(k)

target ∈RB×T×1:

Y0 = WdecΦ
(k)
target +P (28)

where Wdec ∈R1×d is a projection matrix.

If no decoder input is available (e.g., during inference),Φ(k)
target is initialized to a zero tensor.

DECODER MHSA + CROSS-ATTENTION LAYERS: The decoder consists of Ld layers of MHSA fol-
lowed by cross-attention (CA) using the encoder context:

Hdec = CALd ◦ · · · ◦CA1
(
MHSALd ◦ · · · ◦MHSA1(Y0)

∣∣Henc
)

(29)

5
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Each cross-attention (CA) layer uses the decoder hidden state as the query and encoder output as
the key and value:

CA(Y,Henc) = Softmax

(
QdecK⊤

enc√
dh

)
Venc (30)

OUTPUT PROJECTION: Finally, the decoder output is projected back to the target dimension:

Φ̂(k) = WoutHdec, Φ̂(k) ∈RB×T×1 (31)

where Wout ∈Rd×1 is a linear projection matrix.

The similarity cost function is given by the Mean Squared Error (MSE) loss between the predicted
output of the x-Transformer and the target weighted attribution vector as follow:

Lsimilarity(φ̂,φ̄) =LMSE = 1

T

T∑
t=1

∥∥φ̂t − φ̄t

∥∥2
, (32)

A.3 THE TOTAL COST FUNCTION OF THE OPTIMIZER

As previously highlighted, the reconstruction of the optimal explanation and the associated cost
function adhere to the same principles and architectural design outlined in Mamalakis et al. (2025).
The cost function consists of three key components: sparseness, as defined in ?; ROS and RIS
scores Agarwal et al. (2022); and similarity. The integration of these components ensures a robust
and interpretable evaluation. The total cost function for training the reconstruction model is:

Ltotal(φ
(k),φ̂) =λ1 · 1

MRIS( f ,φ̂)
+λ2 · 1

MROS( f ,φ̂)

+λ3 ·Msparse( f ,φ̂)+λ4 ·Lsimilarity(φ̂,φ̄) (33)

where:λ1,λ2,λ3,λ4 are hyperparameters controlling the influence of each loss term. This formula-
tion enables a principled and quantitative integration of multiple attribution methods, optimizing
toward a robust and interpretable explanation.

A.4 THE UMAP EXTRACTION AND THE LINEAR CONSTRAIN

Given a dataset Φ̂ = {φ̂1,φ̂2, . . . ,φ̂n} ⊂ RD , UMAP aims to find a low-dimensional embedding
U = {u1,u2, . . . ,un} ⊂Rd where typically d = 2 or d = 3, such that the local topological structure of
the data in Φ̂ is preserved in U .

HIGH-DIMENSIONAL GRAPH CONSTRUCTION: First, the algorithm constructs a k-nearest neighbors
graph in the high-dimensional space Φ̂. The distance metric used to calculate the pairwise
distances is typically Euclidean:

d(φ̂i ,φ̂ j ) = ∥φ̂i − φ̂ j ∥2

Next, a conditional probability is defined between points φ̂i and φ̂ j using a Gaussian distribution:

pi j = exp

(
−
∥φ̂i − φ̂ j ∥2

σ2
i

)

where σi is the bandwidth for the Gaussian distribution, determined through a binary search to
match a fixed perplexity.

The graph is symmetrized:

Pi j =
pi j +p j i

2

6
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LOW-DIMENSIONAL EMBEDDING GRAPH: In the low-dimensional space, a similar probability is
defined between points ui and u j :

qi j = 1

1+a∥ui −u j ∥2b

where a and b are hyperparameters that control the shape of the distribution, and ∥ui −u j ∥2 is
the Euclidean distance between points in the low-dimensional embedding.

OBJECTIVE FUNCTION: The optimization process involves minimizing the cross-entropy between
the high-dimensional and low-dimensional probability distributions:

L = ∑
i< j

[
Pi j log(Qi j )+ (1−Pi j ) log(1−Qi j )

]
This loss function encourages points that are close in the high-dimensional space to be close in
the low-dimensional space, and points that are distant to remain distant.

OPTIMIZATION PROCESS: The optimization is carried out using stochastic gradient descent (SGD),
updating the embedding points {ui } iteratively based on the gradient of the loss function L . The
gradient updates for the low-dimensional embedding ui are computed as follows:

∂L

∂ui
=−∑

j ̸=i

(
Pi j −Qi j

) ui −u j

∥ui −u j ∥2
2

REGULARIZATION CONSTRAINT: To prevent the embedding from collapsing to a single point, we
introduce a variance constraint to ensure that the variance of the embedding does not approach
zero:

Var(U ) = 1

n

n∑
i=1

∥ui − ū∥2
2 ≥ ϵ

where Ū = 1
n

∑n
i=1 ui is the mean of the embeddings, and ϵ> 0 is a small constant that enforces a

lower bound on the variance.

LINEAR CONSTRAINT FOR EQUAL COMPONENTS IN UMAP: Let ui = (ui 1,ui 2, . . . ,ui d ) represent the
embedding of the i -th data point in the d-dimensional space. The constraint that the first and
second components of the embedding are equal can be written as:

ui 1 = ui 2 ∀i ∈ {1,2, . . . ,n}

In other words, the first component ui 1 and the second component ui 2 of each embedding vector
ui must be equal. This can be written as a linear equality constraint:

ui 1 −ui 2 = 0 ∀i ∈ {1,2, . . . ,n}

This constraint ensures that for each data point i , the first and second components of the corre-
sponding embedding vector ui are equal.

In the Ltotal(φ
(k),φ̂), of eq. 35, we can add an extra penalty term to the loss function to enforce

this constraint. The penalty term would be:

λ5

n∑
i=1

(ui 1 −ui 2)2

where λ5 is a regularization parameter that controls the strength of the penalty. This penalty term
enforces the condition that the first and second components of each embedding point of the
reconstructed explanation from the optimizer (φ̂) are equal, but it allows flexibility depending on
the value of λ5.

7
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A.5 THE SUPERPOSITION AND THE MONOSEMANTIC REPRESENTATIONS

We model an embedding space as a real vector space Rd , where a hidden activation vector h ∈Rd

represents a combination of underlying semantic features. By the linear representation hypothesis,
each interpretable feature corresponds to a fixed direction in Rd Olah et al. (2020b); Elhage et al.
(2022b).

Let a ∈RF be a sparse feature activation vector and W ∈Rd×F be a linear transformation such that:

h =W a =
F∑

i=1
ai wi ,

where wi denotes the i -th column of W , corresponding to the direction of the feature i .

If F > d , the map W cannot be invertible, and thus different combination of characteristics can
map to the same embedding. This gives rise to superposition, where multiple semantic features
are embedded into shared subspaces or overlapping neuron activations Elhage et al. (2022b).

MONOSEMANTIC REPRESENTATIONS: A representation is called monosemantic when each neuron
corresponds to a single interpretable feature Olah et al. (2020b). Mathematically, this corresponds
to the case where W is full-rank and aligned with the identity matrix (or a rotation of it):

W = I ⇒ h = a.

This implies that each feature ai is represented by a unique dimension hi , with no overlap. Each
neuron responds to a single, isolated concept, akin to “grandmother cells” in neuroscience Quiroga
et al. (2005).

POLYSEMANTIC REPRESENTATIONS: In contrast, polysemantic neurons represent multiple, distinct
concepts. Formally, if neuron h j computes:

h j =
F∑

i=1
W j ,i ai ,

and two or more W j ,i ̸= 0, then neuron j encodes multiple features simultaneously, exhibiting
polysemanticity Elhage et al. (2022b); Bills et al. (2023a).

More generally, a polysemantic embedding may be viewed as a mixture:

h =
K∑

k=1
αk ck , K > 1,

where ck are concept vectors and αk are scalar weights.

This behavior is prevalent in both neural network activations and in biological neurons that exhibit
mixed selectivity Rigotti et al. (2013).

Monosemantic representations arise from disentangled bases, where neurons correspond to
isolated features. Superposition emerges from dimensionality compression and necessarily leads
to polysemantic neurons, each encoding a combination of features. Spare auto-encoder is a way
to try to solve the polysemantic neurons—each encoding problem.

A.6 THE SAE APPROACH AND ARCHITECTURES

Sparse Autoencoder (SAE) architectures have advanced our understanding of how language and
vision models represent features Gorton (2024). Neural network behavior is often explained
via computational circuits—collections of neurons that together compute meaningful functions.
Classical circuit analysis has identified key components such as edge detectors Olah et al. (2020a)
or word-copying units Olsson et al. (2022). By using features derived from SAEs rather than raw
neurons, researchers have improved the interpretability of circuits related to complex behaviors
Marks et al. (2024).

Feature discovery can involve visual analysis McDougall (2024), manual inspection Bricken et al.
(2023), and even assistance from large language models Bills et al. (2023b). Their causal role is
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often validated via activation interventions: modifying a feature activation vector a and observing
predictable changes in model output Templeton et al. (2024).

The mathematical formulation situates SAE architectures within the theoretical framework of
superposition and semantic disentanglement. By expressing hidden states as sparse linear combi-
nations of interpretable features, SAEs bridge the gap between low-level activations and human-
understandable concepts.

LINEAR FORMULATION OF SAES: Let x ∈Rd denote a layer’s neuron activation vector in a pretrained
model. A Sparse Autoencoder learns a sparse feature representation a ∈RF such that:

x̂ =W a+b, (34)

where W ∈Rd×F is the decoder (dictionary) matrix and b ∈Rd is a learned bias term. Each column
W·,i represents the direction of feature i in neuron space, and ai is its activation. This linear
mapping enables complex activations to be expressed as combinations of more interpretable
features.

If F > d , then the feature space is overcomplete, and W cannot be full-rank. This leads to super-
position, where multiple features overlap in the same subspace, and individual neurons encode
multiple unrelated concepts Elhage et al. (2022b). If W is invertible and aligned to a basis, each
neuron corresponds to a single feature. The representation is monosemantic and disentangled
Olah et al. (2020b). When W has overlapping columns, neurons can respond to multiple features,
yielding polysemantic behavior. That is, for some j , x j = ∑

i W j ,i ai involves multiple nonzero
terms Bills et al. (2023a).

VARIANTS OF SAES: Variants of SAEs like TopK, JumpReLU, and Gated-SAEs offer increasingly
precise control over the mapping between low-level activations and human-understandable
concepts, enabling fine-grained analysis and intervention.

TopK-SAEs: Instead of using a soft sparsityconstraint (e.g., L1 regularization), TopK-SAEs enforce
hard sparsity using a top-K activation function:

a = TopK(Wenc(x−bdec)), (35)

which retains only the K largest entries of the preactivation and zeros out the rest. This promotes
discrete sparsity and avoids complex hyperparameter tuning.

JumpReLU-SAEs: JumpReLU replaces ReLU with a thresholded step function:

JumpReLUθ(x) = x ·H(x −θ), (36)

where H(·) is the Heaviside step function and θ is a learnable threshold. This allows neurons to
activate only above a semantic threshold, aligning with binary behavior observed in some inter-
pretable features. However, the discontinuity makes training difficult due to non-differentiability.

Gated-SAEs: Gated-SAEs introduce a gating mechanism that decouples activation magnitude and
presence. Let Wmag and Wgate be two encoders. Then the feature activation is computed as:

a = (
Wmag(x)

)⊙H(Wgate(x)−θ), (37)

where ⊙ denotes elementwise multiplication. This enables better control over when and how
strongly a feature activates, making them easier to train than JumpReLU-SAEs Rajamanoharan
et al. (2024).

In this study we utilize two different architectures of SAEs the standard SAE and TopK-SAE.

A.7 ATTRIBUTION FROM SPARSE FEATURE SPACE TO INPUT TOKENS

Let xinput ∈Rdinput denote the input embedding vector (e.g., LLM token embeddings), x = f (xinput) ∈
Rd the hidden layer activation of the LLM, a = Encoder(x) ∈RF the SAE sparse feature vector, and
x̂ = W a+b the reconstructed activation from the SAE decoder. Now suppose we have a sparse
attribution vector ψi over features a, i.e., ψ ∈RF , where each ψi reflects the importance of SAE
feature ai . We aim to assign importanceΦk to each input token dimension xinput,k .

9
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ATTRIBUTION FLOW THROUGH THE ENCODER: We propagate the feature attributions backward
through the encoder to the input. Using the chain rule:

Φk =
F∑

i=1
ψi · ∂ai

∂xinput,k
=

F∑
i=1

ψi · ∂ai

∂x
· ∂x

∂xinput,k
(38)

where ∂ai
∂x is the encoder Jacobian (SAE layer), and ∂x

∂xinput,k
is the LLM gradient from input token to

hidden layer.

This gives us a scalar attributionΦk ∈R for each token/input embedding dimension k.

This represents how much each input token contributes to the sparse SAE features that have been
identified as important. In this way, we evaluate the contribution of input features based on the
monosemantic behavior of the trained network’s mechanism. Based on our study thus far, we will
apply the six attribution methods previously discussed at two levels: from the SAE feature space
to the encoder layer, and from the encoder layer to the input embedding space. This dual-level
attribution analysis enables us to investigate how interpretable sparse features relate to model
internals and ultimately influence the input-level representations.

To this end, we define a two-step attribution mechanism:

STEP 1: ATTRIBUTION FROM SPARSE FEATURES TO ENCODER LAYER

Let ψ ∈RF represent the importance scores of sparse features (obtained via attribution methods).
We propagate these to the encoder layer as:

φenc =Wψ ∈Rd , (39)

where φenc quantifies the contribution of each encoder neuron to the important SAE features.

STEP 2: ATTRIBUTION FROM ENCODER LAYER TO INPUT

To assign attribution scores to input dimensions, we propagate φenc to the input embedding via
the gradient of the encoder:

φinput =
(

∂x

∂xinput

)⊤
φenc ∈Rdinput . (40)

Alternatively, attribution methods (e.g., Integrated Gradients, SHAP) can directly estimate:

φinput = AttributionMethod( f ,xinput,φ
enc)

This dual-level attribution analysis allows us to connect semantically meaningful sparse features
to the raw input representation space.

B SUPPLEMENTARY MATERIAL

B.0 RELATED WORK

B.0.1 ATTRIBUTIONAL INTERPRETABILLITY

Attributional interpretability (AtI), a branch of explainable AI (XAI), focuses on explaining model
outputs by tracing predictions back to individual input contributions, often using gradient-based
methods Bereska & Gavves (2024). While gradients provide insights into the relationship between
inputs and outputs, they can be sensitive to perturbations or discontinuities, posing challenges
for reliable interpretation.

AtI encompasses various methods for interpreting complex, nonlinear models, including tech-
niques like Local Interpretable Model-agnostic Explanations (LIME; Ribeiro et al. (2016)) and

10
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SHapley Additive exPlanations (SHAP; Lundberg & Lee (2017)). In medical imaging, popular
attribution techniques include SHAP, Layer-wise Relevance Propagation (LRP; Bach et al. (2015)),
and gradient-based methods like GRAD-CAM (Singh et al. (2020)). These methods aim to enhance
trust in models and provide valuable insights into decision-making processes. However, they face
limitations. For instance, LRP emphasizes positive preactivations, often yielding less precise ex-
planations, while SHAP is computationally intensive due to the complexity of calculating Shapley
values Lundberg & Lee (2017). Adaptations like Monte Carlo methods and stratified sampling (e.g.,
SVARM) have improved the efficiency and precision of certain techniques Kolpaczki et al. (2024).

B.0.2 MECHANISTIC INTERPRETABILITY AND SPARSE AUTOENCODER

Mechanistic interpretability (MI), a key area of explainable AI (XAI), focuses on understanding the
internal activation patterns of AI models by analyzing their fundamental components, such as
features, neurons, layers, and connections. Unlike AtI, MI takes a bottom-up approach, aiming to
uncover the causal relationships and precise computations that transform inputs into outputs.
This method identifies specific neural circuits driving behavior and provides a reverse-engineering
perspective. Insights from fields like physics, neuroscience, and systems biology further guide the
development of transparent and value-aligned AI systems.

A core principle of MI is the concept of polysemanticity, where individual neurons encode multi-
ple concepts, contrasted with monosemanticity, where neurons correspond to a single semantic
concept. Polysemanticity reduces interpretability, as neurons represent overlapping features.
Structures like sparse autoencoders (SAEs) address this by leveraging the superposition hypothe-
sis, which posits that neural networks use high-dimensional spaces to represent more features
than the number of neurons, encoding them in nearly orthogonal directions. SAEs decompose em-
beddings from deep layers, such as MLPs or transformer attention layers, into higher-dimensional
monosemantic representations, aligning activation patterns with specific concepts of interest
Cunningham et al. (2023); Elhage et al. (2022a).

Sparse Autoencoder architectures have significantly advanced our understanding of feature repre-
sentations in language and vision models Gorton (2024). Neural network behavior is often inter-
preted through computational circuits—groups of neurons that compute meaningful functions,
such as edge detectors Olah et al. (2020a) or word-copying units Olsson et al. (2022). Leveraging
SAE-derived features instead of raw neurons has improved the interpretability of circuits asso-
ciated with complex behaviors Marks et al. (2024). This shift enables clearer mappings between
neuron activations and high-level functions, facilitating validation of model behavior Bereska
& Gavves (2024). By aligning internal representations with privileged basis directions—distinct
semantic vectors within network layers—researchers further enhance monosemanticity and
advance the interpretability of deep models.

B.1 ALZHEIMER DATASET AND PREPROCESSING

B.1.1 PREPROCESSING

The ADNI data Mueller et al. (2005) was downloaded from the Image & Data Archive (IDA)
Neu et al. (2023), run by the Laboratory of Neuro Imaging (LONI) at the USC Mark and Mary
Stevens Neuroimaging and Informatics Institute. The download comprised folders including
information about participants’ enrollment, biospecimen, assessments, medical history, imag-
ing and study information. In this work, only baseline (’bl’) visit data was extracted, that is -
the first visit the patient underwent when joining each study. The number of unique partici-
pant’s RIDs (subject’s roster ID) was then recorded, and the intersection of such identifiers across
the baseline datasets was calculated through an overlap matrix assessing participant coverage
by considering datasets symmetrically. The obtained result, underwent precise analysis and
filtering. Non-informative and administrative columns (i.e.: SOURCE, update_stamp, SITEID,
etc.) were removed across all datasets, to then perform a column-wise completeness check to
retain only variables with at least 80% of values present and to balance data availability with
feature retention. By prioritizing datasets with the highest number of unique RIDs at baseline,
pairwise merging based on shared RIDs was performed (i.e.: inner joins), considering the follow-
ing files: ADAS, NEUROBAT, FAQ, VITALS, DXSUM. Diagnosis data was sorted chronologically
according to EXAMDATE and de-duplicated so as to obtain the first - baseline - diagnosis per
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subject. Moreover, to ensure robust classification, this was complemented by matching data from
adni_diagnosisDXSUM files. For data augmentation purposes, demographics data was obtained
from adni_demographic_PTDEMOG and merged according to matching RIDs. Biospecimen and
medication data were filtered, cleaned and aggregated by participant - however, due to high
sparsity and no adherence of column data to the completeness threshold, such information was
not included in the final merge. Similarly, no genetic data was included, due to the lack of relevant
biological variables with enough completeness, as remaining columns were primarily collection
metadata. The final merged dataset - after excluding administrative columns - comprised 2791
unique participant RIDs with comprehensive neuropsychological, clinical, biospecimen, vital
sign, and demographic data at baseline, with the following diagnosis count: 1207 patients diag-
nosed with Early Mild Cognitive Impairment (EMCI), 441 with Late Mild Cognitive Impairment
(LMCI), and 1143 control subjects. For the binary classification task, EMCI and LMCI subjects
were unified into a unique MCI cohort, while for the three-class classification, all three subsets
were retained, considering only 440 subjects per class, for balancing purposes. Variables from the
obtained merged dataset, were mapped to their descriptions and categorical values, according to
the DATADIC_adni123GO dictionary from ADNI Mueller et al. (2005). Text was then generated by
iterating through each subject row, replacing column names with their description and appending
the corresponding column value for the specific patient. Whereby categorical values were present,
they were replaced with their corresponding textual value (i.e.: " ’sex’: 0 " - was transformed into
"The patient’s sex is: male"). Two distinct datasets - one for training and one for testing - were
generated from the obtained final datasets, and they were split into training, testing and validation
sets.

Another dataset was utilized for further model refinement and finetuning. Specifically, the ad-
ditional data was extrapolated from MRI files from the Latin American Brain Health Institute
(BrainLat) dataset, a multi-site initiative that provides neuroimaging, cognitive, and clinical data
across several countries in the Latin American region al (2023). The data included cognition,
demographic and records information of 780 subjects. A pre-processing pipeline similar to that
employed for ADNI, was followed. Namely, after filtering throughout all MRI files, 760 unique
and common MRI IDs - representing each subject - were identified. After dropping subjects
with a higher proportion of data missing, and columns not fulfilling the completeness threshold,
median imputation based on diagnosis group mean was applied for variables with less than 30%
of data missing (such as ’Age’ and ’years of education’ for example) with the goal of obtaining a
more complete dataset. After dropping administrative and non-informative columns, the final
merged dataset comprised variables deriving from cognitive tests (MOCA - Montreal Cognitive
Assessment test and the IFS - INECO Frontal Screening) and participants’ demographics. The
diagnosis distribution of the obtained dataset was the following: 101 control subjects (CN), 109
diagnosed with Fronto-Temporal Dementia (FTD), and 118 subjects with AD. The same process as
for ADNI was followed to obtain textual descriptions of BrainLat patients’ data, considering the
related dictionary from al (2023). Finally, training and testing files where obtained, whereby each
class had 50 representative samples each, both for the binary and for the three-class classification.
The handling of the final split into training, testing, and validation sets was handled as for ADNI.

B.1.2 DEMOGRAPHIC COMPARISON OF ALZHEIMER’S COHORTS AND MATCHED CONTROLS

To ensure demographic comparability and reduce confounding in downstream analyses, we
examined age and sex distributions across each Alzheimer’s disease (AD) cohort and control
groups.

Considering the cohorts for the binary classification from ADNI Mueller et al. (2005), AD subjects
(n = 1207) and the control group (n = 1143), it is worth noting that both groups consider subjects
who were born between a range that goes from the 1930s to the 1960s with comparable distri-
butions. The AD group exhibits sharper age peaks, (Figure 1(a)) , while the control group shows
a more uniform spread. A similar pattern is evident from the three-class classification cohorts
(Figure 1(c)), whereby patients diagnosed with LMCI and MCI tend to be demonstrate higher
density at certain points, whereas healthy subjects’ birth year distribution tends to be flatter.

The gender distribution is uniform across groups, both in binary and three-class classification
(Figures 1(b) and 1(d)), with a slight predominance of female participants in AD groups, but overall
disparity suggests minimal risk of demographic bias.
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(a) Age Distribution for binary classification. (b) Sex Distribution for binary classification.

(c) Age Distribution for ternary classification. (d) Sex Distribution for three-class classifica-

tion.

Figure 1: Demographic distributions (age and gender) for Alzheimer’s cohorts and control groups
for both binary and ternary classification tasks. The top row refers to the binary task, while the
bottom row analyzes cohorts for the ternary classification task.

Regarding the BrainLat dataset al (2023), similar patterns are evident. Control subjects are, on
average, younger than subjects diagnosed with AD by 4 years, although the distribution for AD
tends to be more coherently spread than the one for CN (AD cohort mean age: 71, with a standard
deviation of 8.7, CN cohort mean age: 67, with standard deviation of 8.5). In the cohorts obtained
for the three-class classification task, the age difference remains the same - as AD subjects tend
to be the oldest, followed by those belonging to the FTD cohort and CN cohort respectively. Age
variability in this case, becomes more comparable between the different diagnoses. Similarly to
what was found for ADNI, gender-wise, the data distribution tends to be more skewed toward
female participants, both in the AD and in the CN cohorts. The same is found for the subsets
obtained for the three-class classification task, whereby female patients diagnosed with AD and
FTD represent a higher number than male ones.

B.2 PHENOTYPIC AND LIFESTYLE PROFILING

To characterize the ADNI cohorts beyond age and sex, we analyzed phenotypic and lifestyle
variables spanning physical health (e.g., systolic and diastolic blood pressure, respiratory and
pulse rate, height, weight, body temperature, dominant hand) and behavioral and lifestyle factors
(e.g., living situation, marital status, primary language). These features were compared across all
four groups to identify significant inter-group differences Mueller et al. (2005).

In the comparison between AD and CN cohorts for the binary classification, a significant difference
was found in subjects’ pulse rate (p < 0.05) based on independent samples t-test - consistent with
the nervous system dysfunction that Alzheimer’s involves. Instead, no significance was found for
systolic and diastolic blood pressure, respiratory rate, body temperature and weight. In terms of
behavioral and lifestyle factors, a significant difference in marital status - based on Fisher’s exact
test - was observed between the two groups. Although most of subjects in the AD and CN groups
were married, widowed individuals made up a larger proportion than divorced individuals in the
AD group, while the opposite was true for CN subjects. Moreover, the CN group had a higher
percentage of individuals who had never been married. Subjects also differed for living situation
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(Fisher’s exact test). Most subjects diagnosed with AD, lived in a house and smaller proportions
lived in - respectively - a condo, an apartment, and a mobile home, with the lowest percentages
residing in a retirement community and in an assisted living facility. Although CN subjects also
predominantly lived in a house, they were more likely than AD subjects to live in an apartment or
a condo, followed by a mobile home, an assisted living facility and lastly, a retirement community.

B.3 MODALITIES SUBGROUP EXTRACTIONS

Table 1: Variables with character counts, generation order, and estimated tokens (tokens
≈ ⌈chars/4⌉).

Variable Description Chars Order Tokens (est.)

PTGENDER The participant’s sex is 30 1 8
PTDOB Their Date of Birth is 31 2 8
PTDOBYY Their Year of Birth is 28 3 7
PTHAND Their Handedness is 26 4 7
PTMARRY Their Marital status at baseline is 44 5 11
PTEDUCAT Their education in years is 31 6 8
PTNOTRT Participant Retired? 25 7 7
PTHOME Type of Participant residence 54 8 14
PTTLANG Language to be used for testing the Participant 56 9 14
PTPLANG Participant’s Primary Language 39 10 10
PTETHCAT The participant’s Ethnicity is 54 11 14
PTRACCAT Trail Making Test: Race 28 12 7
PTSOURCE Information Source 37 13 10
VSWEIGHT The participant’s weight is 32 14 8
VSWTUNIT The weight was measured in 34 15 9
VSBPSYS The participant’s Systolic - mmHg 40 16 10
VSBPDIA The participant’s Diastolic - mmHg 40 17 10
VSPULSE The participant’s Seated Pulse Rate (per minute) is 56 18 14
VSRESP The participant’s Respirations (per minute) are 51 19 13
VSTEMP The participant’s Temperature is 37 20 10
VSTMPSRC The Temperature Source was 32 21 8
VSTMPUNT The Temperature Units were 38 22 10
DXDEP Depressive symptoms present? 32 23 8
CLOCKCIRC On the Clock Drawing Test the partecipant answered the follow-

ing questions in this way: Approximately circular face
126 24 32

CLOCKSYM Symmetry of number placement 39 25 10
CLOCKNUM Correctness of numbers 31 26 8
CLOCKHAND Presence of the two hands 34 27 9
CLOCKTIME Presence of the two hands, set to ten after eleven 59 28 15
CLOCKSCOR Clock Drawing Test: Total Score 36 29 9
COPYCIRC On the Clock copying task the participant scored as follows:

Approximately circular face
95 30 24

COPYSYM Symmetry of number placement 39 31 10
COPYNUM Correctness of numbers 31 32 8
COPYHAND Presence of the two hands 34 33 9
COPYTIME Presence of the two hands, set to ten after eleven 59 34 15
COPYSCOR Clock copying task: Total Score 36 35 9
AVTOT1 On the Auditory Verbal Learning Test the participant scored as

follows in each trial: Trial 1 Total
104 36 26

AVERR1 Total Intrusions 19 37 5
AVTOT2 Trial 2 Total 16 38 4
AVERR2 Total Intrusions 19 39 5
AVTOT3 Trial 3 Total 16 40 4
AVERR3 Total Intrusions 19 41 5

Continued on next page
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Variable Description Chars Order Tokens (est.)

AVTOT4 Trial 4 Total 16 42 4
AVERR4 Total Intrusions 19 43 5
AVTOT5 Trial 5 Total 16 44 4
AVERR5 Total Intrusions 19 45 5
AVTOT6 Trial 6 Total 16 46 4
AVERR6 Total Intrusions 19 47 5
AVTOTB List B Total 15 48 4
AVERRB Total Intrusions 19 49 5
CATANIMSC On the Category Fluency Test Animals the scores were: - Total

Correct
73 50 19

CATANPERS Perseverations 17 51 5
CATANINTR Intrusions 13 52 4
TRAASCOR Part A - Time to Complete 29 53 8
TRAAERRCOM Errors of Commission 23 54 6
TRAAERROM Errors of Omission 21 55 6
TRABSCOR Part B - Time to complete 30 56 8
TRABERRCOM Errors of Commission 23 57 6
TRABERROM Errors of Omission 21 58 6
AVDEL30MIN On the Auditory Verbal Learning Test the participant scored as

follows: 30 Minute Delay Total
96 59 24

AVDELERR1 Total Intrusions 19 60 5
AVDELTOT Recognition Score 20 61 5
AVDELERR2 Total Intrusions 19 62 5
ANARTERR American National Adult Reading Test: ANART Total Score (Total

# of errors)
81 63 21

FAQFINAN For the Functional Activities Questionnaire the participant
scored as follows for each question: Writing checks, paying bills,
or balancing checkbook.

151 64 38

FAQFORM Assembling tax records, business affairs, or other papers. 58 65 15
FAQSHOP Shopping alone for clothes, household necessities, or groceries. 64 66 16
FAQGAME Playing a game of skill such as bridge or chess, working on a

hobby.
68 67 17

FAQBEVG Heating water, making a cup of coffee, turing off the stove. 60 68 15
FAQMEAL Preparing a balanced meal. 26 69 7
FAQEVENT Keeping track of current events. 32 70 8
FAQTV Paying attention to and understanding a TV program, book, or

magazine.
70 71 18

FAQREM Remembering appointments, family occasions, holidays, medi-
cations.

66 72 17

FAQTRAVL Trail Making Test for FAQ score: Traveling out of the neighbor-
hood, driving, or arranging to take public transportation.

121 73 31

FAQTOTAL Total Score for FAQ is 26 74 7

Based on Table 1, we extracted nine subgroups as follows: Demographics, Vital Signs, Clock
Drawing Test, Clock Copying Test, Auditory Verbal Learning Test (version 1), Category Fluency –
Animal Test, Auditory Verbal Learning Test (version 2), American National Adult Reading Test, and
Functional Activities Questionnaire.

B.4 DATASETS CLAIMS

Data used in the preparation of this article was obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu) on August 8th 2025 (version: "08Aug2025") and
it included all ADNI phases. ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. It aimed at testing whether cognitive, imaging,
genetic, clinical, neuropsychological assessment and other biological markers, can be combined
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). The goals also include the validation of biomarkers for clinical trials, and the provision of
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data concerning the diagnosis and progression of Alzheimer’s disease to the scientific community.
For up-to-date information, see adni.loni.usc.edu.

B.5 SUMMARY OF TRAINING OUTCOMES FOR LLM ENCODERS VS DECODERS ON IID AND OOD
DATASETS

We systematically compared fine-tuned encoder models (BERT, RoBERTa, DistilBERT, ALBERT,
BioBERT, ModernBERT) against prompt-based decoder models (DeepSeek, Mistral, Qwen2.5,
Gemma, LLaVA, LLaMA-2, WizardLM-2) on ADNI (in-domain, IID) and evaluated cross-dataset
generalization to BRAINLAT (out-of-domain, OOD). Under uniform training and evaluation, en-
coders were fully fine-tuned, while decoders were used in few-shot (in-context) settings with
temperature control but no parameter updates. On ADNI, ModernBERT is the strongest encoder
across all metrics: Binary—Acc: 0.7237, F1: 0.7589, ROC-AUC: 0.8395, AUC-PR: 0.8641. Three-
class— Acc: 0.6505, F1: 0.6880, ROC-AUC: 0.7867, AUC-PR: 0.7848. BioBERT and RoBERTa are
the most competitive baselines but remain below ModernBERT. Decoder models trail encoders
on all metrics; the gap is most evident for macro-F1 and macro-Recall. Among decoders, care-
ful prompt/temperature tuning improves determinism and yields the best few-shot scores for
DeepSeek (Acc 0.623, F1 0.617, AUC-PR 0.619, ROC-AUC 0.618), with Mistral/Qwen2.5 close behind.
For OOD transfer (ADNI→BRAINLAT), ModernBERT in zero-shot achieves Acc ∼0.55 (e.g., Acc 0.53,
Prec 0.52, Rec 0.70, F1 0.60, ROC-AUC/AUC-PR ∼0.58), indicating high recall but limited precision
at default threshold; few-shot supervision and LoRA provide moderate, comparable gains up to
Acc ∼0.62 with stable AUCs; full fine-tuning on BRAINLAT delivers the largest improvement (Acc:
0.84) with corresponding gains in F1, ROC-AUC, and AUC-PR. However, this setting is outside the
scope of this work: we focus on explanation performance under OOD conditions without training
on the OOD cohort (i.e., without full fine-tuning).

Therefore, for all downstream analyses we stick with ModernBERT : in the IID setting we use
ModernBERT fine-tuned on ADNI (best overall on in-domain tasks), and in the OOD setting we
use ModernBERT in a zero-shot configuration on BRAINLAT (best overall under out-of-domain
conditions). All subsequent explainability analyses were conducted using the final (22nd) layer of
ModernBERT.

B.6 HYPERPARAMETER TUNING FOR THE RECONSTRUCTION OPTIMIZER AND SAE MODELS.

A thorough hyperparameter tuning process was conducted for each simulation (Figures 3, 4, 5).
The explanation optimizer was trained with learning rates of 2e-2, 2e-3, 2e-4, and 2e-5, with the best
performance observed at 2e-4. Various combinations of the weighting parameters λ1,λ2,λ3,λ4
were tested—for example, (0.3, 0.2, 0.25, 0.25)—with the optimal configuration found to be (0.1, 0.3,
0.1, 0.5). For the UMAP constraints, subgroup levels were evaluated across several scales: no UMAP,
every 4× batch size, 10× batch size, and full cohort level. The best performance was achieved at
the 4× batch size level. Regarding the SAE (Sparse Autoencoder), different model variants were
evaluated, including Standard, TopK, JumpReLU, and GATE, as described in the Methods section.
Among these, the TopK variant achieved the best results. Feature space depths of 16×, 32×, and
64× were tested, with 32× providing the best trade-off between sparseness and reconstruction
performance. The final simulation and training settings included the Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 2e-4, a batch size of 64, and 200 total training steps, using a
50/50 train-validation split. The learning rate schedule followed a fixed-step approach with a
step size of 150 and a decay factor (gamma) of 0.95. For the SAE training, we used 6,000 training
steps, 200,000 training tokens, a learning rate of 5e-5, and a model dimension of 768, consistent
with the 22-layer Modern-BERT architecture. The context size was 512, with warm-up steps of
1,000, learning rate decay steps of 1,200, and L1 warm-up steps of 300. Finally, explanation metrics
such as ROS, RIS, and sparseness were computed using default configurations from the quantus
Python package (Hedström et al., 2023). Figure 3 presents a comparative visualization of activation
patterns projections generated by different Sparse Autoencoder (SAE) variants—TopK-SAE, Gate-
SAE, JumpReLU-SAE, and Standard-SAE—applied to two subject groups: Alzheimer’s and Control.
While the specific axes and metrics are not labeled, the separation between the two groups provides
insight into the effectiveness of each SAE in producing disentangled, semantically meaningful
representations. Among the models, the TopK-SAE exhibits the clearest separation between
the Alzheimer’s and Control cohorts, suggesting superior performance in capturing clinically
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Figure 2: Latent space projections from four SAE variants (TopK-SAE, Gate-SAE, JumpReLU-SAE,
Standard-SAE) applied to Alzheimer’s and Control groups. TopK-SAE shows the clearest group
separation, highlighting its superior ability to extract interpretable, clinically relevant features.
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Figure 3: Hyperparameter tuning of the explanation optimizer and UMAP settings. Top row:
impact of learning rate on training loss, validation loss, sparseness, ROS, and RIS metrics. Middle
row: sensitivity analysis of the explanation cost weights λ1, λ2, λ3, and λ4, showing trade-offs
between attribution sparseness and robustness. Bottom row: UMAP projections of token-level
attribution spaces under different sub-batch configurations, revealing how UMAP resolution
influences the geometric structure of explanations.

relevant patterns. This visual evidence supports the paper’s central claim that monosemantic
representations enhance interpretability and robustness in clinical applications of LLMs.

B.7 EXTRA RESULTS

Figure 6 compares training dynamics and interpretability metrics on ADNI for binary (top row) and
three-class (bottom row) classification. Each subfigure shows three variants of the Explanation
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Figure 4: Hyperparameter tuning of the feature space for the Standard Sparse Autoencoder (SAE).
The plots track training dynamics and sparseness characteristics across training steps. Top row:
loss trends for overall and reconstruction loss. Middle row: log-sparsity metric, Kullback–Leibler
divergence (KL), and explained variance standard deviation. Bottom row: progression of sparsity
across mean-poisson stem-freed features, fixed features, and a threshold-based view (1e-6). These
results guide optimal SAE configurations for producing monosemantic feature representations.
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Figure 5: Performance comparison of different variants of the Sparse Autoencoder (SAE). Top row:
overall and reconstruction loss across training steps for JumpInit-SAE, Top-k SAE, Gated-SAE, and
Standard-SAE. Middle row: log-sparsity metric, KL divergence, and explained variance standard
deviation, showing divergence in regularization behavior. Bottom row: sparsity progression for
mean-poisson stem-freed features, fixed feature count, and a thresholded view (1e-6). JumpInit-
SAE shows early convergence in sparsity, while Gated-SAE maintains tighter control over variance.
These results highlight trade-offs between sparsity enforcement mechanisms and attributional
stability.
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Figure 6: Training and interpretability dynamics on ADNI for binary (top) and three-class (bottom)
classification. Each subfigure includes three variants: Explanation Optimizer without SAE (black),
with SAE (brown), and with SAE + linear UMAP constraint (grey. For each variant we plot train
loss, validation loss, UMAP reconstruction MSE (linear UMAP constrain), Relative Output Stability
(ROS), Relative Input Stability (RIS), and sparcety, cohorts shown separately. SAE reduces volatility
and lowers UMAP MSE and RIS/ROS versus the no-SAE baseline; adding a linear UMAP constraint
on top of SAE further improves manifold structure and attribution stability, at a minor cost in
sparsity.

Optimizer: without SAE (black), with SAE (brown), and with SAE + linear UMAP constraint
(grey). Each row in the figure presents the model’s behavior over training steps across six key
metrics: train loss, validation loss, UMAP reconstruction error (MSE), Relative Output Stability
(ROS), Relative Input Stability (RIS), and sparsity, . Across both tasks, all training ROS and RIS
values for the SAE-based variants (brown/grey) are consistently lower than the no-SAE baseline
(black), indicating improved attributional robustness. While sparseness does decrease when
introducing SAE, the reduction is modest; adding the linear UMAP constraint (grey) achieves a
better balance, maintaining relatively high sparsity while keeping low RIS/ROS. Finally, the training
and validation curves track closely and remain smooth for the SAE variants, providing no evidence
of overfitting: validation loss follows training loss without widening gaps in either the binary or
three-class setting. Overall, the SAE-enhanced Explanation Optimizer demonstrates significantly
improved performance across all interpretability metrics, supporting the hypothesis that enforcing
monosemantic representations improves explanation clarity and reliability—especially in high-
stakes clinical contexts like Alzheimer’s disease classification.

Across IID (ADNI) and OOD (BrainLat) settings, and for both binary (Alzheimer vs. Control) and
three-class (Control/LMCI/MCI) tasks, the tables reveal a consistent stability–sparsity frontier
driven by the proposed explanation optimizers and the presence of a monosemantic bottleneck
(SAE). In the binary IID case (Table 2), SAE substantially improves stability for explainers that learn
features—most notably Layer Conductance and especially TEO—with large drops in RIS/ROS for
both Alzheimer and Control, while Activation with SAE increases RIS/ROS and is therefore less
robust. In the binary OOD case (Table 3), these patterns persist and even strengthen: TEO with
SAE bottleneck attains the lowest RIS/ROS overall, demonstrating strong cross-dataset stability,
whereas TEO–UMAP recovers higher sparseness (>0.40) at the cost of higher RIS/ROS than TEO
with SAE, offering a tunable sparsity–stability trade-off. In the three-class IID setting (Table 4),
Feature Ablation is the sparsity leader across Control/LMCI/MCI ( 0.52–0.53) with moderate,
steady RIS/ROS; Layer Conductance with SAE markedly reduces RIS/ROS for LMCI/MCI; and TEO
with SAE again delivers the most stable attributions across all classes (lowest RIS/ROS), albeit
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with reduced sparseness. The same rank ordering holds OOD (Table 5): TEO with SAE remains
the stability winner for Control/LMCI/MCI, TEO–UMAP trades some stability for additional
sparsity, and Feature Ablation remains the simplest high-sparsity baseline. Throughout all tables,
gradient-formulaic methods (Grad-SHAP, Guided Backprop, Integrated Gradients) show near-
invariant RIS/ROS ( 5.6/ 16.93) regardless of SAE, class, or domain, indicating that SAE chiefly
benefits learned-attribution methods. Collectively, Tables 2, 3, 4, and 5 support three conclusions:
(i) adding an SAE bottleneck reliably lowers RIS/ROS where explanations are learned (Layer
Conductance, TEO), (ii) TEO with SAE is the default when stability is paramount, while TEO–UMAP
is preferred when higher sparsity is required, and (iii) the class-wise and IID to OOD behaviors are
consistent, underscoring the robustness of monosemantic representations for clinical explanation.

Table 2: Evaluation scores with and without SAe. Values are mean ± std. Classes: Alzheimer and
Control. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). Column
order: Alzheimer (No SAE), Alzheimer (SAE), Control (No SAE), Control (SAE). All evaluation met-
rics were calculated on 200 randomly selected patients from each class (binary-class classification
task) in the ADNI testing cohort (IID). Abreviations, DEO: Diffusion Explanation Optimizer, TEO:
Transformer Explanation Optimizer, TEO-UMAP: Transformer Explanation Optimizer with UMAP
constraint.

Method Metric
Alzheimer Control

No SAE SAE No SAE SAE

Activation
Sparseness 0.316364045±0.007573187 0.296615553±0.007063087 0.256150148±0.01759176 0.251987915±0.004701258
RIS 14.30227±0.368612837 21.3084024±0.311021506 14.23653893±0.338127875 19.32752421±0.932339244
ROS 25.54851914±0.482826721 32.61738364±0.307928076 25.54874248±0.328628877 30.6394217±0.933402318

Layer Condact
Sparseness 0.396588773±0.026146226 0.391508745±0.007549659 0.374476778±0.007092037 0.247974319±0.007908586
RIS 12.39850671±2.640648847 5.628509596±0.023609264 5.650216593±0.0391015 5.614140617±0.018407327
ROS 23.146556±1.686524073 16.94708243±0.010343602 16.9614573±0.031757755 16.93014311±0.005191254

Feature Ablation
Sparseness 0.523581491±0.009806381 0.523492234±0.010441342 0.525551296±0.011012696 0.526520447±0.008837301
RIS 23.15233791±0.819793812 23.56094785±0.103321598 22.56110559±0.288403561 23.62208862±0.093292383
ROS 33.90884482±0.161311922 34.92976979±0.074540131 33.90759033±0.374703897 34.9726397±0.10327352

Gradinet-SHAP
Sparseness 0.319169309±0.004303288 0.082047681±0.015464469 0.433346255±0.003004736 0.133912362±0.009943283
RIS 5.623104979±0.023650419 5.621792106±0.022658996 5.632513362±0.023548461 5.619618915±0.019004514
ROS 16.93566464±0.001800535 16.93449562±1.54604E-05 16.94606355±0.002246403 16.93475655±5.99931E-06

Gradient Activation
Sparseness 0.327713636±0.03837053 0.203454702±0.011686877 0.249969957±0.023039465 0.16678783±0.00722766
RIS 5.614858128±0.019338754 5.625220574±0.021340754 5.616992957±0.021780592 5.617270064±0.022114697
ROS 16.93028085±0.003427604 16.93433453±6.78428E-05 16.934673±1.43645E-14 16.93473306±4.02532E-05

Integrated-Gradient
Sparseness 0.298289818±0.008006549 0.121161362±0.005775061 0.430359021±0.006572262 0.064427234±0.005909053
RIS 5.620585979±0.018022403 5.622360787±0.017750318 5.627793468±0.018989203 5.621391149±0.016872007
ROS 16.93257772±0.001464829 16.93453232±1.20129E-05 16.94336632±0.002408932 16.93456653±8.33237E-06

DEO
Sparseness 0.338261111±0.003260844 0.337375±0.00290587 0.337742857±0.001742551 0.314044444±0.001036523
RIS 9.283888889±0.080010212 9.279±0.064555158 9.313125±0.142722049 9.175±0.108803655
ROS 20.63421053±0.086558637 20.615±0.088049029 20.61588235±0.202578961 20.515±0.129878486

TEO
Sparseness 0.421975723±0.000305212 0.267210213±0.001025675 0.419939638±0.00048088 0.268167213±0.000728522
RIS 5.051961362±0.019221728 1.622662574±0.17080061 5.06881834±0.01838977 0.996401319±0.263922792
ROS 16.35285123±0.00563874 12.92504253±0.170261034 16.37765691±0.001096906 12.29830928±0.261259725

TEO-UMAP
Sparseness N /A 0.39891406±0.000414208 N /A 0.40566988±0.00031341
RIS N /A 5.439373370±0.033211570 N /A 5.47087230±0.17460810
ROS N /A 16.3036705±0.00333634 N /A 16.21021807±0.0078926

B.8 STATISTICAL ANALYSIS

We conducted both parametric and non-parametric statistical tests on the binary and three-class
classification performance of all classes and tasks in the ADNI cohort to assess the significance
of differences introduced by the monosemantic bottleneck (SAE) in traditional attribution tech-
niques, focusing on the metrics of Sparseness, RIS, and ROS.

For the binary classification task, in both the Control and Alzheimer’s groups, paired testing
demonstrated that SAE produced robust and statistically significant reductions in attribution-
based measures and Complexity, while effects on RIS were smaller but still reliable, and changes
in ROS were modest and often non-significant after correction. In the Control group, Complexity
decreased from 0.3377 ± 0.0017 (no-SAE) to 0.3140 ± 0.0010 (SAE), yielding t(29) = 64.0, p =
1.5×10−47 (FDR q < 10−46), and RIS declined from 9.313±0.143 to 9.175±0.109, t(29) = 4.22,
p = 9.5× 10−5 (FDR q = 1.9× 10−4), both clearly rejecting the null hypothesis, whereas ROS
decreased slightly from 20.616±0.203 to 20.515±0.131, t(29) = 2.30, p = 0.026 (FDR q = 0.026),
a marginal result that did not withstand correction. Attribution metrics showed the largest SAE
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Table 3: Evaluation scores with and without SAE. Values are mean ± std. Classes: Alzheimer and
Control. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). Column
order: Alzheimer (No SAE), Alzheimer (SAE), Control (No SAE), Control (SAE). All evaluation met-
rics were calculated on 50 randomly selected patients from each class (binary-class classification
task) in the BrainLat testing cohort (OOD). Abreviations, TEO: Transformer Explanation Optimizer,
TEO-UMAP: Transformer Explanation Optimizer with UMAP constraint.

Method Metric Alzheimer (No SAE) Alzheimer (SAE) Control (No SAE) Control (SAE)

Activation
Sparseness N/A 0.1533105 ± 0.010287697 N/A 0.3965415 ± 0.030322127
RIS N/A 19.162526 ± 0.364196762 N/A 18.2411505 ± 0.539197156
ROS N/A 31.28270375 ± 1.541354976 N/A 29.04058325 ± 0.473071038

Layer Condact
Sparseness N/A 0.239227 ± 0.029777681 N/A 0.25431875 ± 0.020993978
RIS N/A 6.1620695 ± 0.149481666 N/A 6.21494775 ± 0.20764754
ROS N/A 16.94383425 ± 0.007089038 N/A 16.9402505 ± 0.004966063

Feature Ablation
Sparseness N/A 0.5287845 ± 0.00700955 N/A 0.52849725 ± 0.004358269
RIS N/A 23.5834065 ± 0.064538961 N/A 24.14743175 ± 0.115957516
ROS N/A 34.65309725 ± 0.252584222 N/A 34.961296 ± 0.220544503

Gradinet-SHAP
Sparseness N/A 0.120076 ± 0.014392456 N/A 0.057057 ± 0.027064338
RIS N/A 6.04400225 ± 0.039573077 N/A 6.030265 ± 0.047136969
ROS N/A 16.93474475 ± 5.76852E-05 N/A 16.93475925 ± 5.7373E-06

Gradient Activation
Sparseness N/A 0.1139535 ± 0.01766843 N/A 0.062973 ± 0.006903384
RIS N/A 6.032837 ± 0.027736802 N/A 6.0338695 ± 0.039792395
ROS N/A 16.93468825 ± 3.59398E-06 N/A 16.934848 ± 3.74789E-05

Integrated-Gradient
Sparseness N/A 0.0642685 ± 0.005166108 N/A 0.0143455 ± 0.000312693
RIS N/A 6.05793275 ± 0.045559192 N/A 6.0275535 ± 0.033936686
ROS N/A 16.9347635 ± 7.76745E-06 N/A 16.934873 ± 1.06145E-05

TEO
Sparseness N/A 0.26914625 ± 0.001645095 N/A 0.272516 ± 0.000382866
RIS N/A 0.683544 ± 0.667616072 N/A 0.47335295 ± 0.280125046
ROS N/A 11.52356 ± 0.659063208 N/A 11.213036 ± 0.51496551

TEO-UMAP
Sparseness N/A 0.398914 ± 0.00047836 N/A 0.40425175 ± 0.002851775
RIS N/A 5.43937375 ± 0.038349421 N/A 5.42815425 ± 0.194389712
ROS N/A 16.303675 ± 0.003852471 N/A 16.157664 ± 0.105405246

Table 4: Evaluation scores with and without SAE. Values are mean ± std. Classes: Control, LMCI,
and MCI. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). All
the evaluation metrics were computed on 100 randomly selected patients from each class (three-
class classification task) in the testing cohort in ADNI dataset (IID). Column order: Control (No
SAE), Control (SAE), LMCI (No SAE), LMCI (SAE), MCI (No SAE), MCI (SAE). Abreviations, TEO:
Transformer Explanation Optimizer, TEO-UMAP: Transformer Explanation Optimizer with UMAP
constraint.

Method Metric
Control LMCI MCI

No SAE SAE No SAE SAE No SAE SAE

Activation
Sparseness 0.302953824 ± 0.037699004 0.345031647 ± 0.009533629 0.271540783 ± 0.038404292 0.264362053 ± 0.062996342 0.262558 ± 0.03794219 0.309052111 ± 0.060296425
RIS 14.40424929 ± 0.165969844 18.99683335 ± 4.483970104 15.07860783 ± 1.975358824 18.42309221 ± 2.351829228 16.65684576 ± 2.82076491 19.42272406 ± 3.474528306
ROS 25.721685 ± 0.170545275 30.30262794 ± 0.263575977 26.39512961 ± 1.972727766 29.73331658 ± 4.847156437 27.96063871 ± 2.823294834 30.74189461 ± 6.104484774

Layer Condact
Sparseness 0.231524647 ± 0.009587223 0.331457882 ± 0.006159197 0.362282261 ± 0.00636308 0.246395316 ± 0.062800978 0.305312706 ± 0.007627518 0.292950278 ± 0.057776928
RIS 5.626004529 ± 0.020886163 5.622249412 ± 0.014860465 13.14289435 ± 0.325483065 5.623582526 ± 0.909878534 6.608303235 ± 2.236340343 5.629072111 ± 1.130689807
ROS 16.94396553 ± 0.004532066 16.93904894 ± 0.010478577 24.50603352 ± 0.411948845 16.93375379 ± 2.745745658 17.91907076 ± 2.258068808 16.93837556 ± 3.406698804

Feature Ablation
Sparseness 0.523915176 ± 0.006693817 0.526105 ± 0.01204565 0.522595565 ± 0.009666847 0.526753263 ± 0.083976662 0.522188941 ± 0.009398367 0.525710278 ± 0.104819481
RIS 23.32498194 ± 0.410939712 23.07664553 ± 0.140278365 22.24471861 ± 0.162941689 21.97939553 ± 3.68022107 23.49843053 ± 0.458719189 23.00058106 ± 4.540229242
ROS 34.66532071 ± 0.457995824 34.41792582 ± 0.146270917 33.60637357 ± 0.161507737 33.30711989 ± 5.499686014 34.87369265 ± 0.440653725 34.31362572 ± 6.805012455

Gradient-SHAP
Sparseness 0.231029588 ± 0.020644371 0.184435333 ± 0.014766351 0.129241348 ± 0.032633243 0.301055444 ± 0.072119068 0.089142118 ± 0.013138265 0.288114875 ± 0.061769427
RIS 5.618949294 ± 0.013910382 5.621940533 ± 0.025299231 5.615247522 ± 0.014396146 5.621698722 ± 0.946218825 5.629231 ± 0.018682697 5.618608438 ± 1.166983293
ROS 16.93582388 ± 0.002076107 16.934845 ± 0.0000140509 16.92551835 ± 0.001442338 16.93477544 ± 2.862502663 16.93917776 ± 0.002118976 16.93476019 ± 3.524101451

Guided Backprop
Sparseness 0.269674235 ± 0.006145842 0.229587733 ± 0.00357389 0.383890696 ± 0.017652114 0.431001667 ± 0.115600632 0.291671824 ± 0.020033511 0.257909625 ± 0.109537561
RIS 5.629017941 ± 0.022520137 5.621027267 ± 0.019431586 5.627154783 ± 0.021213565 5.629664833 ± 0.947801076 5.626876882 ± 0.019349509 5.617237063 ± 1.168361854
ROS 16.934673 ± 0 16.9348278 ± 0.0000122544 16.93392839 ± 0.000750952 16.93466433 ± 2.862491655 16.93401118 ± 0.00064598 16.93471594 ± 3.524085042

Integrated Gradient
Sparseness 0.045146294 ± 0.007116898 0.263864 ± 0.004189771 0.10839887 ± 0.026164396 0.3889465 ± 0.084086627 0.110163824 ± 0.015744148 0.266043 ± 0.090525251
RIS 5.620727706 ± 0.021492346 5.6209158 ± 0.020949259 5.609370435 ± 0.017753051 5.628201333 ± 0.947585532 5.628253647 ± 0.020904475 5.620282063 ± 1.168468694
ROS 16.93310612 ± 0.001097405 16.93475353 ± 0.0000121647 16.92756339 ± 0.000606244 16.93434683 ± 2.862457357 16.93584506 ± 0.001969998 16.93460281 ± 3.524039

TEO
Sparseness 0.391835667 ± 0.000814648 0.268163938 ± 0.064942517 0.413087063 ± 0.000325772 0.285971625 ± 0.037421241 0.390886118 ± 0.004742559 0.283782105 ± 0.052291259
RIS 4.807986067 ± 0.018432249 1.546787813 ± 0.11712595 5.093836 ± 0.018806243 2.264221 ± 0.487706388 4.828254294 ± 0.037727688 2.161698368 ± 0.454717751
ROS 16.1172194 ± 0.008995191 12.856954 ± 0.117943866 16.40431106 ± 0.002382358 13.56455925 ± 2.274547046 16.13535541 ± 0.032411959 13.46760021 ± 2.764087874

TEO-UMAP
Sparseness N /A 0.39734881±0.07492051 N /A 0.41611163±0.08698112 N /A 0.41715421±0.237175073
RIS N /A 5.10862522±0.20827341 N /A 5.10165242±0.16974677 N /A 5.11160575±0.1072146
ROS N /A 16.412262±6.84387466 N /A 16.4031485±3.86158978 N /A 16.4088329±0.492439623

effects: Grad-SHAP dropped from 0.4333±0.0030 to 0.1339±0.0099 (p < 10−50), Guided Backprop
from 0.2500±0.0230 to 0.1668±0.0072 (p < 10−19), Integrated Gradients from 0.4304±0.0066 to
0.0644±0.0059 (p < 10−80), and Optimizer from 0.4199±0.0005 to 0.2682±0.0007 (p < 10−100), all
leading to decisive rejection of the null. For the Alzheimer’s group, the same direction of effects
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Table 5: Evaluation scores with and without SAE. Values are mean ± std. Classes: Control, LMCI,
and MCI. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). Column
order: Control (No SAE), Control (SAE), LMCI (No SAE), LMCI (SAE), MCI (No SAE), MCI (SAE).
All evaluation metrics were calculated on 50 randomly selected patients from each class (three-
class classification task) in the BrainLat testing cohort (OOD). Abreviations, TEO: Transformer
Explanation Optimizer, TEO-UMAP: Transformer Explanation Optimizer with UMAP constraint.

Method Metric
Control LMCI MCI

No SAE SAE No SAE SAE No SAE SAE

Activation
Sparseness N/A 0.4504596 ± 0.037517308 N/A 0.1907182 ± 0.001584043 N/A 0.140032667 ± 0.012393238
RIS N/A 19.0939584 ± 0.179649958 N/A 18.6406378 ± 0.911739674 N/A 18.07866133 ± 0.031343749
ROS N/A 29.9240256 ± 0.253797244 N/A 29.5628004 ± 0.89780058 N/A 28.858315 ± 0.045164984

Layer Condact
Sparseness N/A 0.3252352 ± 0.014541625 N/A 0.185706 ± 0.007343355 N/A 0.200561 ± 0.011873024
RIS N/A 6.2120432 ± 0.245036193 N/A 6.054585 ± 0.047710839 N/A 6.268400333 ± 0.040128533
ROS N/A 16.9581856 ± 0.017257696 N/A 16.9636788 ± 0.007069011 N/A 17.01458633 ± 0.020606806

Feature Ablation
Sparseness N/A 0.5280516 ± 0.00583783 N/A 0.526218 ± 0.005664214 N/A 0.529347333 ± 0.011164491
RIS N/A 22.640559 ± 0.033054016 N/A 23.5692968 ± 0.057715633 N/A 23.59159233 ± 0.111776179
ROS N/A 33.485311 ± 0.233803422 N/A 34.5168758 ± 0.073725495 N/A 34.37202467 ± 0.080383672

Gradinet-SHAP
Sparseness N/A 0.195138 ± 0.026410904 N/A 0.0637004 ± 0.026472282 N/A 0.113682167 ± 0.042008189
RIS N/A 6.122703167 ± 0.161879331 N/A 6.0314946 ± 0.029788567 N/A 6.127377667 ± 0.120700168
ROS N/A 16.93462983 ± 4.27103E-05 N/A 16.9348698 ± 7.57377E-05 N/A 16.93466933 ± 8.86649E-05

Gradient Activation
Sparseness N/A 0.177242 ± 0.011243388 N/A 0.1835882 ± 0.001632398 N/A 0.430289167 ± 0.00215046
RIS N/A 6.123393833 ± 0.191171312 N/A 6.0269246 ± 0.030177701 N/A 6.144976167 ± 0.120931658
ROS N/A 16.93457917 ± 1.47434E-05 N/A 16.9347678 ± 2.58844E-06 N/A 16.934534 ± 2.79285E-05

Integrated-Gradient
Sparseness N/A 0.067058 ± 0.012083245 N/A 0.0071952 ± 0.000900684 N/A 0.036059 ± 0.004866926
RIS N/A 6.1224575 ± 0.150190804 N/A 6.035594 ± 0.01894045 N/A 6.147797667 ± 0.09243145
ROS N/A 16.93462633 ± 1.30486E-05 N/A 16.9347694 ± 1.14018E-06 N/A 16.934618 ± 8.89944E-06

TEO
Sparseness N/A 0.416191667 ± 0.002863111 N/A 0.3715978 ± 0.000948703 N/A 0.42242125 ± 0.000173513
RIS N/A 5.752004667 ± 0.364536772 N/A 4.9396128 ± 0.014829469 N/A 5.5420845 ± 0.061116734
ROS N/A 16.379228 ± 0.003422144 N/A 15.8121004 ± 0.00994492 N/A 16.277279 ± 0.001043319

TEO-UMAP
Sparseness N/A 0.423819167 ± 0.00056124 N/A 0.423865 ± 5.01946E-05 N/A 0.424567429 ± 0.000241638
RIS N/A 5.552539167 ± 0.186236877 N/A 5.458319 ± 0.029725596 N/A 5.557568429 ± 0.095350875
ROS N/A 16.3661035 ± 0.00731861 N/A 16.372555 ± 0.001689458 N/A 16.357192 ± 0.003475647

was observed: Complexity decreased by −0.024 (p < 10−10), RIS by −0.12 (p = 4.6×10−4), both
rejecting the null, while ROS declined by −0.09 but did not reach significance (p = 0.073, FDR
q = 0.11). Attribution metrics again showed dramatic reductions under SAE, with Grad-SHAP
(p < 10−45), Guided Backprop (p = 3.2×10−7), Integrated Gradients (p < 10−55), and Optimizer
(p < 10−95) all supporting strong rejection of the null. Together these results demonstrate that SAE
reliably improves attribution stability and reduces Complexity and RIS in both groups, with ROS
showing only weak or inconsistent improvement.

For the three-class classification task, we evaluated whether SAE changed the three target metrics
(Complexity, RIS, ROS) relative to no-SAE using paired t-tests and Wilcoxon signed-rank tests
for each clinical group (Control, MCI, LMCI), applying Benjamini–Hochberg FDR to control
multiplicity. For the MCI group, ROS showed the clearest and most consistent improvement
with SAE: the paired t-test yielded t(17) = −10.12, p = 1.30× 10−8 (FDR q = 3.90× 10−8), and
the Wilcoxon test yielded W = 0, p = 8.0×10−6 (FDR q = 2.3×10−5), with a very large paired
Cohen’s d = −2.39 and rank-biserial correlation rrb = −1.00, indicating markedly lower ROS
under SAE (mean difference −0.904; SAE 20.672 vs. no-SAE 21.576). RIS in MCI also decreased
with SAE by non-parametric testing: the paired t-test did not reach significance (t (18) =−0.785,
p = 0.443, FDR q = 0.443), whereas the Wilcoxon test detected a reduction (W = 19, p = 0.00117,
FDR q = 0.00117), with small effect sizes (d = −0.18, rrb = −0.80; mean difference −0.481; SAE
10.528 vs. no-SAE 11.010). In contrast, Complexity in MCI increased with SAE according to
the Wilcoxon test (W = 17, p = 7.90×10−4, FDR q = 0.00117), while the paired t-test was non-
significant (t (18) = 1.112, p = 0.281, FDR q = 0.421); effect sizes were small-to-moderate (d = 0.26,
rrb = 0.821; mean difference +0.510; SAE 1.175 vs. no-SAE 0.665). For the Control and LMCI
groups, the pasted records contained incomplete pairs that prevented reliable paired testing
and FDR-adjusted inference in the same aggregate framework; consequently, we do not report
hypothesis tests for these groups here to avoid bias from unmatched rows. Overall, across the
three groups, the most robust and reproducible effect we could quantify was the reduction in ROS
under SAE (clearly demonstrated in MCI with converged paired comparisons), while RIS showed a
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Figure 7: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary
classification (Alzheimer’s disease vs Control) on the ADNI cohort; the examples shown here are
from the Control class.

smaller SAE-related decrease by non-parametric testing and Complexity tended to increase under
SAE for MCI.

B.9 INDIVIDUAL-LEVEL EXPLANATIONS AND PATTERNS

Figures 7–16 present qualitative local attribution examples for the binary (Control and Alzheimer)
and three-class classification task (Control, LMCI, MCI) of ADNI cohorts across six explanation
methods, each evaluated without (Figures 7, 9, 11, 13, 15) and with (Figures 8, 10, 12, 14, 16) the
Sparse Autoencoder (SAE) layer. Each cell shows token-level attributions using colour-coded
highlights (green = positive relevance; red = negative relevance). In general, higher Sparseness
is associated with a more balanced distribution of positive and negative highlights (i.e., less
diffuse maps), particularly for Layer Conduction, Feature Ablation, Gradient SHAP, and Integrated
Gradient. For the Control class (see Figures 7 and 8), the qualitative highlighting patterns are
broadly consistent across the six attribution techniques, Activation, Layer Conduction, Feature
Ablation, Gradient SHAP, Gradient Activation, and Integrated Gradient—with no marked visual
discrepancies. Notably, Feature Ablation, despite exhibiting the strongest Sparseness in the box
plots, shows poorer stability (higher variability in inputs/outputs; elevated RIS/ROS), and the
addition of the SAE layer tends to worsen this by exposing a larger set of features due to the
decoder “decompression” effect; a similar trend is observed for Activation. For the Alzheimer’s
class (Figures 9 and 10), Layer Conduction demonstrates a reduction in Sparseness with the
SAE but a gain in stability (decreased RIS/ROS). Comparable improvements in stability with SAE
are also observed for Gradient Activation, Integrated Gradient, and Gradient SHAP. In contrast,
Activation and Feature Ablation perform worst under SAE, again exposing many more features and
yielding less stable explanations. Across the remaining examples (Figures 11–17), similar patterns
hold: instances with low Sparseness and high RIS/ROS tend to produce saturated red/green
explanations (strongly negative or positive attributions), whereas higher Sparseness with lower
RIS/ROS yields more compact and stable saliency patterns.
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Figure 8: Local attribution examples across different explanation methods with the SAE layer. The
colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark
green; positive attribution). For each of the six panels, the small colour swatches at the top-left
and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness,
RIS, and ROS—for the corresponding attribution technique. The task is a binary classification
(Alzheimer’s disease vs Control) on the ADNI cohort; the examples shown here are from the
Control class.
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Figure 9: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary
classification (Alzheimer’s disease vs Control) on the ADNI cohort; the examples shown here are
from the Alzheimer class.
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Figure 10: Local attribution examples across different explanation methods with the SAE layer. The
colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark
green; positive attribution). For each of the six panels, the small colour swatches at the top-left
and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness,
RIS, and ROS—for the corresponding attribution technique. The task is a binary classification
(Alzheimer’s disease vs Control) on the ADNI cohort; the examples shown here are from the
Alzheimer class.
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Figure 11: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a
three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown
here are from the Control class.
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Figure 12: Local attribution examples across different explanation methods with the SAE layer. The
colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark
green; positive attribution). For each of the six panels, the small colour swatches at the top-left
and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness,
RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification
(LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the Control
class.
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Figure 13: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a
three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown
here are from the LMCI class.
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Figure 14: Local attribution examples across different explanation methods with the SAE layer. The
colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark
green; positive attribution). For each of the six panels, the small colour swatches at the top-left
and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness,
RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification
(LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the LMCI
class.
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Figure 15: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a
three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown
here are from the MCI class.
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Figure 16: Local attribution examples across different explanation methods with the SAE layer. The
colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark
green; positive attribution). For each of the six panels, the small colour swatches at the top-left
and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness,
RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification
(LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI
class.
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Figure 17: Local attribution examples across different explanation methods with the SAE layer. The
colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark
green; positive attribution). For each of the six panels, the small colour swatches at the top-left
and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness,
RIS, and ROS—for the corresponding attribution technique. The task is a binary classification
(Alzheimer’s disease vs Control) on the ADNI cohort; the examples shown here are from the
Control class.
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Figure 18: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary
classification (Alzheimer’s disease vs Control) on the ADNI cohort; the examples shown here are
from the Alzheimer class.
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Figure 19: Local attribution examples across different explanation methods with the SAE layer. The
colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark
green; positive attribution). For each of the six panels, the small colour swatches at the top-left
and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness,
RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification
(LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the Control
class.
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Attribution Weight Average

Explanation Optimizer
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Early MCI class
Prediction Prob:0.70

No SAE
Attribution Weight Average

Explanation Optimizer

Explanation Optimizer UMAP

Figure 20: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a
three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown
here are from the LMCI class.

Attribution Weight Average
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ADNI test cohort
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Late MCI class
Prediction Prob:0.725
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Attribution Weight Average
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Figure 21: Local attribution examples across different explanation methods without the SAE layer.
The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to
+1 (dark green; positive attribution). For each of the six panels, the small colour swatches at
the top-left and top-right indicate the colour keys used for the three summary box-plot met-
rics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a
three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown
here are from the MCI class.
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Figure 22: Global (cohort-level) feature attribution across explanation methods without the SAE
layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI
test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised
to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI
subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant
tokens in both the 1D and 2D views. The task is binary classification (Alzheimer’s vs Control) on
the ADNI cohort; the examples shown here are from the Control class.The task is a three-class
classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are
from the MCI class.

Figures 17–21 present qualitative local attribution examples, analogous to Figures 7–17, for the
no-SAE analyses of (i) the attributional weighted average (computed from the six base methods),
(ii) the Transformer Explanation Optimizer (TEO), and (iii) TEO with a linear UMAP constraint
(TEO-UMAP). As shown in the previous subsection, with the SAE layer TEO achieves the best
stability—i.e., the lowest RIS and ROS—but at the cost of a marked reduction in Sparseness;
this reduction is clearly visible in the binary task (Figures 17–18). Introducing the UMAP con-
straint yields a more balanced trade-off, producing explanations that are more compact and
clinically interpretable; the same behaviour is observed across all classes in the three-class setting
(Figures 19–21). By contrast, the weighted-average approach—a linear combination of the six
attribution techniques—does not yield superior explanations, consistent with Mamalakis et al.
(2025).

B.10 UMAP AND COHORT-LEVEL EXPLANATION AND PATTERNS.

Figures 22–31 present cohort-level attribution examples for both the binary (Control vs Alzheimer’s
disease) and three-class (Control, LMCI, MCI) classification tasks on the ADNI test cohort across
six explanation methods. Each method is shown without (Figures 22, 24, 26, 28, 30) and with
(Figures 23, 25, 27, 29, 31) the Sparse Autoencoder (SAE) layer. The 2D panel shows a UMAP
embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution
scores along UMAP-1. All plotted values are normalised to [0,1] and represent positive contribu-
tions only. Colours (red→purple) denote the nine ADNI subgroups (see §B3). In general, moving
from the no-SAE to the SAE condition broadens the distribution of features in 2D and increases the
density of high-significance points (upper-right boxed region), consistent with a decoder-induced
decompression effect and a corresponding reduction in sparsity in the attribution maps.

Figures 32–35 present cohort-level attribution examples for both the binary (Control vs Alzheimer’s
disease) and three-class (Control, LMCI, MCI) classification tasks on the ADNI test cohort, analo-
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Figure 23: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is binary classification (Alzheimer’s vs Control) on the ADNI cohort;
the examples shown here are from the Control class.
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Figure 24: Global (cohort-level) feature attribution across explanation methods without the SAE
layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI
test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised
to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI
subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant
tokens in both the 1D and 2D views. The task is binary classification (Alzheimer’s vs Control) on
the ADNI cohort; the examples shown here are from the Alzheimer class.
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Figure 25: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is binary classification (Alzheimer’s vs Control) on the ADNI cohort;
the examples shown here are from the Alzheimer class.
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Figure 26: Global (cohort-level) feature attribution across explanation methods without the SAE
layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI
test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised
to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI
subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant
tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs
Control) on the ADNI cohort; the examples shown here are from the Control class.
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Figure 27: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the
ADNI cohort; the examples shown here are from the Control class.
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Figure 28: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the
ADNI cohort; the examples shown here are from the LMCI class.
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Figure 29: Global (cohort-level) feature attribution across explanation methods without the SAE
layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI
test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised
to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI
subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant
tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs
Control) on the ADNI cohort; the examples shown here are from the LMCI class.

Activation

Integrated Gradient

Layer Conduction

Feature Attribution 

Gradient SHAP

Gradient ActivationADNI test cohort
Late MCI class SAE

60% threshold of feature attribution 512 
tokens inputs

Figure 30: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the
ADNI cohort; the examples shown here are from the MCI class.
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Figure 31: Global (cohort-level) feature attribution across explanation methods without the SAE
layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI
test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised
to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI
subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant
tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs
Control) on the ADNI cohort; the examples shown here are from the MCI class.
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Figure 32: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is a binary classification (Alzheimer vs Control) on the ADNI cohort;
the examples shown here are from the Control class.
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Figure 33: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is a binary classification (Alzheimer vs Control) on the ADNI cohort;
the examples shown here are from the Alzheimer class.
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Figure 34: Global (cohort-level) feature attribution across explanation methods without the SAE
layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI
test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised
to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI
subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant
tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs
Control) on the ADNI cohort; the examples shown here are from the LMCI class.
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Figure 35: Global (cohort-level) feature attribution across explanation methods with the SAE layer.
The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set;
the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1]
and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups
(see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both
the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the
ADNI cohort; the examples shown here are from the MCI class.

gous to Figures 22–31, for the no-SAE analyses of (i) the attributional weighted average (computed
from the six base methods), (ii) the Transformer Explanation Optimizer (TEO), and (iii) TEO
with a linear UMAP constraint (UMAP Optimizer). As shown in the previous subsection, with
the SAE layer TEO achieves the best stability—i.e., the lowest RIS and ROS—but at the cost of a
marked reduction in Sparseness; this reduction is clearly visible in the binary task (Figures 32–35),
where a spreading of tokens in 2D is observed when moving from no-SAE to SAE, as with the
other methods. TEO with SAE reorganises the space, yielding a more homogeneous low-to-high
attribution gradient. The drawback is that, without appropriate guidance, there may be too few
features in the squares denoting significant contribution, and not all subgroups in the global ob-
servations are represented (e.g., Figure 32). However, this can be mitigated by constraining the 2D
manifold in the attribution space. To that end, we proposed a linear constraint to further smooth
the regrouping of tokens in the attribution manifold. Introducing the UMAP linear constraint
yields an even more balanced trade-off compared with unconstrained TEO with SAE, producing
explanations that share similar significant traits across the different subgroups (colours) and
are more homogeneous (very clear in Figures 32, 33, and 35, less so in 34). Consequently, the
maps are more compact and clinically interpretable; the same behaviour is observed across all
classes in the three-class setting (Figures 33–35). By contrast, at both cohort and local levels, the
weighted-average approach—a linear combination of the six attribution techniques—does not
yield superior explanations, consistent with Mamalakis et al. (2025).

B.11 THE CLINICAL IMPACT AND OUTCOME IN THE DIAGNOSIS OF ALZHEIMER, EARLY MCI AND

MCI.

This study shows that the Transformer Explanation Optimizer (TEO) with a Sparse Autoencoder
(SAE) and TEO-UMAP provide the most reliable identification of informative sources across nine
multimodal subgroups: Demographics (DEM), Vital Signs (VS), Clock Drawing Test (CDT), Clock
Copying Test (CCT), Auditory Verbal Learning Test v1 (AVLT1), Category Fluency—Animals (CFA),
Auditory Verbal Learning Test v2 (AVLT2), American National Adult Reading Test (ANART), and
Functional Activities Questionnaire (FAQ). Using a significance threshold of 0.6 on UMAP principal
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Group Dem VS CDT CCT AVLT1 CFA AVLT2 ANART FAQ

Control TEO 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.11
Control TEO-UMAP 0.33 0.21 0.29 0.29 0.12 0.30 0.32 0.30 0.36
Alzheimer TEO 0.05 0.00 0.09 0.01 0.12 0.12 0.00 0.00 0.13
Alzheimer TEO-UMAP 0.33 0.29 0.30 0.32 0.22 0.30 0.32 0.50 0.35
Control TEO 0.74 0.55 0.87 0.63 0.88 0.68 0.20 0.80 0.38
Control TEO-UMAP 0.51 0.61 0.67 0.60 0.72 0.66 0.56 0.60 0.45
MCI TEO 0.23 0.30 0.29 0.38 0.22 0.30 0.36 0.10 0.31
MCI TEO-UMAP 0.31 0.26 0.21 0.22 0.22 0.36 0.40 0.40 0.23
LMCI TEO 0.19 0.19 0.20 0.10 0.22 0.16 0.24 0.10 0.22
LMCI TEO-UMAP 0.32 0.27 0.23 0.25 0.24 0.28 0.40 0.40 0.43

Table 6: Abbreviations: Dem = Demographics; VS = Vital Signs; CDT = Clock Drawing Test;
CCT = Clock Copying Test; AVLT1/2 = Auditory Verbal Learning Test (v1/v2); CFA = Category
Fluency (Animals); ANART = American National Adult Reading Test; FAQ = Functional Activities
Questionnaire.

components PC1/PC2, we observe in the binary task that, for Control, TEO-SAE is dominated
by FAQ, whereas TEO-UMAP emphasises DEM, AVLT2, and FAQ; for Alzheimer’s, TEO prioritises
FAQ, AVLT1, and CFA, while TEO-UMAP highlights ANART, FAQ, and DEM. In the three-class task,
for Control the main contributors are AVLT1, CDT, and ANART under TEO, and AVLT1, CDT, and
CFA under TEO-UMAP; for MCI, TEO favours CCT, AVLT2, and FAQ, whereas TEO-UMAP favours
AVLT2, ANART, and CFA; and for LMCI, TEO elevates AVLT1, FAQ, and CDT, while TEO-UMAP
elevates FAQ, ANART, and AVLT2. These patterns, summarised in Table 6, support the clinical
interpretability of the proposed optimisers.

Across ADNI cohorts, the most stable signals for clinical stratification are functional status
(FAQ) and memory measures (AVLT1/AVLT2), with visuospatial performance (CDT) recurrent
in Control/LMCI. TEO+SAE preferentially elevates neuropsychological performance features
(AVLT1/2, CDT, CCT), while TEO-UMAP surfaces complementary contextual/language markers
(DEM, ANART, CFA), yielding class-specific, interpretable profiles: Control—FAQ/AVLT1/CDT;
Alzheimer’s—FAQ with AVLT1/CFA (TEO) or ANART/DEM (TEO-UMAP); MCI—AVLT2 with
CCT/FAQ (TEO) or ANART/CFA (TEO-UMAP); LMCI—FAQ with AVLT1/CDT (TEO) or
ANART/AVLT2 (TEO-UMAP). Using a simple UMAP PC1/PC2 0.6 significance rule, these op-
timisers provide actionable attribution maps that can prioritise assessments, reduce testing
burden, support trial enrichment, and guide personalised monitoring. Together, they offer a
practically deployable, transparent framework for clinically meaningful multimodal reasoning in
neurodegenerative disease.

B.12 CONCLUSION

We proposed a unified interpretability framework that couples explainer optimisation with a
monosemantic bottleneck (TEO-SAE) and an optional geometry-aware constraint (TEO-UMAP).
Across IID (ADNI) and OOD (BrainLat), and in both binary and three-class settings, TEO with SAE is
consistently the most stable (lowest RIS/ROS), while TEO-UMAP reliably recovers greater sparsity
at a modest stability cost—establishing a tunable sparsity–stability frontier that generalises across
cohorts, tasks, and distribution shift. Gradient attribution techniques remain largely invariant
with and without SAE and with more obvious changes in SAE substantially improves stability
for feature-learning explainers, most notably: Layer Conductance, but none of these attribution
techniques surpass the proposed optimisers, underscoring the novelty and robustness of learning
monosemantic features for explanation especially under the proposed explanation optimizer
framework (TEO-SAE).

Clinically, our analyses converge on functional status (FAQ) and memory (AVLT1/AVLT2) as the
most stable contributors, with visuospatial performance (CDT) recurring in Control/LMCI; TEO
with SAE emphasises neuropsychological performance signals, whereas TEO-UMAP surfaces
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complementary demographic/language markers, yielding class-specific, clinically interpretable
profiles. A simple UMAP PC 1/PC 20.6 rule produces actionable cohort-level attribution maps
that can prioritise assessments, reduce testing burden, inform trial enrichment, and support
personalised monitoring. Together, TEO-SAE and TEO-UMAP offer a practically deployable,
transparent solution for multimodal clinical reasoning, with the key novelty being their consistent,
cross-domain outperformance and stable behaviour from local to cohort level. Future work will
prospectively validate these findings, extend the analysis to additional centres and modalities,
propose different constraints in the UMAP explanation space (such as neurosymbolic meta-
learning rules), and integrate uncertainty and fairness auditing.

Critically, while increasing feature dimensionality can degrade attribution quality in stan-
dard methods, transformer-based explainers—when guided by geometric and structural con-
straints—exhibited notable resilience. These results suggest that even in high-dimensional embed-
ding spaces, generalizable and meaningful explanations can emerge when appropriate inductive
biases are imposed. Collectively, our work provides theoretical and empirical evidence for inte-
grating monosemantic encoding with geometry-aware explanation frameworks to advance robust,
human-aligned interpretability in neuroscience-focused AI.

B.13 BROAD IMPACT STATEMENT

The clinical deployment of large language models (LLMs) in high-stakes neurodegenerative disease
diagnosis, such as Alzheimer’s Disease (AD), is hindered by the inherent polysemanticity of their
representations, which renders traditional attribution methods (e.g., gradients, SHAP) unreliable
due to ambiguous or inconsistent explanations. By aligning LLM explanations with clinical
reasoning and enforcing statistical fidelity, this work establishes a foundation for trustworthy,
deployable AI systems in medicine, transforming complex models into transparent partners for life-
critical decision-making and paving the way for safer, ethically sound integration of advanced AI
into cognitive health applications. Critically, this framework’s adaptability and rigorous validation
position it for immediate real-world deployment in healthcare settings, enabling clinicians to
harness LLMs’ diagnostic power without compromising transparency, thereby accelerating the
translation of AI research into measurable improvements in patient care.
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