TOWARD MONOSEMANTIC CLINICAL EXPLANATIONS FOR ALZHEIMER'S DIAGNOSIS VIA ATTRIBUTION AND MECHANISTIC INTERPRETABILITY

Anonymous authors

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

025

026

027

028

029

031

032

033

034

037

038

040

042

043 044

045

047

048

049

051

052

Paper under double-blind review

ABSTRACT

Interpretability remains a central barrier to the safe deployment of large language models (LLMs) in high-stakes domains such as neurodegenerative disease diagnosis. In Alzheimer's disease (AD), early and explainable predictions are critical for clinical decision-making, yet attribution-based methods (e.g., saliency maps, SHAP) often suffer from inconsistency due to the polysemantic nature of LLM representations. Mechanistic interpretability promises to uncover more coherent features, but it is not directly aligned with individual model outputs, limiting its applicability in practice. To address these limitations, we propose a unified interpretability framework that integrates attributional and mechanistic perspectives via monosemantic feature extraction. First, we evaluate six common attribution techniques and further develop an explanation-optimization step that updates explanations to reduce inter-method variability and improve clarity. In the second stage, we train sparse autoencoders (SAEs) to transform LLM activations into a disentangled latent space in which each dimension corresponds to a coherent semantic concept. This monosemantic representation enables more structured and interpretable attribution analysis. We then compare feature attributions in this latent space with those from the original model, demonstrating improved robustness and semantic clarity. Evaluations on indistribution (IID) and out-of-distribution (OOD) Alzheimer's cohorts across binary and three-class classification tasks confirm the effectiveness of our framework. By bridging attributional relevance and mechanistic clarity, our approach provides more trustworthy, consistent, and human-aligned explanations, and reveals clinically meaningful patterns in multimodal AD data. This work takes a step toward safer and more reliable integration of LLMs into cognitive health applications and clinical workflows.

A TECHNICAL APPENDICES

A.1 ATTRIBUTIONAL THEORY AND METHODS

Attribution explainability methods follow the framework of additive feature attribution, where the explanation model $g(f, \mathbf{x})$ is represented as a linear function of simplified input features:

$$g(f, \mathbf{x}) = \phi_0 + \sum_{i=1}^{M} \phi_i x_i \tag{1}$$

Here, f is the predictive model, $\phi_i \in \mathbb{R}$ is the attribution (importance) assigned to feature x_i , and M is the number of simplified input features.

For this study, we employed six well-established attributional interpretability methods applied to large language models (LLMs), denoted as K = 6: Feature Ablation, Layer Activations (which capture the embedding activation space of a specific layer of interest within the LLM), Layer DeepLIFT SHAP, Layer Gradient SHAP (Lundberg & Lee, 2017), Layer Integrated Gradients (Sundararajan et al., 2017), and Layer Gradient \times Activation.

To align these layer-wise interpretability methods with the additive feature attribution framework, we reinterpret the internal activations (i.e., latent units) of a network layer L as simplified input features. The objective is to estimate an attribution score ϕ_i for each unit, where $\phi_i \in \mathbb{R}$ quantifies the contribution of the corresponding neuron to the model's prediction.

Layer SHAP implementations: This directly corresponds to the Shapley formulation:

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_S(x_S) \right]$$
 (2)

In practice, Deep SHAP approximates this using sampling and a chain-rule based linearization over network layers Lundberg & Lee (2017). *Gradient SHAP* assumes that input features are independent and that the explanation model is linear, allowing explanations to be expressed as an additive composition of feature contributions. Under these assumptions, SHAP values (Lundberg & Lee, 2017) can be approximated by computing the expected gradients over a distribution of perturbed inputs. Specifically, Gaussian noise is added to each input feature to generate multiple baseline samples, and the resulting gradients are averaged to approximate SHAP attributions.

Activation Attribution: This method treats the raw activation $a_i^L(\mathbf{x})$ as proportional to its importance in the output. In the additive form:

$$\phi_i = a_i^L(\mathbf{x}) \tag{3}$$

Assuming linearity between layer L and the output, activations themselves serve as proxy contributions.

Gradient × **Activation Attribution:** This method computes the element-wise product between the activation values and the gradients of the model output with respect to those activations, thereby capturing the first-order sensitivity of the output to the neurons in the layer. To this end, the method estimates the first-order sensitivity of the output with respect to the activation:

$$\phi_i = a_i^L(\mathbf{x}) \cdot \frac{\partial f}{\partial a_i^L}(\mathbf{x}) \tag{4}$$

This corresponds to a local linear approximation (first-order Taylor expansion) of the model at **x**, akin to DeepLiFT and the SHAP linearization used in DeepLift SHAP (Lundberg & Lee, 2017).

Feature Ablation Attribution: This attributional interpretability technique is a perturbation-based approach to estimating attributions. It involves replacing the input or output values of a selected layer with a given baseline or reference value and computing the resulting change in the model's output. By default, each neuron (i.e., scalar input or output value) within the layer is ablated independently. For neuron group $S \subseteq \{1, ..., d_L\}$, the perturbed activation is:

$$\tilde{a}_{i}^{L} = \begin{cases} b_{i}^{L} & \text{if } i \in S, \\ a_{i}^{L}(\mathbf{x}) & \text{otherwise,} \end{cases}$$
 (5)

and the attribution is the marginal effect:

$$\phi_S = f\left(\mathbf{x}; \tilde{\mathbf{a}}_S^L\right) - f(\mathbf{x}) \tag{6}$$

All attribution methods were applied to the final (22nd) layer of the Modern-Bert LLM—the model variant that achieved the highest classification accuracy in our evaluations (see Suplementary material section 1.1). These formulations allow us to ground various neural attribution techniques within a unified additive explanation model, facilitating their comparison and hybridization under shared theoretical assumptions.

A.2 ATTRIBUTIONAL EXPLANATION OPTIMIZER FRAMEWORK

Let $\mathscr{A} = \{A_1, A_2, \dots, A_K\}$ denote the set of K = 6 attribution methods applied to the final layer L of the model f. Each method A_k generates an attribution vector $\boldsymbol{\phi}^{(k)} = [\phi_1^{(k)}, \phi_2^{(k)}, \dots, \phi_M^{(k)}]$, where M is the number of latent features (neurons) in layer L. The goal is to derive a unified attribution vector $\boldsymbol{\bar{\phi}}$ that captures the consensus explanation across methods.

. .

A.2.1 SCORING AND WEIGHTING ATTRIBUTION METHODS

Each attribution vector $\boldsymbol{\phi}^{(k)}$ is evaluated using the following quality metrics:

A.2.2 EVALUATION INTERPRETABILITY METRICS

We evaluate the robustness of each attribution method A_k using the following stability metrics:

Relative Input Stability (RIS):

$$M_{\text{RIS}}^{(k)} = \text{RIS}(f, \boldsymbol{\phi}^{(k)}; \mathbf{x}) = \frac{\|\mathbf{x}\|_{p}}{\|\boldsymbol{\phi}^{(k)}(\mathbf{x})\|_{p}} \max_{\mathbf{x}' \in \mathcal{N}_{\mathbf{x}}, \hat{\mathbf{y}}_{\mathbf{x}'} = \hat{\mathbf{y}}_{\mathbf{x}}} \frac{\|\boldsymbol{\phi}^{(k)}(\mathbf{x}) - \boldsymbol{\phi}^{(k)}(\mathbf{x}')\|_{p}}{\|\mathbf{x} - \mathbf{x}'\|_{p}}$$
(7)

Relative Output Stability (ROS):

$$M_{\text{ROS}}^{(k)} = \text{ROS}(f, \boldsymbol{\phi}^{(k)}; \mathbf{x}) = \frac{\|f(\mathbf{x})\|_{p}}{\|\boldsymbol{\phi}^{(k)}(\mathbf{x})\|_{p}} \max_{\mathbf{x}' \in \mathcal{N}_{\mathbf{x}}, \hat{\mathbf{y}}_{\mathbf{x}'} = \hat{\mathbf{y}}_{\mathbf{x}}} \frac{\|\boldsymbol{\phi}^{(k)}(\mathbf{x}) - \boldsymbol{\phi}^{(k)}(\mathbf{x}')\|_{p}}{\|f(\mathbf{x}) - f(\mathbf{x}')\|_{p}}$$
(8)

Here, $\mathcal{N}_{\mathbf{x}}$ denotes a neighborhood of perturbed inputs \mathbf{x}' around \mathbf{x} , and $\hat{y}_{\mathbf{x}}$ is the predicted class label. Both metrics measure the relative sensitivity of the attribution vector $\boldsymbol{\phi}^{(k)}$ to perturbations in the input or output space.

Sparseness Metric: We quantify the **sparseness** of the attribution vector $\phi^{(k)} \in \mathbb{R}^d$ using the *Gini Index*, a measure of inequality that has been shown to satisfy several desirable properties for evaluating sparseness Chalasani et al. (2020). This formulation is adopted in the context of explaining neural network predictions Chalasani et al. (2020).

Let $v \in \mathbb{R}^d_{\geq 0}$ be a non-negative vector. Denote by $v_{(k)}$ the k-th smallest element in v after sorting it in non-decreasing order. Then, the **Gini Index** $G(v) \in [0,1]$ is defined as:

$$G(\nu) = 1 - 2\sum_{k=1}^{d} \frac{\nu_{(k)}}{\|\nu\|_{1}} \cdot \left(\frac{d - k + 0.5}{d}\right),\tag{9}$$

where $\|v\|_1 = \sum_{i=1}^d v_i$ is the ℓ_1 -norm of v. To evaluate the sparseness of an attribution vector $\boldsymbol{\phi}^{(k)}$, we apply the Gini Index to the vector of its absolute values:

Sparseness
$$(\boldsymbol{\phi}^{(k)}) = G(|\boldsymbol{\phi}^{(k)}|)$$
,

where
$$|\boldsymbol{\phi}^{(k)}| = (|\phi_1^{(k)}|, |\phi_2^{(k)}|, \dots, |\phi_d^{(k)}|).$$

Higher values of $G(|\phi^{(k)}|)$ indicate greater sparseness. In the extreme case, if only one component is non-zero, the Gini Index reaches its maximum value of 1, indicating perfect sparseness. If all components are equal, the Gini Index is 0.

A.2.3 AGGREGATION OF ATTRIBUTIONS

The weighted average attribution vector $\bar{\boldsymbol{\phi}}$ is calculated as:

$$\bar{\boldsymbol{\phi}} = \sum_{k=1}^{K} w_k \cdot \boldsymbol{\phi}^{(k)} \tag{10}$$

This vector serves as the target explanation for the optimization process.

A.2.4 EXPLANATION RECONSTRUCTION VIA ENCODER-DECODER MODELS

An encoder–decoder model is trained to generate a reconstructed explanation $\hat{\boldsymbol{\psi}}$ from the original input \boldsymbol{x} . Two architectures are considered the Diffusion UNet1D Ronneberger et al. (2015) and the x-transformer autoencoder Vaswani et al. (2017); Nguyen & Salazar (2019).

Diffusion model: The diffusion model follows the basic structure of a 1-dimensional U-Net and is trained using diffusion principles. In this framework, diffusion models Ho et al. (2020) are latent variable models in which the observed data $\phi_0^{(k)}$ is gradually corrupted through a forward noising process, producing a sequence of latent variables $\phi_{1:T}^{(k)}$. A corresponding reverse process is then learned to recover the original data from noise. The mathematical formulation is as follows:

FORWARD PROCESS: A fixed Markov chain progressively adds Gaussian noise to the data:

$$q(\phi_{1:T}^{(k)}|\phi_0^{(k)}) := \prod_{t=1}^T q(\phi_t^{(k)}|\phi_{t-1}^{(k)}), \quad q(\phi_t^{(k)}|\phi_{t-1}^{(k)}) := \mathcal{N}(\phi_t^{(k)}; \sqrt{1-\beta_t}\phi_{t-1}^{(k)}, \beta_t \mathbf{I})$$
(11)

Alternatively, sampling from the forward process at an arbitrary timestep t is possible in closed form:

$$q(\phi_t^{(k)}|\phi_0^{(k)}) = \mathcal{N}(\phi_t^{(k)}; \sqrt{\bar{\alpha}_t}\phi_0^{(k)}, (1-\bar{\alpha}_t)\mathbf{I}), \tag{12}$$

where $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{s=1}^t \alpha_s$.

REVERSE PROCESS: A learned time-reversal model with Gaussian transitions:

$$p_{\theta}(\phi_{0:T}^{(k)}) := p(\phi_{T}^{(k)}) \prod_{t=1}^{T} p_{\theta}(\phi_{t-1}^{(k)} | \phi_{t}^{(k)}), \quad p_{\theta}(\phi_{t-1}^{(k)} | \phi_{t}^{(k)}) := \mathcal{N}(\phi_{t-1}^{(k)}; \boldsymbol{\mu}_{\theta}(\phi_{t}^{(k)}, t), \boldsymbol{\Sigma}_{\theta}(\phi_{t}^{(k)}, t)), \quad (13)$$

where $p(\phi_T^{(k)}) := \mathcal{N}(\phi_T^{(k)}; \mathbf{0}, \mathbf{I}).$

TRAINING OBJECTIVE: The training objective of diffusion models is based on a variational bound, which includes Kullback–Leibler (KL) divergence terms. The KL term comparing the true posterior from the forward process and the model's learned reverse process is written as:

$$KL\left(q(\phi_{t-1}^{(k)} \mid \phi_t^{(k)}, \phi_0^{(k)}) \parallel p_{\theta}(\phi_{t-1}^{(k)} \mid \phi_t^{(k)})\right)$$
(14)

Both distributions are Gaussian:

$$q(\phi_{t-1}^{(k)} \mid \phi_t^{(k)}, \phi_0^{(k)}) = \mathcal{N}(\phi_{t-1}^{(k)}; \tilde{\mu}_t(\phi_t^{(k)}, \phi_0^{(k)}), \tilde{\beta}_t \mathbf{I})$$
(15)

$$p_{\theta}(\phi_{t-1}^{(k)} \mid \phi_{t}^{(k)}) = \mathcal{N}(\phi_{t-1}^{(k)}; \mu_{\theta}(\phi_{t}^{(k)}, t), \sigma_{t}^{2}\mathbf{I})$$
(16)

The closed-form KL divergence between two Gaussians $\mathcal{N}(\mu_1, \sigma_1^2 \mathbf{I})$ and $\mathcal{N}(\mu_2, \sigma_2^2 \mathbf{I})$ in d-dimensions is:

$$KL = \frac{1}{2} \left[log \left(\frac{\sigma_2^2}{\sigma_1^2} \right) + \frac{\sigma_1^2 + \|\mu_1 - \mu_2\|^2}{\sigma_2^2} - d \right]$$
 (17)

In our setting, this term is computed for each timestep *t* and summed across all steps:

$$\mathcal{L}_{1:T-1} = \sum_{t=0}^{T} \mathbb{E}_{q(\phi_0^{(k)}, \phi_t^{(k)})} \left[\text{KL} \left(q(\phi_{t-1}^{(k)} \mid \phi_t^{(k)}, \phi_0^{(k)}) \parallel p_{\theta}(\phi_{t-1}^{(k)} \mid \phi_t^{(k)}) \right) \right]$$
(18)

This forms a core part of the evidence lower bound (ELBO) optimized during training. Using variational inference, we minimize the negative ELBO:

$$\mathcal{L} = \mathbb{E}_{q} \left[-\log p(\phi_{T}^{(k)}) + \sum_{t=1}^{T} \text{KL} \left(q(\phi_{t-1}^{(k)} | \phi_{t}^{(k)}, \phi_{0}^{(k)}) \| p_{\theta}(\phi_{t-1}^{(k)} | \phi_{t}^{(k)}) \right) - \log p_{\theta}(\phi_{0}^{(k)} | \phi_{1}^{(k)}) \right]. \tag{19}$$

Each KL term compares Gaussian distributions and can be computed in closed form. The posterior $q(\phi_{t-1}^{(k)}|\phi_t^{(k)},\phi_0^{(k)})$ is also Gaussian:

$$q(\phi_{t-1}^{(k)}|\phi_t^{(k)},\phi_0^{(k)}) = \mathcal{N}(\phi_{t-1}^{(k)};\tilde{\boldsymbol{\mu}}_t(\phi_t^{(k)},\phi_0^{(k)}),\tilde{\boldsymbol{\beta}}_t\mathbf{I}), \tag{20}$$

with:

$$\tilde{\boldsymbol{\mu}}_{t}(\phi_{t}^{(k)}, \phi_{0}^{(k)}) = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_{t}}{1 - \bar{\alpha}_{t}}\phi_{0}^{(k)} + \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}}\phi_{t}^{(k)},\tag{21}$$

$$\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t. \tag{22}$$

SIMPLIFIED TRAINING LOSS: The common parameterization rewrites the objective as denoising score matching:

$$\mathcal{L}_{\text{simple}}(\theta) := \mathbb{E}_{t,\phi_0^{(k)},\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \phi_0^{(k)} + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2 \right], \tag{23}$$

where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ and ϵ_{θ} is the neural network trained to predict noise.

In our implementation we compute the total loss for the diffusion model as:

$$\mathcal{L}_{\text{similarity}}(\hat{\boldsymbol{\phi}}, \bar{\boldsymbol{\phi}}) = \mathcal{L}_{\text{similarity}}(\theta) = \frac{1}{K+1} \sum_{l=0}^{K} \mathcal{L}_{\text{simple}}^{(l)}(\theta)$$
 (24)

x-Transformer: Let the input sequence be:

$$\boldsymbol{\phi}^{(k)} = [\boldsymbol{\phi}_1^{(k)}, \boldsymbol{\phi}_2^{(k)}, \dots, \boldsymbol{\phi}_T^{(k)}] \in \mathbb{R}^{T \times d_{\text{in}}}$$

where $d_{\text{in}} = 7$ is the input dimensionality and T = 512 is the sequence length. We consider a Transformer-based encoder-decoder architecture operating on input sequences $\Phi^{(k)} \in \mathbb{R}^{B \times T \times d_{\text{in}}}$ at diffusion step k, where: B is the batch size, T is the sequence length, d_{in} is the input feature dimension, and $\Phi^{(k)}$ is the input sequence at step k.

The processing pipeline is mathematically formulated as follows:

INPUT PROJECTION AND POSITIONAL ENCODING: We first project the input to the model dimension d and add positional encodings:

$$\mathbf{X}_0 = \mathbf{W}_{in} \Phi^{(k)} + \mathbf{P}, \quad \mathbf{X}_0 \in \mathbb{R}^{B \times T \times d}$$
 (25)

where: $\mathbf{W}_{in} \in \mathbb{R}^{d_{in} \times d}$ is a learnable linear projection matrix, and $\mathbf{P} \in \mathbb{R}^{1 \times T \times d}$ is a learnable positional embedding matrix.

ENCODER: MULTI-HEAD SELF-ATTENTION LAYERS: The encoder consists of L_e stacked multi-head self-attention (MHSA) layers:

$$\mathbf{H}_{\text{enc}} = \text{MHSA}_{L_o} \circ \cdots \circ \text{MHSA}_1(\mathbf{X}_0) \tag{26}$$

where each MHSA layer performs:

$$MHSA(\mathbf{X}) = Softmax \left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_h}} \right) \mathbf{V}$$
 (27)

with: \mathbf{Q} , \mathbf{K} , \mathbf{V} : Query, Key, and Value matrices obtained via learned linear projections, and d_h : the dimensionality of each attention head.

DECODER INPUT PROJECTION: During training, the decoder may receive the ground-truth output $\Phi_{\text{target}}^{(k)} \in \mathbb{R}^{B \times T \times 1}$:

$$\mathbf{Y}_0 = \mathbf{W}_{\text{dec}} \Phi_{\text{target}}^{(k)} + \mathbf{P} \tag{28}$$

where $\mathbf{W}_{\text{dec}} \in \mathbb{R}^{1 \times d}$ is a projection matrix.

If no decoder input is available (e.g., during inference), $\Phi_{\text{target}}^{(k)}$ is initialized to a zero tensor.

DECODER MHSA + CROSS-ATTENTION LAYERS: The decoder consists of L_d layers of MHSA followed by cross-attention (CA) using the encoder context:

$$\mathbf{H}_{\text{dec}} = \mathrm{CA}_{L_d} \circ \cdots \circ \mathrm{CA}_1 \left(\mathrm{MHSA}_{L_d} \circ \cdots \circ \mathrm{MHSA}_1 (\mathbf{Y}_0) \, \middle| \, \mathbf{H}_{\text{enc}} \right) \tag{29}$$

 Each cross-attention (CA) layer uses the decoder hidden state as the query and encoder output as the key and value:

$$CA(\mathbf{Y}, \mathbf{H}_{enc}) = Softmax \left(\frac{\mathbf{Q}_{dec} \mathbf{K}_{enc}^{\top}}{\sqrt{d_h}} \right) \mathbf{V}_{enc}$$
 (30)

OUTPUT PROJECTION: Finally, the decoder output is projected back to the target dimension:

$$\hat{\Phi}^{(k)} = \mathbf{W}_{\text{out}} \mathbf{H}_{\text{dec}}, \quad \hat{\Phi}^{(k)} \in \mathbb{R}^{B \times T \times 1}$$
(31)

where $\mathbf{W}_{\text{out}} \in \mathbb{R}^{d \times 1}$ is a linear projection matrix.

The similarity cost function is given by the Mean Squared Error (MSE) loss between the predicted output of the x-Transformer and the target weighted attribution vector as follow:

$$\mathcal{L}_{\text{similarity}}(\hat{\boldsymbol{\phi}}, \bar{\boldsymbol{\phi}}) = \mathcal{L}_{\text{MSE}} = \frac{1}{T} \sum_{t=1}^{T} \|\hat{\boldsymbol{\phi}}_t - \bar{\boldsymbol{\phi}}_t\|^2,$$
(32)

A.3 THE TOTAL COST FUNCTION OF THE OPTIMIZER

As previously highlighted, the reconstruction of the optimal explanation and the associated cost function adhere to the same principles and architectural design outlined in Mamalakis et al. (2025). The cost function consists of three key components: sparseness, as defined in ?; ROS and RIS scores Agarwal et al. (2022); and similarity. The integration of these components ensures a robust and interpretable evaluation. The total cost function for training the reconstruction model is:

$$\mathcal{L}_{\text{total}}(\boldsymbol{\phi}^{(k)}, \hat{\boldsymbol{\phi}}) = \lambda_1 \cdot \frac{1}{M_{\text{RIS}}(f, \hat{\boldsymbol{\phi}})} + \lambda_2 \cdot \frac{1}{M_{\text{ROS}}(f, \hat{\boldsymbol{\phi}})} + \lambda_3 \cdot M_{\text{sparse}}(f, \hat{\boldsymbol{\phi}}) + \lambda_4 \cdot \mathcal{L}_{\text{similarity}}(\hat{\boldsymbol{\phi}}, \bar{\boldsymbol{\phi}})$$
(33)

where: $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are hyperparameters controlling the influence of each loss term. This formulation enables a principled and quantitative integration of multiple attribution methods, optimizing toward a robust and interpretable explanation.

A.4 THE UMAP EXTRACTION AND THE LINEAR CONSTRAIN

Given a dataset $\hat{\Phi} = \{\hat{\phi}_1, \hat{\phi}_2, ..., \hat{\phi}_n\} \subset \mathbb{R}^D$, UMAP aims to find a low-dimensional embedding $U = \{u_1, u_2, ..., u_n\} \subset \mathbb{R}^d$ where typically d = 2 or d = 3, such that the local topological structure of the data in $\hat{\Phi}$ is preserved in U.

HIGH-DIMENSIONAL GRAPH CONSTRUCTION: First, the algorithm constructs a k-nearest neighbors graph in the high-dimensional space $\hat{\Phi}$. The distance metric used to calculate the pairwise distances is typically Euclidean:

$$d(\hat{\boldsymbol{\phi}}_i, \hat{\boldsymbol{\phi}}_j) = \|\hat{\boldsymbol{\phi}}_i - \hat{\boldsymbol{\phi}}_j\|_2$$

Next, a conditional probability is defined between points $\hat{\phi}_i$ and $\hat{\phi}_i$ using a Gaussian distribution:

$$p_{ij} = \exp\left(-\frac{\|\hat{\boldsymbol{\phi}}_i - \hat{\boldsymbol{\phi}}_j\|^2}{\sigma_i^2}\right)$$

where σ_i is the bandwidth for the Gaussian distribution, determined through a binary search to match a fixed perplexity.

The graph is symmetrized:

$$P_{ij} = \frac{p_{ij} + p_{ji}}{2}$$

LOW-DIMENSIONAL EMBEDDING GRAPH: In the low-dimensional space, a similar probability is defined between points u_i and u_i :

$$q_{ij} = \frac{1}{1 + a\|u_i - u_j\|^{2b}}$$

where a and b are hyperparameters that control the shape of the distribution, and $\|u_i - u_j\|_2$ is the Euclidean distance between points in the low-dimensional embedding.

OBJECTIVE FUNCTION: The optimization process involves minimizing the cross-entropy between the high-dimensional and low-dimensional probability distributions:

$$\mathcal{L} = \sum_{i < j} \left[P_{ij} \log(Q_{ij}) + (1 - P_{ij}) \log(1 - Q_{ij}) \right]$$

This loss function encourages points that are close in the high-dimensional space to be close in the low-dimensional space, and points that are distant to remain distant.

OPTIMIZATION PROCESS: The optimization is carried out using stochastic gradient descent (SGD), updating the embedding points $\{u_i\}$ iteratively based on the gradient of the loss function \mathcal{L} . The gradient updates for the low-dimensional embedding u_i are computed as follows:

$$\frac{\partial \mathcal{L}}{\partial u_i} = -\sum_{j \neq i} \left(P_{ij} - Q_{ij} \right) \frac{u_i - u_j}{\|u_i - u_j\|_2^2}$$

REGULARIZATION CONSTRAINT: To prevent the embedding from collapsing to a single point, we introduce a variance constraint to ensure that the variance of the embedding does not approach zero:

$$Var(U) = \frac{1}{n} \sum_{i=1}^{n} ||u_i - \bar{u}||_2^2 \ge \epsilon$$

where $\bar{U} = \frac{1}{n} \sum_{i=1}^{n} u_i$ is the mean of the embeddings, and $\epsilon > 0$ is a small constant that enforces a lower bound on the variance.

LINEAR CONSTRAINT FOR EQUAL COMPONENTS IN UMAP: Let $u_i = (u_{i1}, u_{i2}, ..., u_{id})$ represent the embedding of the i-th data point in the d-dimensional space. The constraint that the first and second components of the embedding are equal can be written as:

$$u_{i1} = u_{i2} \quad \forall i \in \{1, 2, ..., n\}$$

In other words, the first component u_{i1} and the second component u_{i2} of each embedding vector u_i must be equal. This can be written as a linear equality constraint:

$$u_{i1} - u_{i2} = 0 \quad \forall i \in \{1, 2, \dots, n\}$$

This constraint ensures that for each data point i, the first and second components of the corresponding embedding vector u_i are equal.

In the $\mathcal{L}_{\text{total}}(\phi^{(k)}, \hat{\phi})$, of eq. 35, we can add an extra penalty term to the loss function to enforce this constraint. The penalty term would be:

$$\lambda_5 \sum_{i=1}^{n} (u_{i1} - u_{i2})^2$$

where λ_5 is a regularization parameter that controls the strength of the penalty. This penalty term enforces the condition that the first and second components of each embedding point of the reconstructed explanation from the optimizer $(\hat{\phi})$ are equal, but it allows flexibility depending on the value of λ_5 .

A.5 THE SUPERPOSITION AND THE MONOSEMANTIC REPRESENTATIONS

We model an embedding space as a real vector space \mathbb{R}^d , where a hidden activation vector $\mathbf{h} \in \mathbb{R}^d$ represents a combination of underlying semantic features. By the linear representation hypothesis, each interpretable feature corresponds to a fixed direction in \mathbb{R}^d Olah et al. (2020b); Elhage et al. (2022b).

Let $\mathbf{a} \in \mathbb{R}^F$ be a sparse feature activation vector and $W \in \mathbb{R}^{d \times F}$ be a linear transformation such that:

$$\mathbf{h} = W\mathbf{a} = \sum_{i=1}^{F} a_i \mathbf{w}_i,$$

where \mathbf{w}_i denotes the *i*-th column of W, corresponding to the direction of the feature i.

If F > d, the map W cannot be invertible, and thus different combination of characteristics can map to the same embedding. This gives rise to superposition, where multiple semantic features are embedded into shared subspaces or overlapping neuron activations Elhage et al. (2022b).

MONOSEMANTIC REPRESENTATIONS: A representation is called monosemantic when each neuron corresponds to a single interpretable feature Olah et al. (2020b). Mathematically, this corresponds to the case where *W* is full-rank and aligned with the identity matrix (or a rotation of it):

$$W = I \Rightarrow \mathbf{h} = \mathbf{a}$$
.

This implies that each feature a_i is represented by a unique dimension h_i , with no overlap. Each neuron responds to a single, isolated concept, akin to "grandmother cells" in neuroscience Quiroga et al. (2005).

POLYSEMANTIC REPRESENTATIONS: In contrast, polysemantic neurons represent multiple, distinct concepts. Formally, if neuron h_i computes:

$$h_j = \sum_{i=1}^F W_{j,i} a_i,$$

and two or more $W_{j,i} \neq 0$, then neuron j encodes multiple features simultaneously, exhibiting polysemanticity Elhage et al. (2022b); Bills et al. (2023a).

More generally, a polysemantic embedding may be viewed as a mixture:

$$\mathbf{h} = \sum_{k=1}^{K} \alpha_k \mathbf{c}_k, \quad K > 1,$$

where \mathbf{c}_k are concept vectors and α_k are scalar weights.

This behavior is prevalent in both neural network activations and in biological neurons that exhibit mixed selectivity Rigotti et al. (2013).

Monosemantic representations arise from disentangled bases, where neurons correspond to isolated features. Superposition emerges from dimensionality compression and necessarily leads to polysemantic neurons, each encoding a combination of features. Spare auto-encoder is a way to try to solve the polysemantic neurons—each encoding problem.

A.6 THE SAE APPROACH AND ARCHITECTURES

Sparse Autoencoder (SAE) architectures have advanced our understanding of how language and vision models represent features Gorton (2024). Neural network behavior is often explained via *computational circuits*—collections of neurons that together compute meaningful functions. Classical circuit analysis has identified key components such as edge detectors Olah et al. (2020a) or word-copying units Olsson et al. (2022). By using features derived from SAEs rather than raw neurons, researchers have improved the interpretability of circuits related to complex behaviors Marks et al. (2024).

Feature discovery can involve visual analysis McDougall (2024), manual inspection Bricken et al. (2023), and even assistance from large language models Bills et al. (2023b). Their causal role is

often validated via activation interventions: modifying a feature activation vector **a** and observing predictable changes in model output Templeton et al. (2024).

The mathematical formulation situates SAE architectures within the theoretical framework of superposition and semantic disentanglement. By expressing hidden states as sparse linear combinations of interpretable features, SAEs bridge the gap between low-level activations and human-understandable concepts.

LINEAR FORMULATION OF SAEs: Let $\mathbf{x} \in \mathbb{R}^d$ denote a layer's neuron activation vector in a pretrained model. A Sparse Autoencoder learns a sparse feature representation $\mathbf{a} \in \mathbb{R}^F$ such that:

$$\hat{\mathbf{x}} = W\mathbf{a} + \mathbf{b},\tag{34}$$

where $W \in \mathbb{R}^{d \times F}$ is the decoder (dictionary) matrix and $\mathbf{b} \in \mathbb{R}^d$ is a learned bias term. Each column $W_{\cdot,i}$ represents the direction of feature i in neuron space, and a_i is its activation. This linear mapping enables complex activations to be expressed as combinations of more interpretable features.

If F > d, then the feature space is overcomplete, and W cannot be full-rank. This leads to superposition, where multiple features overlap in the same subspace, and individual neurons encode multiple unrelated concepts Elhage et al. (2022b). If W is invertible and aligned to a basis, each neuron corresponds to a single feature. The representation is monosemantic and disentangled Olah et al. (2020b). When W has overlapping columns, neurons can respond to multiple features, yielding polysemantic behavior. That is, for some j, $x_j = \sum_i W_{j,i} a_i$ involves multiple nonzero terms Bills et al. (2023a).

VARIANTS OF SAEs: Variants of SAEs like TopK, JumpReLU, and Gated-SAEs offer increasingly precise control over the mapping between low-level activations and human-understandable concepts, enabling fine-grained analysis and intervention.

TopK-SAEs: Instead of using a soft sparsity constraint (e.g., L1 regularization), TopK-SAEs enforce hard sparsity using a top-*K* activation function:

$$\mathbf{a} = \text{TopK}(W_{\text{enc}}(\mathbf{x} - \mathbf{b}_{\text{dec}})), \tag{35}$$

which retains only the *K* largest entries of the preactivation and zeros out the rest. This promotes discrete sparsity and avoids complex hyperparameter tuning.

JumpReLU-SAEs: JumpReLU replaces ReLU with a thresholded step function:

$$JumpReLU_{\theta}(x) = x \cdot H(x - \theta), \tag{36}$$

where $H(\cdot)$ is the Heaviside step function and θ is a learnable threshold. This allows neurons to activate only above a semantic threshold, aligning with binary behavior observed in some interpretable features. However, the discontinuity makes training difficult due to non-differentiability.

Gated-SAEs: Gated-SAEs introduce a gating mechanism that decouples activation magnitude and presence. Let W_{mag} and W_{gate} be two encoders. Then the feature activation is computed as:

$$\mathbf{a} = (W_{\text{mag}}(\mathbf{x})) \odot H(W_{\text{gate}}(\mathbf{x}) - \theta), \tag{37}$$

where \odot denotes elementwise multiplication. This enables better control over when and how strongly a feature activates, making them easier to train than JumpReLU-SAEs Rajamanoharan et al. (2024).

In this study we utilize two different architectures of SAEs the standard SAE and TopK-SAE.

A.7 ATTRIBUTION FROM SPARSE FEATURE SPACE TO INPUT TOKENS

Let $\mathbf{x}_{\text{input}} \in \mathbb{R}^{d_{\text{input}}}$ denote the input embedding vector (e.g., LLM token embeddings), $\mathbf{x} = f(\mathbf{x}_{\text{input}}) \in \mathbb{R}^d$ the hidden layer activation of the LLM, $\mathbf{a} = \text{Encoder}(\mathbf{x}) \in \mathbb{R}^F$ the SAE sparse feature vector, and $\hat{\mathbf{x}} = W\mathbf{a} + \mathbf{b}$ the reconstructed activation from the SAE decoder. Now suppose we have a sparse attribution vector ψ_i over features \mathbf{a} , i.e., $\psi \in \mathbb{R}^F$, where each ψ_i reflects the importance of SAE feature a_i . We aim to assign importance Φ_k to each input token dimension $x_{\text{input},k}$.

ATTRIBUTION FLOW THROUGH THE ENCODER: We propagate the feature attributions backward through the encoder to the input. Using the chain rule:

$$\Phi_k = \sum_{i=1}^F \psi_i \cdot \frac{\partial a_i}{\partial x_{\text{input},k}} = \sum_{i=1}^F \psi_i \cdot \frac{\partial a_i}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial x_{\text{input},k}}$$
(38)

where $\frac{\partial a_i}{\partial \mathbf{x}}$ is the encoder Jacobian (SAE layer), and $\frac{\partial \mathbf{x}}{\partial x_{\text{input},k}}$ is the LLM gradient from input token to hidden layer.

This gives us a scalar attribution $\Phi_k \in \mathbb{R}$ for each token/input embedding dimension k.

This represents how much each input token contributes to the sparse SAE features that have been identified as important. In this way, we evaluate the contribution of input features based on the monosemantic behavior of the trained network's mechanism. Based on our study thus far, we will apply the six attribution methods previously discussed at two levels: from the SAE feature space to the encoder layer, and from the encoder layer to the input embedding space. This dual-level attribution analysis enables us to investigate how interpretable sparse features relate to model internals and ultimately influence the input-level representations.

To this end, we define a two-step attribution mechanism:

STEP 1: ATTRIBUTION FROM SPARSE FEATURES TO ENCODER LAYER

Let $\psi \in \mathbb{R}^F$ represent the importance scores of sparse features (obtained via attribution methods). We propagate these to the encoder layer as:

$$\boldsymbol{\phi}^{\text{enc}} = W \boldsymbol{\psi} \in \mathbb{R}^d, \tag{39}$$

where $\phi^{\rm enc}$ quantifies the contribution of each encoder neuron to the important SAE features.

STEP 2: ATTRIBUTION FROM ENCODER LAYER TO INPUT

To assign attribution scores to input dimensions, we propagate $\phi^{\rm enc}$ to the input embedding via the gradient of the encoder:

$$\boldsymbol{\phi}^{\text{input}} = \left(\frac{\partial \mathbf{x}}{\partial \mathbf{x}_{\text{input}}}\right)^{\top} \boldsymbol{\phi}^{\text{enc}} \in \mathbb{R}^{d_{\text{input}}}.$$
(40)

Alternatively, attribution methods (e.g., Integrated Gradients, SHAP) can directly estimate:

$$\phi^{\text{input}} = \text{AttributionMethod}(f, \mathbf{x}_{\text{input}}, \phi^{\text{enc}})$$

This dual-level attribution analysis allows us to connect semantically meaningful sparse features to the raw input representation space.

B SUPPLEMENTARY MATERIAL

B.0 RELATED WORK

B.0.1 ATTRIBUTIONAL INTERPRETABILLITY

Attributional interpretability (AtI), a branch of explainable AI (XAI), focuses on explaining model outputs by tracing predictions back to individual input contributions, often using gradient-based methods Bereska & Gavves (2024). While gradients provide insights into the relationship between inputs and outputs, they can be sensitive to perturbations or discontinuities, posing challenges for reliable interpretation.

AtI encompasses various methods for interpreting complex, nonlinear models, including techniques like Local Interpretable Model-agnostic Explanations (LIME; Ribeiro et al. (2016)) and

SHapley Additive exPlanations (SHAP; Lundberg & Lee (2017)). In medical imaging, popular attribution techniques include SHAP, Layer-wise Relevance Propagation (LRP; Bach et al. (2015)), and gradient-based methods like GRAD-CAM (Singh et al. (2020)). These methods aim to enhance trust in models and provide valuable insights into decision-making processes. However, they face limitations. For instance, LRP emphasizes positive preactivations, often yielding less precise explanations, while SHAP is computationally intensive due to the complexity of calculating Shapley values Lundberg & Lee (2017). Adaptations like Monte Carlo methods and stratified sampling (e.g., SVARM) have improved the efficiency and precision of certain techniques Kolpaczki et al. (2024).

B.0.2 MECHANISTIC INTERPRETABILITY AND SPARSE AUTOENCODER

Mechanistic interpretability (MI), a key area of explainable AI (XAI), focuses on understanding the internal activation patterns of AI models by analyzing their fundamental components, such as features, neurons, layers, and connections. Unlike AtI, MI takes a bottom-up approach, aiming to uncover the causal relationships and precise computations that transform inputs into outputs. This method identifies specific neural circuits driving behavior and provides a reverse-engineering perspective. Insights from fields like physics, neuroscience, and systems biology further guide the development of transparent and value-aligned AI systems.

A core principle of MI is the concept of polysemanticity, where individual neurons encode multiple concepts, contrasted with monosemanticity, where neurons correspond to a single semantic concept. Polysemanticity reduces interpretability, as neurons represent overlapping features. Structures like sparse autoencoders (SAEs) address this by leveraging the superposition hypothesis, which posits that neural networks use high-dimensional spaces to represent more features than the number of neurons, encoding them in nearly orthogonal directions. SAEs decompose embeddings from deep layers, such as MLPs or transformer attention layers, into higher-dimensional monosemantic representations, aligning activation patterns with specific concepts of interest Cunningham et al. (2023); Elhage et al. (2022a).

Sparse Autoencoder architectures have significantly advanced our understanding of feature representations in language and vision models Gorton (2024). Neural network behavior is often interpreted through *computational circuits*—groups of neurons that compute meaningful functions, such as edge detectors Olah et al. (2020a) or word-copying units Olsson et al. (2022). Leveraging SAE-derived features instead of raw neurons has improved the interpretability of circuits associated with complex behaviors Marks et al. (2024). This shift enables clearer mappings between neuron activations and high-level functions, facilitating validation of model behavior Bereska & Gavves (2024). By aligning internal representations with privileged basis directions—distinct semantic vectors within network layers—researchers further enhance monosemanticity and advance the interpretability of deep models.

B.1 ALZHEIMER DATASET AND PREPROCESSING

B.1.1 PREPROCESSING

The ADNI data Mueller et al. (2005) was downloaded from the Image & Data Archive (IDA) Neu et al. (2023), run by the Laboratory of Neuro Imaging (LONI) at the USC Mark and Mary Stevens Neuroimaging and Informatics Institute. The download comprised folders including information about participants' enrollment, biospecimen, assessments, medical history, imaging and study information. In this work, only baseline ('bl') visit data was extracted, that is the first visit the patient underwent when joining each study. The number of unique participant's RIDs (subject's roster ID) was then recorded, and the intersection of such identifiers across the baseline datasets was calculated through an overlap matrix assessing participant coverage by considering datasets symmetrically. The obtained result, underwent precise analysis and filtering. Non-informative and administrative columns (i.e.: SOURCE, update_stamp, SITEID, etc.) were removed across all datasets, to then perform a column-wise completeness check to retain only variables with at least 80% of values present and to balance data availability with feature retention. By prioritizing datasets with the highest number of unique RIDs at baseline, pairwise merging based on shared RIDs was performed (i.e.: inner joins), considering the following files: ADAS, NEUROBAT, FAQ, VITALS, DXSUM. Diagnosis data was sorted chronologically according to EXAMDATE and de-duplicated so as to obtain the first - baseline - diagnosis per

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614 615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

631

632 633

634 635

636

637

638

639

640

641

642

643

645

646

647

subject. Moreover, to ensure robust classification, this was complemented by matching data from adni_diagnosisDXSUM files. For data augmentation purposes, demographics data was obtained from adni_demographic_PTDEMOG and merged according to matching RIDs. Biospecimen and medication data were filtered, cleaned and aggregated by participant - however, due to high sparsity and no adherence of column data to the completeness threshold, such information was not included in the final merge. Similarly, no genetic data was included, due to the lack of relevant biological variables with enough completeness, as remaining columns were primarily collection metadata. The final merged dataset - after excluding administrative columns - comprised 2791 unique participant RIDs with comprehensive neuropsychological, clinical, biospecimen, vital sign, and demographic data at baseline, with the following diagnosis count: 1207 patients diagnosed with Early Mild Cognitive Impairment (EMCI), 441 with Late Mild Cognitive Impairment (LMCI), and 1143 control subjects. For the binary classification task, EMCI and LMCI subjects were unified into a unique MCI cohort, while for the three-class classification, all three subsets were retained, considering only 440 subjects per class, for balancing purposes. Variables from the obtained merged dataset, were mapped to their descriptions and categorical values, according to the DATADIC_adni123GO dictionary from ADNI Mueller et al. (2005). Text was then generated by iterating through each subject row, replacing column names with their description and appending the corresponding column value for the specific patient. Whereby categorical values were present, they were replaced with their corresponding textual value (i.e.: " 'sex': 0 " - was transformed into "The patient's sex is: male"). Two distinct datasets - one for training and one for testing - were generated from the obtained final datasets, and they were split into training, testing and validation sets.

Another dataset was utilized for further model refinement and finetuning. Specifically, the additional data was extrapolated from MRI files from the Latin American Brain Health Institute (BrainLat) dataset, a multi-site initiative that provides neuroimaging, cognitive, and clinical data across several countries in the Latin American region al (2023). The data included cognition, demographic and records information of 780 subjects. A pre-processing pipeline similar to that employed for ADNI, was followed. Namely, after filtering throughout all MRI files, 760 unique and common MRI IDs - representing each subject - were identified. After dropping subjects with a higher proportion of data missing, and columns not fulfilling the completeness threshold, median imputation based on diagnosis group mean was applied for variables with less than 30% of data missing (such as 'Age' and 'years of education' for example) with the goal of obtaining a more complete dataset. After dropping administrative and non-informative columns, the final merged dataset comprised variables deriving from cognitive tests (MOCA - Montreal Cognitive Assessment test and the IFS - INECO Frontal Screening) and participants' demographics. The diagnosis distribution of the obtained dataset was the following: 101 control subjects (CN), 109 diagnosed with Fronto-Temporal Dementia (FTD), and 118 subjects with AD. The same process as for ADNI was followed to obtain textual descriptions of BrainLat patients' data, considering the related dictionary from al (2023). Finally, training and testing files where obtained, whereby each class had 50 representative samples each, both for the binary and for the three-class classification. The handling of the final split into training, testing, and validation sets was handled as for ADNI.

B.1.2 Demographic Comparison of Alzheimer's Cohorts and Matched Controls

To ensure demographic comparability and reduce confounding in downstream analyses, we examined age and sex distributions across each Alzheimer's disease (AD) cohort and control groups.

Considering the cohorts for the binary classification from ADNI Mueller et al. (2005), AD subjects (n=1207) and the control group (n=1143), it is worth noting that both groups consider subjects who were born between a range that goes from the 1930s to the 1960s with comparable distributions. The AD group exhibits sharper age peaks, (Figure 1(a)), while the control group shows a more uniform spread. A similar pattern is evident from the three-class classification cohorts (Figure 1(c)), whereby patients diagnosed with LMCI and MCI tend to be demonstrate higher density at certain points, whereas healthy subjects' birth year distribution tends to be flatter.

The gender distribution is uniform across groups, both in binary and three-class classification (Figures 1(b) and 1(d)), with a slight predominance of female participants in AD groups, but overall disparity suggests minimal risk of demographic bias.

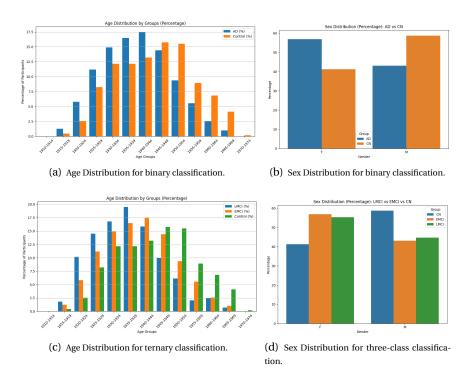


Figure 1: Demographic distributions (age and gender) for Alzheimer's cohorts and control groups for both binary and ternary classification tasks. The top row refers to the binary task, while the bottom row analyzes cohorts for the ternary classification task.

Regarding the BrainLat dataset al (2023), similar patterns are evident. Control subjects are, on average, younger than subjects diagnosed with AD by 4 years, although the distribution for AD tends to be more coherently spread than the one for CN (AD cohort mean age: 71, with a standard deviation of 8.7, CN cohort mean age: 67, with standard deviation of 8.5). In the cohorts obtained for the three-class classification task, the age difference remains the same - as AD subjects tend to be the oldest, followed by those belonging to the FTD cohort and CN cohort respectively. Age variability in this case, becomes more comparable between the different diagnoses. Similarly to what was found for ADNI, gender-wise, the data distribution tends to be more skewed toward female participants, both in the AD and in the CN cohorts. The same is found for the subsets obtained for the three-class classification task, whereby female patients diagnosed with AD and FTD represent a higher number than male ones.

B.2 PHENOTYPIC AND LIFESTYLE PROFILING

To characterize the ADNI cohorts beyond age and sex, we analyzed phenotypic and lifestyle variables spanning physical health (e.g., systolic and diastolic blood pressure, respiratory and pulse rate, height, weight, body temperature, dominant hand) and behavioral and lifestyle factors (e.g., living situation, marital status, primary language). These features were compared across all four groups to identify significant inter-group differences Mueller et al. (2005).

In the comparison between AD and CN cohorts for the binary classification, a significant difference was found in subjects' pulse rate (p < 0.05) based on independent samples t-test - consistent with the nervous system dysfunction that Alzheimer's involves. Instead, no significance was found for systolic and diastolic blood pressure, respiratory rate, body temperature and weight. In terms of behavioral and lifestyle factors, a significant difference in marital status - based on Fisher's exact test - was observed between the two groups. Although most of subjects in the AD and CN groups were married, widowed individuals made up a larger proportion than divorced individuals in the AD group, while the opposite was true for CN subjects. Moreover, the CN group had a higher percentage of individuals who had never been married. Subjects also differed for living situation

(Fisher's exact test). Most subjects diagnosed with AD, lived in a house and smaller proportions lived in - respectively - a condo, an apartment, and a mobile home, with the lowest percentages residing in a retirement community and in an assisted living facility. Although CN subjects also predominantly lived in a house, they were more likely than AD subjects to live in an apartment or a condo, followed by a mobile home, an assisted living facility and lastly, a retirement community.

B.3 MODALITIES SUBGROUP EXTRACTIONS

Table 1: Variables with character counts, generation order, and estimated tokens (tokens ≈ $\lceil chars/4 \rceil$).

Variable	Description	Chars	Order	Tokens (est.)
PTGENDER	The participant's sex is	30	1	8
PTDOB	Their Date of Birth is	31	2	8
PTDOBYY	Their Year of Birth is	28	3	7
PTHAND	Their Handedness is	26	4	7
PTMARRY	Their Marital status at baseline is	44	5	11
PTEDUCAT	Their education in years is	31	6	8
PTNOTRT	Participant Retired?	25	7	7
PTHOME	Type of Participant residence	54	8	14
PTTLANG	Language to be used for testing the Participant	56	9	14
PTPLANG	Participant's Primary Language	39	10	10
PTETHCAT	The participant's Ethnicity is	54	11	14
PTRACCAT	Trail Making Test: Race	28	12	7
PTSOURCE	Information Source	37	13	10
VSWEIGHT	The participant's weight is	32	14	8
VSWTUNIT	The weight was measured in	34	15	9
VSBPSYS	The participant's Systolic - mmHg	40	16	10
VSBPDIA	The participant's Diastolic - mmHg	40	17	10
VSPULSE	The participant's Seated Pulse Rate (per minute) is	56	18	14
VSRESP	The participant's Respirations (per minute) are	51	19	13
VSTEMP	The participant's Temperature is	37	20	10
VSTMPSRC	The Temperature Source was	32	21	8
VSTMPUNT	The Temperature Units were	38	22	10
DXDEP	Depressive symptoms present?	32	23	8
CLOCKCIRC	On the Clock Drawing Test the partecipant answered the follow-	126	24	32
ozo onomo	ing questions in this way: Approximately circular face	120		52
CLOCKSYM	Symmetry of number placement	39	25	10
CLOCKNUM	Correctness of numbers	31	26	8
CLOCKHAND	Presence of the two hands	34	27	9
CLOCKTIME	Presence of the two hands, set to ten after eleven	59	28	15
CLOCKSCOR	Clock Drawing Test: Total Score	36	29	9
COPYCIRC	On the Clock copying task the participant scored as follows:	95	30	24
	Approximately circular face			
COPYSYM	Symmetry of number placement	39	31	10
COPYNUM	Correctness of numbers	31	32	8
COPYHAND	Presence of the two hands	34	33	9
COPYTIME	Presence of the two hands, set to ten after eleven	59	34	15
COPYSCOR	Clock copying task: Total Score	36	35	9
AVTOT1	On the Auditory Verbal Learning Test the participant scored as	104	36	26
	follows in each trial: Trial 1 Total	101	00	
AVERR1	Total Intrusions	19	37	5
AVTOT2	Trial 2 Total	16	38	4
AVERR2	Total Intrusions	19	39	5
AVTOT3	Trial 3 Total	16	40	4
AVERR3	Total Intrusions	19	41	5

Continued on next page

Variable	Description	Chars	Order	Tokens (est.)	
AVTOT4	Trial 4 Total	16	42	4	
AVERR4	Total Intrusions	19	43	5	
AVTOT5	Trial 5 Total	16	44	4	
AVERR5	Total Intrusions	19	45	5	
AVTOT6	Trial 6 Total	16	46	4	
AVERR6	Total Intrusions	19	47	5	
AVTOTB	List B Total	15	48	4	
AVERRB	Total Intrusions	19	49	5	
CATANIMSC	On the Category Fluency Test Animals the scores were: - Total Correct	73	50	19	
CATANPERS	Perseverations	17	51	5	
CATANINTR	Intrusions	13	52	4	
TRAASCOR	Part A - Time to Complete	29	53	8	
TRAAERRCOM	Errors of Commission	23	54	6	
TRAAERROM	Errors of Omission	21	55	6	
TRABSCOR	Part B - Time to complete	30	56	8	
TRABERRCOM	Errors of Commission	23	57	6	
TRABERROM	Errors of Omission	21	58	6	
AVDEL30MIN	On the Auditory Verbal Learning Test the participant scored as	96	59	24	
	follows: 30 Minute Delay Total				
AVDELERR1	Total Intrusions	19	60	5	
AVDELTOT	Recognition Score	20	61	5	
AVDELERR2	Total Intrusions	19	62	5	
ANARTERR	American National Adult Reading Test: ANART Total Score (Total # of errors)	81	63	21	
FAQFINAN	For the Functional Activities Questionnaire the participant scored as follows for each question: Writing checks, paying bills, or balancing checkbook.	151	64	38	
FAQFORM	Assembling tax records, business affairs, or other papers.	58	65	15	
FAQSHOP	Shopping alone for clothes, household necessities, or groceries.	64	66	16	
FAQGAME	Playing a game of skill such as bridge or chess, working on a hobby.	68	67	17	
FAQBEVG	Heating water, making a cup of coffee, turing off the stove.	60	68	15	
FAQMEAL	Preparing a balanced meal.	26	69	7	
FAQEVENT	Keeping track of current events.	32	70	8	
FAQTV	Paying attention to and understanding a TV program, book, or magazine.	70	71	18	
FAQREM	Remembering appointments, family occasions, holidays, medications.	66	72	17	
FAQTRAVL	Trail Making Test for FAQ score: Traveling out of the neighborhood, driving, or arranging to take public transportation.	121	73	31	
FAQTOTAL	Total Score for FAQ is	26	74	7	

Based on Table 1, we extracted nine subgroups as follows: Demographics, Vital Signs, Clock Drawing Test, Clock Copying Test, Auditory Verbal Learning Test (version 1), Category Fluency – Animal Test, Auditory Verbal Learning Test (version 2), American National Adult Reading Test, and Functional Activities Questionnaire.

B.4 DATASETS CLAIMS

Data used in the preparation of this article was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) on August 8th 2025 (version: "08Aug2025") and it included all ADNI phases. ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. It aimed at testing whether cognitive, imaging, genetic, clinical, neuropsychological assessment and other biological markers, can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). The goals also include the validation of biomarkers for clinical trials, and the provision of

811

812 813

814

815 816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833 834

835

836

837

838 839 840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

data concerning the diagnosis and progression of Alzheimer's disease to the scientific community. For up-to-date information, see adni.loni.usc.edu.

B.5 SUMMARY OF TRAINING OUTCOMES FOR LLM ENCODERS VS DECODERS ON IID AND OOD DATASETS

We systematically compared fine-tuned encoder models (BERT, ROBERTa, Distilbert, ALBERT, BioBERT, ModernBERT) against prompt-based decoder models (DeepSeek, Mistral, Qwen2.5, Gemma, LLaVA, LLaMA-2, WizardLM-2) on ADNI (in-domain, IID) and evaluated cross-dataset generalization to BRAINLAT (out-of-domain, OOD). Under uniform training and evaluation, encoders were fully fine-tuned, while decoders were used in few-shot (in-context) settings with temperature control but no parameter updates. On ADNI, ModernBERT is the strongest encoder across all metrics: Binary—Acc: 0.7237, F1: 0.7589, ROC-AUC: 0.8395, AUC-PR: 0.8641. Threeclass—Acc: 0.6505, F1: 0.6880, ROC-AUC: 0.7867, AUC-PR: 0.7848. BioBERT and RoBERTa are the most competitive baselines but remain below ModernBERT. Decoder models trail encoders on all metrics; the gap is most evident for macro-F1 and macro-Recall. Among decoders, careful prompt/temperature tuning improves determinism and yields the best few-shot scores for DeepSeek (Acc 0.623, F1 0.617, AUC-PR 0.619, ROC-AUC 0.618), with Mistral/Qwen2.5 close behind. For OOD transfer (ADNI \rightarrow BRAINLAT), ModernBERT in zero-shot achieves $Acc \sim 0.55$ (e.g., Acc 0.53, Prec 0.52, Rec 0.70, F1 0.60, ROC-AUC/AUC-PR ~0.58), indicating high recall but limited precision at default threshold; few-shot supervision and LoRA provide moderate, comparable gains up to Acc ~0.62 with stable AUCs; full fine-tuning on BRAINLAT delivers the largest improvement (Acc: 0.84) with corresponding gains in F1, ROC-AUC, and AUC-PR. However, this setting is outside the scope of this work: we focus on explanation performance under OOD conditions without training on the OOD cohort (i.e., without full fine-tuning).

Therefore, for all downstream analyses we *stick with ModernBERT*: in the IID setting we use *ModernBERT* fine-tuned on ADNI (best overall on in-domain tasks), and in the OOD setting we use *ModernBERT* in a zero-shot configuration on BrainLat (best overall under out-of-domain conditions). All subsequent explainability analyses were conducted using the final (22nd) layer of *ModernBERT*.

B.6 HYPERPARAMETER TUNING FOR THE RECONSTRUCTION OPTIMIZER AND SAE MODELS.

A thorough hyperparameter tuning process was conducted for each simulation (Figures 3, 4, 5). The explanation optimizer was trained with learning rates of 2e⁻², 2e⁻³, 2e⁻⁴, and 2e⁻⁵, with the best performance observed at $2e^{-4}$. Various combinations of the weighting parameters $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ were tested—for example, (0.3, 0.2, 0.25, 0.25)—with the optimal configuration found to be (0.1, 0.3, 0.1, 0.5). For the UMAP constraints, subgroup levels were evaluated across several scales: no UMAP, every 4× batch size, 10× batch size, and full cohort level. The best performance was achieved at the 4× batch size level. Regarding the SAE (Sparse Autoencoder), different model variants were evaluated, including *Standard*, *TopK*, *JumpReLU*, and *GATE*, as described in the Methods section. Among these, the TopK variant achieved the best results. Feature space depths of $16 \times 0.32 \times 0.00$ and 64× were tested, with 32× providing the best trade-off between sparseness and reconstruction performance. The final simulation and training settings included the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 2e⁻⁴, a batch size of 64, and 200 total training steps, using a 50/50 train-validation split. The learning rate schedule followed a fixed-step approach with a step size of 150 and a decay factor (gamma) of 0.95. For the SAE training, we used 6,000 training steps, 200,000 training tokens, a learning rate of 5e⁻⁵, and a model dimension of 768, consistent with the 22-layer Modern-BERT architecture. The context size was 512, with warm-up steps of 1,000, learning rate decay steps of 1,200, and L1 warm-up steps of 300. Finally, explanation metrics such as ROS, RIS, and sparseness were computed using default configurations from the quantus Python package (Hedström et al., 2023). Figure 3 presents a comparative visualization of activation patterns projections generated by different Sparse Autoencoder (SAE) variants—TopK-SAE, Gate-SAE, JumpReLU-SAE, and Standard-SAE—applied to two subject groups: Alzheimer's and Control. While the specific axes and metrics are not labeled, the separation between the two groups provides insight into the effectiveness of each SAE in producing disentangled, semantically meaningful representations. Among the models, the TopK-SAE exhibits the clearest separation between the Alzheimer's and Control cohorts, suggesting superior performance in capturing clinically

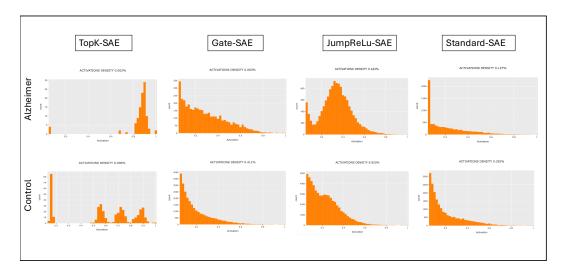


Figure 2: Latent space projections from four SAE variants (TopK-SAE, Gate-SAE, JumpReLU-SAE, Standard-SAE) applied to Alzheimer's and Control groups. TopK-SAE shows the clearest group separation, highlighting its superior ability to extract interpretable, clinically relevant features.

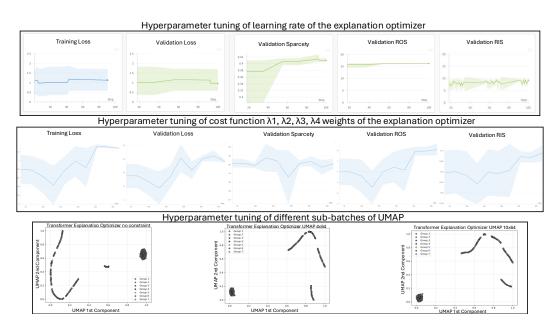


Figure 3: **Hyperparameter tuning of the explanation optimizer and UMAP settings.** Top row: impact of learning rate on training loss, validation loss, sparseness, ROS, and RIS metrics. Middle row: sensitivity analysis of the explanation cost weights λ_1 , λ_2 , λ_3 , and λ_4 , showing trade-offs between attribution sparseness and robustness. Bottom row: UMAP projections of token-level attribution spaces under different sub-batch configurations, revealing how UMAP resolution influences the geometric structure of explanations.

relevant patterns. This visual evidence supports the paper's central claim that monosemantic representations enhance interpretability and robustness in clinical applications of LLMs.

B.7 EXTRA RESULTS

Figure 6 compares training dynamics and interpretability metrics on ADNI for binary (top row) and three-class (bottom row) classification. Each subfigure shows three variants of the Explanation

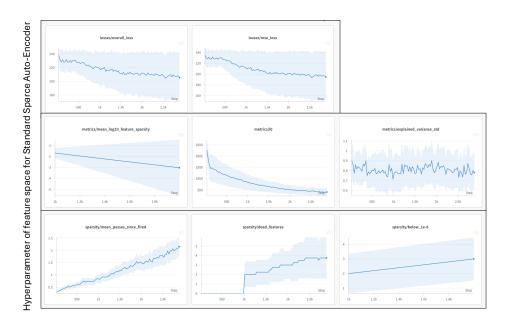


Figure 4: Hyperparameter tuning of the feature space for the Standard Sparse Autoencoder (SAE). The plots track training dynamics and sparseness characteristics across training steps. Top row: loss trends for overall and reconstruction loss. Middle row: log-sparsity metric, Kullback–Leibler divergence (KL), and explained variance standard deviation. Bottom row: progression of sparsity across mean-poisson stem-freed features, fixed features, and a threshold-based view (1e-6). These results guide optimal SAE configurations for producing monosemantic feature representations.

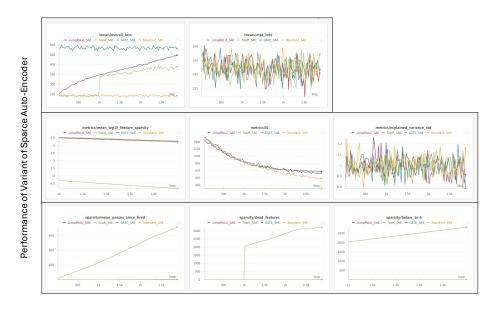


Figure 5: Performance comparison of different variants of the Sparse Autoencoder (SAE). Top row: overall and reconstruction loss across training steps for JumpInit-SAE, Top-k SAE, Gated-SAE, and Standard-SAE. Middle row: log-sparsity metric, KL divergence, and explained variance standard deviation, showing divergence in regularization behavior. Bottom row: sparsity progression for mean-poisson stem-freed features, fixed feature count, and a thresholded view (1e-6). JumpInit-SAE shows early convergence in sparsity, while Gated-SAE maintains tighter control over variance. These results highlight trade-offs between sparsity enforcement mechanisms and attributional stability.

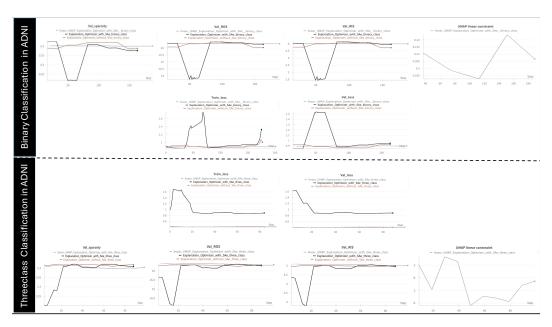


Figure 6: Training and interpretability dynamics on ADNI for binary (top) and three-class (bottom) classification. *Each subfigure includes three variants*: Explanation Optimizer *without* SAE (black), *with* SAE (brown), and *with* SAE + linear UMAP constraint (grey. For each variant we plot train loss, validation loss, UMAP reconstruction MSE (linear UMAP constrain), Relative Output Stability (ROS), Relative Input Stability (RIS), and sparcety, cohorts shown separately. SAE reduces volatility and lowers UMAP MSE and RIS/ROS versus the no-SAE baseline; adding a linear UMAP constraint on top of SAE further improves manifold structure and attribution stability, at a minor cost in sparsity.

Optimizer: without SAE (black), with SAE (brown), and with SAE + linear UMAP constraint (grey). Each row in the figure presents the model's behavior over training steps across six key metrics: train loss, validation loss, UMAP reconstruction error (MSE), Relative Output Stability (ROS), Relative Input Stability (RIS), and sparsity, . Across both tasks, all training ROS and RIS values for the SAE-based variants (brown/grey) are consistently lower than the no-SAE baseline (black), indicating improved attributional robustness. While sparseness does decrease when introducing SAE, the reduction is modest; adding the linear UMAP constraint (grey) achieves a better balance, maintaining relatively high sparsity while keeping low RIS/ROS. Finally, the training and validation curves track closely and remain smooth for the SAE variants, providing no evidence of overfitting: validation loss follows training loss without widening gaps in either the binary or three-class setting. Overall, the SAE-enhanced Explanation Optimizer demonstrates significantly improved performance across all interpretability metrics, supporting the hypothesis that enforcing monosemantic representations improves explanation clarity and reliability—especially in high-stakes clinical contexts like Alzheimer's disease classification.

Across IID (ADNI) and OOD (BrainLat) settings, and for both binary (Alzheimer vs. Control) and three-class (Control/LMCI/MCI) tasks, the tables reveal a consistent stability–sparsity frontier driven by the proposed explanation optimizers and the presence of a monosemantic bottleneck (SAE). In the binary IID case (Table 2), SAE substantially improves stability for explainers that learn features—most notably Layer Conductance and especially TEO—with large drops in RIS/ROS for both Alzheimer and Control, while Activation with SAE increases RIS/ROS and is therefore less robust. In the binary OOD case (Table 3), these patterns persist and even strengthen: TEO with SAE bottleneck attains the lowest RIS/ROS overall, demonstrating strong cross-dataset stability, whereas TEO–UMAP recovers higher sparseness (>0.40) at the cost of higher RIS/ROS than TEO with SAE, offering a tunable sparsity–stability trade-off. In the three-class IID setting (Table 4), Feature Ablation is the sparsity leader across Control/LMCI/MCI (0.52–0.53) with moderate, steady RIS/ROS; Layer Conductance with SAE markedly reduces RIS/ROS for LMCI/MCI; and TEO with SAE again delivers the most stable attributions across all classes (lowest RIS/ROS), albeit

with reduced sparseness. The same rank ordering holds OOD (Table 5): TEO with SAE remains the stability winner for Control/LMCI/MCI, TEO–UMAP trades some stability for additional sparsity, and Feature Ablation remains the simplest high-sparsity baseline. Throughout all tables, gradient-formulaic methods (Grad-SHAP, Guided Backprop, Integrated Gradients) show near-invariant RIS/ROS (5.6/16.93) regardless of SAE, class, or domain, indicating that SAE chiefly benefits learned-attribution methods. Collectively, Tables 2, 3, 4, and 5 support three conclusions: (i) adding an SAE bottleneck reliably lowers RIS/ROS where explanations are learned (Layer Conductance, TEO), (ii) TEO with SAE is the default when stability is paramount, while TEO–UMAP is preferred when higher sparsity is required, and (iii) the class-wise and IID to OOD behaviors are consistent, underscoring the robustness of monosemantic representations for clinical explanation.

Table 2: Evaluation scores with and without SAe. Values are mean \pm std. Classes: Alzheimer and Control. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). Column order: Alzheimer (No SAE), Alzheimer (SAE), Control (No SAE), Control (SAE). All evaluation metrics were calculated on 200 randomly selected patients from each class (binary-class classification task) in the **ADNI** testing cohort (IID). Abreviations, DEO: Diffusion Explanation Optimizer, TEO: Transformer Explanation Optimizer, TEO-UMAP: Transformer Explanation Optimizer with UMAP constraint.

Method	Metric	Alzho	eimer	Control			
		No SAE	SAE	No SAE	SAE		
Activation	Sparseness RIS ROS	$\begin{array}{c} 0.316364045 \pm 0.007573187 \\ 14.30227 \pm 0.368612837 \\ 25.54851914 \pm 0.482826721 \end{array}$	$\begin{array}{c} 0.296615553 \pm 0.007063087 \\ 21.3084024 \pm 0.311021506 \\ 32.61738364 \pm 0.307928076 \end{array}$	$\begin{array}{c} 0.256150148 \pm 0.01759176 \\ 14.23653893 \pm 0.338127875 \\ 25.54874248 \pm 0.328628877 \end{array}$	$\begin{array}{c} 0.251987915 \pm 0.004701258 \\ 19.32752421 \pm 0.932339244 \\ 30.6394217 \pm 0.933402318 \end{array}$		
Layer Condact	Sparseness RIS ROS	$\begin{array}{c} 0.396588773 \pm 0.026146226 \\ 12.39850671 \pm 2.640648847 \\ 23.146556 \pm 1.686524073 \end{array}$	$\begin{array}{c} 0.391508745 \pm 0.007549659 \\ 5.628509596 \pm 0.023609264 \\ 16.94708243 \pm 0.010343602 \end{array}$	$\begin{array}{c} 0.374476778 \pm 0.007092037 \\ 5.650216593 \pm 0.0391015 \\ 16.9614573 \pm 0.031757755 \end{array}$	$\begin{array}{c} 0.247974319 \pm 0.007908586 \\ 5.614140617 \pm 0.018407327 \\ 16.93014311 \pm 0.005191254 \end{array}$		
Feature Ablation	Sparseness RIS ROS	$\begin{array}{c} \textbf{0.523581491} \pm \textbf{0.009806381} \\ 23.15233791 \pm 0.819793812 \\ 33.90884482 \pm 0.161311922 \end{array}$	$\begin{array}{c} \textbf{0.523492234} \pm \textbf{0.010441342} \\ 23.56094785 \pm 0.103321598 \\ 34.92976979 \pm 0.074540131 \end{array}$	$\begin{array}{c} \textbf{0.525551296} \pm \textbf{0.011012696} \\ 22.56110559 \pm 0.288403561 \\ 33.90759033 \pm 0.374703897 \end{array}$	$\begin{array}{c} \textbf{0.526520447} \pm \textbf{0.008837301} \\ 23.62208862 \pm 0.093292383 \\ 34.9726397 \pm 0.10327352 \end{array}$		
Gradinet-SHAP	Sparseness RIS ROS	$\begin{array}{c} 0.319169309 \pm 0.004303288 \\ 5.623104979 \pm 0.023650419 \\ 16.93566464 \pm 0.001800535 \end{array}$	$\begin{array}{c} 0.082047681 \pm 0.015464469 \\ 5.621792106 \pm 0.022658996 \\ 16.93449562 \pm 1.54604E-05 \end{array}$	$\begin{array}{c} 0.433346255 \pm 0.003004736 \\ 5.632513362 \pm 0.023548461 \\ 16.94606355 \pm 0.002246403 \end{array}$	$\begin{array}{c} 0.133912362 \pm 0.009943283 \\ 5.619618915 \pm 0.019004514 \\ 16.93475655 \pm 5.99931E\text{-}06 \end{array}$		
Gradient Activation	Sparseness RIS ROS	$\begin{array}{c} 0.327713636 \pm 0.03837053 \\ 5.614858128 \pm 0.019338754 \\ 16.93028085 \pm 0.003427604 \end{array}$	$\begin{array}{c} 0.203454702 \pm 0.011686877 \\ 5.625220574 \pm 0.021340754 \\ 16.93433453 \pm 6.78428 \text{E}{-}05 \end{array}$	$\begin{array}{c} 0.249969957 \pm 0.023039465 \\ 5.616992957 \pm 0.021780592 \\ 16.934673 \pm 1.43645E\text{-}14 \end{array}$	$\begin{array}{c} 0.16678783 \pm 0.00722766 \\ 5.617270064 \pm 0.022114697 \\ 16.93473306 \pm 4.02532E\text{-}05 \end{array}$		
Integrated-Gradient	Sparseness RIS ROS	$\begin{array}{c} 0.298289818 \pm 0.008006549 \\ 5.620585979 \pm 0.018022403 \\ 16.93257772 \pm 0.001464829 \end{array}$	$\begin{array}{c} 0.121161362 \pm 0.005775061 \\ 5.622360787 \pm 0.017750318 \\ 16.93453232 \pm 1.20129E\text{-}05 \end{array}$	$\begin{array}{c} 0.430359021 \pm 0.006572262 \\ 5.627793468 \pm 0.018989203 \\ 16.94336632 \pm 0.002408932 \end{array}$	$\begin{array}{c} 0.064427234 \pm 0.005909053 \\ 5.621391149 \pm 0.016872007 \\ 16.93456653 \pm 8.33237E-06 \end{array}$		
DEO	Sparseness RIS ROS	$\begin{array}{c} 0.338261111 \pm 0.003260844 \\ 9.283888889 \pm 0.080010212 \\ 20.63421053 \pm 0.086558637 \end{array}$	$\begin{array}{c} 0.337375 \pm 0.00290587 \\ 9.279 \pm 0.064555158 \\ 20.615 \pm 0.088049029 \end{array}$	$\begin{array}{c} 0.337742857 \pm 0.001742551 \\ 9.313125 \pm 0.142722049 \\ 20.61588235 \pm 0.202578961 \end{array}$	$\begin{array}{c} 0.314044444 \pm 0.001036523 \\ 9.175 \pm 0.108803655 \\ 20.515 \pm 0.129878486 \end{array}$		
TEO	Sparseness RIS ROS	$\begin{array}{c} 0.421975723 \pm 0.000305212 \\ \textbf{5.051961362} \pm \textbf{0.019221728} \\ \textbf{16.35285123} \pm \textbf{0.00563874} \end{array}$	$\begin{array}{c} 0.267210213 \pm 0.001025675 \\ \textbf{1.622662574} \pm \textbf{0.17080061} \\ \textbf{12.92504253} \pm \textbf{0.170261034} \end{array}$	$\begin{array}{c} 0.419939638 \pm 0.00048088 \\ \textbf{5.06881834} \pm \textbf{0.01838977} \\ \textbf{16.37765691} \pm \textbf{0.001096906} \end{array}$	$\begin{array}{c} 0.268167213 \pm 0.000728522 \\ \textbf{0.996401319} \pm \textbf{0.263922792} \\ \textbf{12.29830928} \pm \textbf{0.261259725} \end{array}$		
TEO-UMAP	Sparseness RIS ROS	N/A N/A N/A	$\begin{array}{c} 0.39891406 \pm 0.000414208 \\ 5.439373370 \pm 0.033211570 \\ 16.3036705 \pm 0.00333634 \end{array}$	N/ A N/ A N/ A	$\begin{array}{c} 0.40566988 \pm 0.00031341 \\ 5.47087230 \pm 0.17460810 \\ 16.21021807 \pm 0.0078926 \end{array}$		

B.8 STATISTICAL ANALYSIS

We conducted both parametric and non-parametric statistical tests on the binary and three-class classification performance of all classes and tasks in the ADNI cohort to assess the significance of differences introduced by the monosemantic bottleneck (SAE) in traditional attribution techniques, focusing on the metrics of Sparseness, RIS, and ROS.

For the binary classification task, in both the Control and Alzheimer's groups, paired testing demonstrated that SAE produced robust and statistically significant reductions in attribution-based measures and Complexity, while effects on RIS were smaller but still reliable, and changes in ROS were modest and often non-significant after correction. In the Control group, Complexity decreased from 0.3377 ± 0.0017 (no-SAE) to 0.3140 ± 0.0010 (SAE), yielding t(29) = 64.0, $p = 1.5 \times 10^{-47}$ (FDR $q < 10^{-46}$), and RIS declined from 9.313 ± 0.143 to 9.175 ± 0.109 , t(29) = 4.22, $p = 9.5 \times 10^{-5}$ (FDR $q = 1.9 \times 10^{-4}$), both clearly rejecting the null hypothesis, whereas ROS decreased slightly from 20.616 ± 0.203 to 20.515 ± 0.131 , t(29) = 2.30, p = 0.026 (FDR q = 0.026), a marginal result that did not withstand correction. Attribution metrics showed the largest SAE

Table 3: Evaluation scores with and without SAE. Values are mean \pm std. Classes: Alzheimer and Control. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). Column order: Alzheimer (No SAE), Alzheimer (SAE), Control (No SAE), Control (SAE). All evaluation metrics were calculated on 50 randomly selected patients from each class (binary-class classification task) in the **BrainLat** testing cohort (OOD). Abreviations, TEO: Transformer Explanation Optimizer, TEO-UMAP: Transformer Explanation Optimizer with UMAP constraint.

Method	Metric	Alzheimer (No SAE)	Alzheimer (SAE)	Control (No SAE)	Control (SAE)
	Sparseness	N/A	$0.1533105 \pm 0.010287697$	N/A	$0.3965415 \pm 0.030322127$
Activation	RIS	N/A	$19.162526 \pm 0.364196762$	N/A	$18.2411505 \pm 0.539197156$
	ROS	N/A	$31.28270375 \pm 1.541354976$	N/A	$29.04058325 \pm 0.473071038$
	Sparseness	N/A	0.239227 ± 0.029777681	N/A	$0.25431875 \pm 0.020993978$
Layer Condact	RIS	N/A	$6.1620695 \pm 0.149481666$	N/A	$6.21494775 \pm 0.20764754$
	ROS	N/A	$16.94383425 \pm 0.007089038$	N/A	$16.9402505 \pm 0.004966063$
	Sparseness	N/A	$\boldsymbol{0.5287845 \pm 0.00700955}$	N/A	$0.52849725 \pm 0.004358269$
Feature Ablation	RIS	N/A	$23.5834065 \pm 0.064538961$	N/A	$24.14743175 \pm 0.115957516$
	ROS	N/A	$34.65309725 \pm 0.252584222$	N/A	$34.961296 \pm 0.220544503$
	Sparseness	N/A	0.120076 ± 0.014392456	N/A	0.057057 ± 0.027064338
Gradinet-SHAP	RIS	N/A	$6.04400225 \pm 0.039573077$	N/A	6.030265 ± 0.047136969
	ROS	N/A	$16.93474475 \pm 5.76852 \text{E-}05$	N/A	16.93475925 ± 5.7373 E-06
	Sparseness	N/A	0.1139535 ± 0.01766843	N/A	0.062973 ± 0.006903384
Gradient Activation	RIS	N/A	6.032837 ± 0.027736802	N/A	$6.0338695 \pm 0.039792395$
	ROS	N/A	16.93468825 ± 3.59398E-06	N/A	16.934848 ± 3.74789E-05
	Sparseness	N/A	$0.0642685 \pm 0.005166108$	N/A	$0.0143455 \pm 0.000312693$
Integrated-Gradient	RIS	N/A	$6.05793275 \pm 0.045559192$	N/A	$6.0275535 \pm 0.033936686$
	ROS	N/A	16.9347635 ± 7.76745E-06	N/A	16.934873 ± 1.06145E-05
	Sparseness	N/A	$0.26914625 \pm 0.001645095$	N/A	0.272516 ± 0.000382866
TEO	RIS	N/A	$\boldsymbol{0.683544 \pm 0.667616072}$	N/A	$\textbf{0.47335295} \pm \textbf{0.280125046}$
	ROS	N/A	11.52356 ± 0.659063208	N/A	11.213036 ± 0.51496551
	Sparseness	N/A	0.398914 ± 0.00047836	N/A	$0.40425175 \pm 0.002851775$
TEO-UMAP	RIS	N/A	$5.43937375 \pm 0.038349421$	N/A	$5.42815425 \pm 0.194389712$
	ROS	N/A	$16.303675 \pm 0.003852471$	N/A	$16.157664 \pm 0.105405246$

Table 4: Evaluation scores with and without SAE. Values are mean \pm std. Classes: Control, LMCI, and MCI. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). All the evaluation metrics were computed on 100 randomly selected patients from each class (three-class classification task) in the testing cohort in **ADNI** dataset (IID). Column order: Control (No SAE), Control (SAE), LMCI (No SAE), MCI (No SAE), MCI (SAE). Abreviations, TEO: Transformer Explanation Optimizer, TEO-UMAP: Transformer Explanation Optimizer with UMAP constraint.

Method	Metric	Con	trol	LM	ICI	M	MCI		
		No SAE	SAE	No SAE	SAE	No SAE	SAE		
Activation	Sparseness RIS ROS	$\begin{array}{c} 0.302953824 \pm 0.037699004 \\ 14.40424929 \pm 0.165969844 \\ 25.721685 \pm 0.170545275 \end{array}$	$\begin{array}{c} 0.345031647 \pm 0.009533629 \\ 18.99683335 \pm 4.483970104 \\ 30.30262794 \pm 0.263575977 \end{array}$	$\begin{array}{c} 0.271540783 \pm 0.038404292 \\ 15.07860783 \pm 1.975358824 \\ 26.39512961 \pm 1.972727766 \end{array}$	$\begin{array}{c} 0.264362053 \pm 0.062996342 \\ 18.42309221 \pm 2.351829228 \\ 29.73331658 \pm 4.847156437 \end{array}$	$\begin{array}{c} 0.262558 \pm 0.03794219 \\ 16.65684576 \pm 2.82076491 \\ 27.96063871 \pm 2.823294834 \end{array}$	$\begin{array}{c} 0.309052111 \pm 0.060296425 \\ 19.42272406 \pm 3.474528306 \\ 30.74189461 \pm 6.104484774 \end{array}$		
Layer Condact	Sparseness RIS ROS	$\begin{array}{c} 0.231524647 \pm 0.009587223 \\ 5.626004529 \pm 0.020886163 \\ 16.94396553 \pm 0.004532066 \end{array}$	$\begin{array}{c} 0.331457882 \pm 0.006159197 \\ 5.622249412 \pm 0.014860465 \\ 16.93904894 \pm 0.010478577 \end{array}$	$\begin{array}{c} 0.362282261 \pm 0.00636308 \\ 13.14289435 \pm 0.325483065 \\ 24.50603352 \pm 0.411948845 \end{array}$	$\begin{array}{c} 0.246395316 \pm 0.062800978 \\ 5.623582526 \pm 0.909878534 \\ 16.93375379 \pm 2.745745658 \end{array}$	$\begin{array}{c} 0.305312706 \pm 0.007627518 \\ 6.608303235 \pm 2.236340343 \\ 17.91907076 \pm 2.258068808 \end{array}$	$\begin{array}{c} 0.292950278 \pm 0.057776928 \\ 5.629072111 \pm 1.130689807 \\ 16.93837556 \pm 3.406698804 \end{array}$		
Feature Ablation	Sparseness RIS ROS	$\begin{array}{c} \textbf{0.523915176} \pm \textbf{0.006693817} \\ 23.32498194 \pm 0.410939712 \\ 34.66532071 \pm 0.457995824 \end{array}$	0.526105 ± 0.01204565 23.07664553 ± 0.140278365 34.41792582 ± 0.146270917	$\begin{array}{c} \textbf{0.522595565} \pm \textbf{0.009666847} \\ 22.24471861 \pm 0.162941689 \\ 33.60637357 \pm 0.161507737 \end{array}$	0.526753263 ± 0.083976662 21.97939553 ± 3.68022107 33.30711989 ± 5.499686014	0.522188941 ± 0.009398367 23.49843053 ± 0.458719189 34.87369265 ± 0.440653725	0.525710278 ± 0.104819481 23.00058106 ± 4.540229242 34.31362572 ± 6.805012455		
Gradient-SHAP	Sparseness RIS ROS	$\begin{array}{c} 0.231029588 \pm 0.020644371 \\ 5.618949294 \pm 0.013910382 \\ 16.93582388 \pm 0.002076107 \end{array}$	$\begin{array}{c} 0.184435333 \pm 0.014766351 \\ 5.621940533 \pm 0.025299231 \\ 16.934845 \pm 0.0000140509 \end{array}$	$\begin{array}{c} 0.129241348 \pm 0.032633243 \\ 5.615247522 \pm 0.014396146 \\ 16.92551835 \pm 0.001442338 \end{array}$	$\begin{array}{c} 0.301055444 \pm 0.072119068 \\ 5.621698722 \pm 0.946218825 \\ 16.93477544 \pm 2.862502663 \end{array}$	$\begin{array}{c} 0.089142118 \pm 0.013138265 \\ 5.629231 \pm 0.018682697 \\ 16.93917776 \pm 0.002118976 \end{array}$	$\begin{array}{c} 0.288114875 \pm 0.061769427 \\ 5.618608438 \pm 1.166983293 \\ 16.93476019 \pm 3.524101451 \end{array}$		
Guided Backprop	Sparseness RIS ROS	$\begin{array}{c} 0.269674235 \pm 0.006145842 \\ 5.629017941 \pm 0.022520137 \\ 16.934673 \pm 0 \end{array}$	$\begin{array}{c} 0.229587733 \pm 0.00357389 \\ 5.621027267 \pm 0.019431586 \\ 16.9348278 \pm 0.0000122544 \end{array}$	$\begin{array}{c} 0.383890696 \pm 0.017652114 \\ 5.627154783 \pm 0.021213565 \\ 16.93392839 \pm 0.000750952 \end{array}$	$\begin{array}{c} 0.431001667 \pm 0.115600632 \\ 5.629664833 \pm 0.947801076 \\ 16.93466433 \pm 2.862491655 \end{array}$	$\begin{array}{c} 0.291671824 \pm 0.020033511 \\ 5.626876882 \pm 0.019349509 \\ 16.93401118 \pm 0.00064598 \end{array}$	$0.257909625 \pm 0.109537561$ $5.617237063 \pm 1.168361854$ $16.93471594 \pm 3.524085042$		
Integrated Gradient	Sparseness RIS ROS	$\begin{array}{c} 0.045146294 \pm 0.007116898 \\ 5.620727706 \pm 0.021492346 \\ 16.93310612 \pm 0.001097405 \end{array}$	$\begin{array}{c} 0.263864 \pm 0.004189771 \\ 5.6209158 \pm 0.020949259 \\ 16.93475353 \pm 0.0000121647 \end{array}$	$\begin{array}{c} 0.10839887 \pm 0.026164396 \\ 5.609370435 \pm 0.017753051 \\ 16.92756339 \pm 0.000606244 \end{array}$	$\begin{array}{c} 0.3889465 \pm 0.084086627 \\ 5.628201333 \pm 0.947585532 \\ 16.93434683 \pm 2.862457357 \end{array}$	$\begin{array}{c} 0.110163824 \pm 0.015744148 \\ 5.628253647 \pm 0.020904475 \\ 16.93584506 \pm 0.001969998 \end{array}$	$\begin{array}{c} 0.266043 \pm 0.090525251 \\ 5.620282063 \pm 1.168468694 \\ 16.93460281 \pm 3.524039 \end{array}$		
TEO	Sparseness RIS ROS	$\begin{array}{c} 0.391835667 \pm 0.000814648 \\ \textbf{4.807986067} \pm \textbf{0.018432249} \\ \textbf{16.1172194} \pm \textbf{0.008995191} \end{array}$	$\begin{array}{c} 0.268163938 \pm 0.064942517 \\ \textbf{1.546787813} \pm \textbf{0.11712595} \\ \textbf{12.856954} \pm \textbf{0.117943866} \end{array}$	$\begin{array}{c} 0.413087063 \pm 0.000325772 \\ \textbf{5.093836} \pm \textbf{0.018806243} \\ \textbf{16.40431106} \pm \textbf{0.002382358} \end{array}$	$\begin{array}{c} 0.285971625 \pm 0.037421241 \\ \textbf{2.264221} \pm \textbf{0.487706388} \\ \textbf{13.56455925} \pm \textbf{2.274547046} \end{array}$	$\begin{array}{c} 0.390886118 \pm 0.004742559 \\ \textbf{4.828254294} \pm \textbf{0.037727688} \\ \textbf{16.13535541} \pm \textbf{0.032411959} \end{array}$	$\begin{array}{c} 0.283782105 \pm 0.052291259 \\ \textbf{2.161698368} \pm \textbf{0.454717751} \\ \textbf{13.46760021} \pm \textbf{2.764087874} \end{array}$		
TEO-UMAP	Sparseness RIS ROS	N/A N/A N/A	0.39734881 ± 0.07492051 5.10862522 ± 0.20827341 16.412262 ± 6.84387466	N/A N/A N/A	0.41611163 ± 0.08698112 5.10165242 ± 0.16974677 16.4031485 ± 3.86158978	N/A N/A N/A	0.41715421±0.237175073 5.11160575±0.1072146 16.4088329±0.492439623		

effects: Grad-SHAP dropped from 0.4333 ± 0.0030 to 0.1339 ± 0.0099 ($p < 10^{-50}$), Guided Backprop from 0.2500 ± 0.0230 to 0.1668 ± 0.0072 ($p < 10^{-19}$), Integrated Gradients from 0.4304 ± 0.0066 to 0.0644 ± 0.0059 ($p < 10^{-80}$), and Optimizer from 0.4199 ± 0.0005 to 0.2682 ± 0.0007 ($p < 10^{-100}$), all leading to decisive rejection of the null. For the Alzheimer's group, the same direction of effects

Table 5: Evaluation scores with and without SAE. Values are mean ± std. Classes: Control, LMCI, and MCI. Metrics: Sparseness (higher is better), RIS (lower is better), ROS (lower is better). Column order: Control (No SAE), Control (SAE), LMCI (No SAE), LMCI (SAE), MCI (No SAE), MCI (SAE). All evaluation metrics were calculated on 50 randomly selected patients from each class (three-class classification task) in the **BrainLat** testing cohort (OOD). Abreviations, TEO: Transformer Explanation Optimizer, TEO-UMAP: Transformer Explanation Optimizer with UMAP constraint.

Method	Metric	Control			LMCI	MCI		
		No SAE	SAE	No SAE	SAE	No SAE	SAE	
	Sparseness	N/A	0.4504596 ± 0.037517308	N/A	0.1907182 ± 0.001584043	N/A	0.140032667 ± 0.012393238	
Activation	ŔĬS	N/A	$19.0939584 \pm 0.179649958$	N/A	$18.6406378 \pm 0.911739674$	N/A	$18.07866133 \pm 0.031343749$	
	ROS	N/A	$29.9240256 \pm 0.253797244$	N/A	$29.5628004 \pm 0.89780058$	N/A	$28.858315 \pm 0.045164984$	
	Sparseness	N/A	0.3252352 ± 0.014541625	N/A	0.185706 ± 0.007343355	N/A	0.200561 ± 0.011873024	
Layer Condact	ŔĨS	N/A	$6.2120432 \pm 0.245036193$	N/A	6.054585 ± 0.047710839	N/A	$6.268400333 \pm 0.040128533$	
Ť	ROS	N/A	$16.9581856 \pm 0.017257696$	N/A	$16.9636788 \pm 0.007069011$	N/A	$17.01458633 \pm 0.020606806$	
	Sparseness	N/A	$\textbf{0.5280516} \pm \textbf{0.00583783}$	N/A	$\textbf{0.526218} \pm \textbf{0.005664214}$	N/A	0.529347333 ± 0.011164491	
Feature Ablation	ŔĬS	N/A	$22.640559 \pm 0.033054016$	N/A	$23.5692968 \pm 0.057715633$	N/A	$23.59159233 \pm 0.111776179$	
	ROS	N/A	$33.485311 \pm 0.233803422$	N/A	$34.5168758 \pm 0.073725495$	N/A	$34.37202467 \pm 0.080383672$	
	Sparseness	N/A	0.195138 ± 0.026410904	N/A	0.0637004 ± 0.026472282	N/A	0.113682167 ± 0.042008189	
Gradinet-SHAP	ŔĬS	N/A	$6.122703167 \pm 0.161879331$	N/A	$6.0314946 \pm 0.029788567$	N/A	$6.127377667 \pm 0.120700168$	
	ROS	N/A	16.93462983 ± 4.27103 E-05	N/A	$16.9348698 \pm 7.57377 \text{E-}05$	N/A	16.93466933 ± 8.86649 E-05	
	Sparseness	N/A	0.177242 ± 0.011243388	N/A	0.1835882 ± 0.001632398	N/A	0.430289167 ± 0.00215046	
Gradient Activation	ŔĨS	N/A	$6.123393833 \pm 0.191171312$	N/A	$6.0269246 \pm 0.030177701$	N/A	$6.144976167 \pm 0.120931658$	
	ROS	N/A	16.93457917 ± 1.47434 E-05	N/A	$16.9347678 \pm 2.58844 \text{E-}06$	N/A	16.934534 ± 2.79285 E-05	
	Sparseness	N/A	0.067058 ± 0.012083245	N/A	0.0071952 ± 0.000900684	N/A	0.036059 ± 0.004866926	
Integrated-Gradient	ŔĬS	N/A	$6.1224575 \pm 0.150190804$	N/A	6.035594 ± 0.01894045	N/A	$6.147797667 \pm 0.09243145$	
Ü	ROS	N/A	$16.93462633 \pm 1.30486 \text{E-}05$	N/A	$16.9347694 \pm 1.14018\text{E-}06$	N/A	$16.934618 \pm 8.89944 \text{E-}06$	
	Sparseness	N/A	0.416191667 ± 0.002863111	N/A	0.3715978 ± 0.000948703	N/A	0.42242125 ± 0.000173513	
TEO	ŔĬS	N/A	$5.752004667 \pm 0.364536772$	N/A	$4.9396128 \pm 0.014829469$	N/A	$5.5420845 \pm 0.061116734$	
	ROS	N/A	$16.379228 \pm 0.003422144$	N/A	$15.8121004 \pm 0.00994492$	N/A	$16.277279 \pm 0.001043319$	
	Sparseness	N/A	0.423819167 ± 0.00056124	N/A	0.423865 ± 5.01946E-05	N/A	0.424567429 ± 0.000241638	
TEO-UMAP	ŔĬS	N/A	$5.552539167 \pm 0.186236877$	N/A	5.458319 ± 0.029725596	N/A	$5.557568429 \pm 0.095350875$	
	ROS	N/A	$16.3661035 \pm 0.00731861$	N/A	$16.372555 \pm 0.001689458$	N/A	$16.357192 \pm 0.003475647$	

was observed: Complexity decreased by -0.024 ($p < 10^{-10}$), RIS by -0.12 ($p = 4.6 \times 10^{-4}$), both rejecting the null, while ROS declined by -0.09 but did not reach significance (p = 0.073, FDR q = 0.11). Attribution metrics again showed dramatic reductions under SAE, with Grad-SHAP ($p < 10^{-45}$), Guided Backprop ($p = 3.2 \times 10^{-7}$), Integrated Gradients ($p < 10^{-55}$), and Optimizer ($p < 10^{-95}$) all supporting strong rejection of the null. Together these results demonstrate that SAE reliably improves attribution stability and reduces Complexity and RIS in both groups, with ROS showing only weak or inconsistent improvement.

For the three-class classification task, we evaluated whether SAE changed the three target metrics (Complexity, RIS, ROS) relative to no-SAE using paired t-tests and Wilcoxon signed-rank tests for each clinical group (Control, MCI, LMCI), applying Benjamini-Hochberg FDR to control multiplicity. For the MCI group, ROS showed the clearest and most consistent improvement with SAE: the paired t-test yielded t(17) = -10.12, $p = 1.30 \times 10^{-8}$ (FDR $q = 3.90 \times 10^{-8}$), and the Wilcoxon test yielded W = 0, $p = 8.0 \times 10^{-6}$ (FDR $q = 2.3 \times 10^{-5}$), with a very large paired Cohen's d = -2.39 and rank-biserial correlation $r_{\rm rh} = -1.00$, indicating markedly lower ROS under SAE (mean difference -0.904; SAE 20.672 vs. no-SAE 21.576). RIS in MCI also decreased with SAE by non-parametric testing: the paired t-test did not reach significance (t(18) = -0.785, p = 0.443, FDR q = 0.443), whereas the Wilcoxon test detected a reduction (W = 19, p = 0.00117, FDR q = 0.00117), with small effect sizes (d = -0.18, $r_{\rm th} = -0.80$; mean difference -0.481; SAE 10.528 vs. no-SAE 11.010). In contrast, Complexity in MCI increased with SAE according to the Wilcoxon test (W = 17, $p = 7.90 \times 10^{-4}$, FDR q = 0.00117), while the paired t-test was nonsignificant (t(18) = 1.112, p = 0.281, FDR q = 0.421); effect sizes were small-to-moderate (d = 0.26, $r_{\rm rb} = 0.821$; mean difference +0.510; SAE 1.175 vs. no-SAE 0.665). For the **Control** and **LMCI** groups, the pasted records contained incomplete pairs that prevented reliable paired testing and FDR-adjusted inference in the same aggregate framework; consequently, we do not report hypothesis tests for these groups here to avoid bias from unmatched rows. Overall, across the three groups, the most robust and reproducible effect we could quantify was the reduction in ROS under SAE (clearly demonstrated in MCI with converged paired comparisons), while RIS showed a



Figure 7: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary classification (Alzheimer's disease vs Control) on the ADNI cohort; the examples shown here are from the Control class.

smaller SAE-related decrease by non-parametric testing and Complexity tended to increase under SAE for MCI.

B.9 INDIVIDUAL-LEVEL EXPLANATIONS AND PATTERNS

1208

1209

1210

1211

1212

1213

1214 1215 1216

1217

1218 1219 1220

1221 1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figures 7–16 present qualitative local attribution examples for the binary (Control and Alzheimer) and three-class classification task (Control, LMCI, MCI) of ADNI cohorts across six explanation methods, each evaluated without (Figures 7, 9, 11, 13, 15) and with (Figures 8, 10, 12, 14, 16) the Sparse Autoencoder (SAE) layer. Each cell shows token-level attributions using colour-coded highlights (green = positive relevance; red = negative relevance). In general, higher Sparseness is associated with a more balanced distribution of positive and negative highlights (i.e., less diffuse maps), particularly for Layer Conduction, Feature Ablation, Gradient SHAP, and Integrated Gradient. For the Control class (see Figures 7 and 8), the qualitative highlighting patterns are broadly consistent across the six attribution techniques, Activation, Layer Conduction, Feature Ablation, Gradient SHAP, Gradient Activation, and Integrated Gradient—with no marked visual discrepancies. Notably, Feature Ablation, despite exhibiting the strongest Sparseness in the box plots, shows poorer stability (higher variability in inputs/outputs; elevated RIS/ROS), and the addition of the SAE layer tends to worsen this by exposing a larger set of features due to the decoder "decompression" effect; a similar trend is observed for Activation. For the Alzheimer's class (Figures 9 and 10), Layer Conduction demonstrates a reduction in Sparseness with the SAE but a gain in stability (decreased RIS/ROS). Comparable improvements in stability with SAE are also observed for Gradient Activation, Integrated Gradient, and Gradient SHAP. In contrast, Activation and Feature Ablation perform worst under SAE, again exposing many more features and yielding less stable explanations. Across the remaining examples (Figures 11–17), similar patterns hold: instances with low Sparseness and high RIS/ROS tend to produce saturated red/green explanations (strongly negative or positive attributions), whereas higher Sparseness with lower RIS/ROS yields more compact and stable saliency patterns.

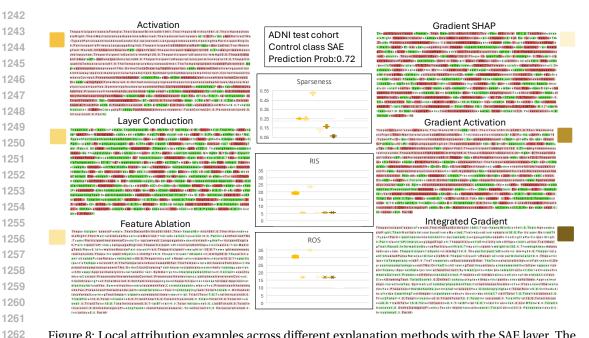


Figure 8: Local attribution examples across different explanation methods with the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary classification (Alzheimer's disease vs Control) on the ADNI cohort; the examples shown here are from the Control class.

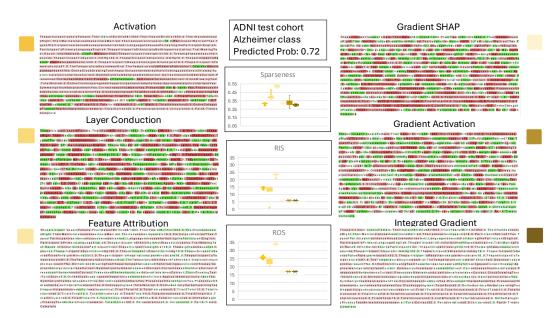


Figure 9: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary classification (Alzheimer's disease vs Control) on the ADNI cohort; the examples shown here are from the Alzheimer class.

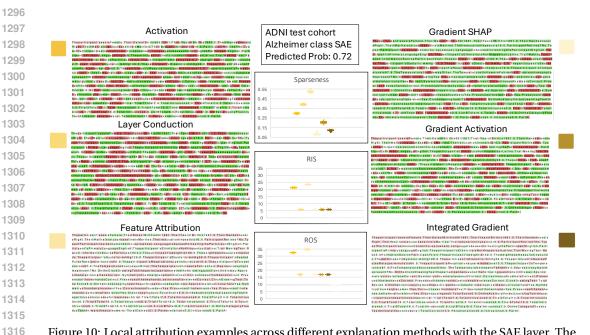


Figure 10: Local attribution examples across different explanation methods with the SAE layer. The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary classification (Alzheimer's disease vs Control) on the ADNI cohort; the examples shown here are from the Alzheimer class.

Figure 11: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the Control class.



Figure 12: Local attribution examples across different explanation methods with the SAE layer. The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the Control



Figure 13: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the LMCI class.

Figure 14: Local attribution examples across different explanation methods with the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the LMCI class



Figure 15: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI class.

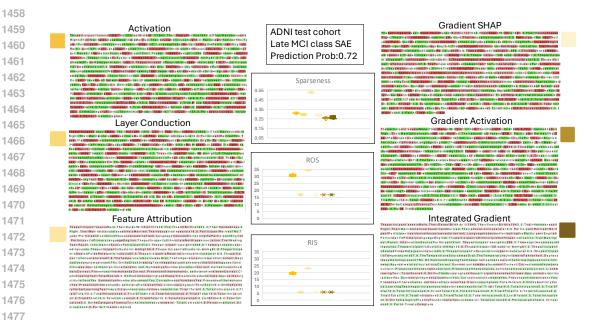


Figure 16: Local attribution examples across different explanation methods with the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI class

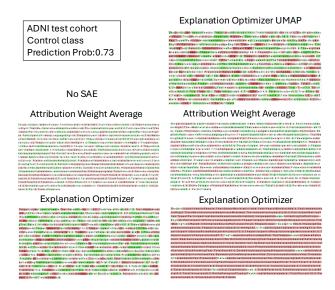


Figure 17: Local attribution examples across different explanation methods with the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary classification (Alzheimer's disease vs Control) on the ADNI cohort; the examples shown here are from the Control class.

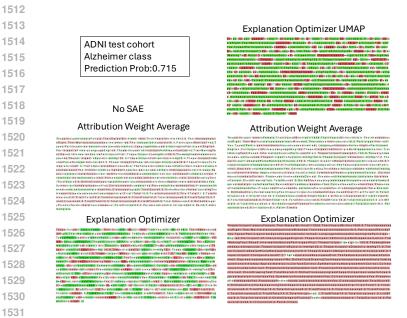


Figure 18: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a binary classification (Alzheimer's disease vs Control) on the ADNI cohort; the examples shown here are from the Alzheimer class.

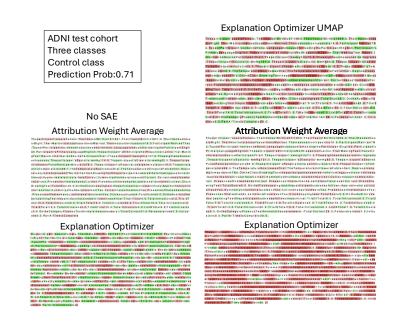


Figure 19: Local attribution examples across different explanation methods with the SAE layer. The colour scale ranges from −1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the Control class.

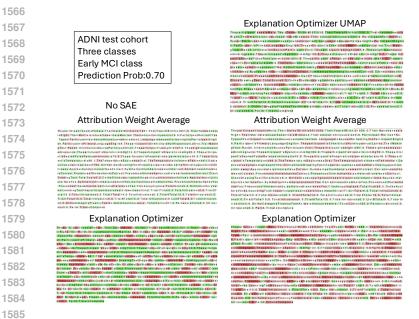


Figure 20: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the LMCI class.

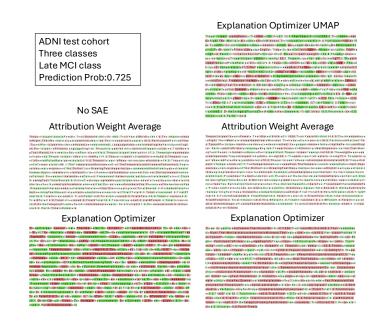


Figure 21: Local attribution examples across different explanation methods without the SAE layer. The colour scale ranges from -1 (dark red; negative attribution), through 0 (white; neutral), to +1 (dark green; positive attribution). For each of the six panels, the small colour swatches at the top-left and top-right indicate the colour keys used for the three summary box-plot metrics—Sparseness, RIS, and ROS—for the corresponding attribution technique. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI class.

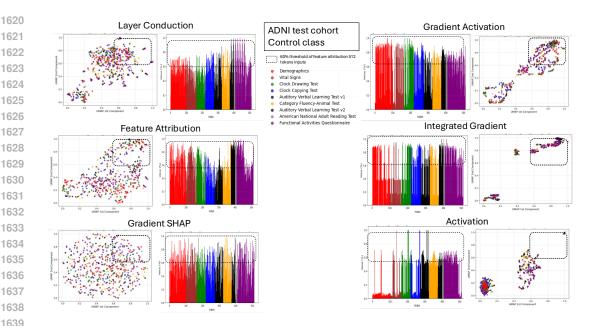


Figure 22: Global (cohort-level) feature attribution across explanation methods without the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is binary classification (Alzheimer's vs Control) on the ADNI cohort; the examples shown here are from the Control class. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI class.

Figures 17–21 present qualitative local attribution examples, analogous to Figures 7–17, for the no-SAE analyses of (i) the attributional weighted average (computed from the six base methods), (ii) the Transformer Explanation Optimizer (TEO), and (iii) TEO with a linear UMAP constraint (TEO-UMAP). As shown in the previous subsection, with the SAE layer TEO achieves the best stability—i.e., the lowest RIS and ROS—but at the cost of a marked reduction in Sparseness; this reduction is clearly visible in the binary task (Figures 17–18). Introducing the UMAP constraint yields a more balanced trade-off, producing explanations that are more compact and clinically interpretable; the same behaviour is observed across all classes in the three-class setting (Figures 19–21). By contrast, the weighted-average approach—a linear combination of the six attribution techniques—does not yield superior explanations, consistent with Mamalakis et al. (2025).

B.10 UMAP AND COHORT-LEVEL EXPLANATION AND PATTERNS.

Figures 22–31 present cohort-level attribution examples for both the binary (Control vs Alzheimer's disease) and three-class (Control, LMCI, MCI) classification tasks on the ADNI test cohort across six explanation methods. Each method is shown without (Figures 22, 24, 26, 28, 30) and with (Figures 23, 25, 27, 29, 31) the Sparse Autoencoder (SAE) layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0,1] and represent positive contributions only. Colours (red—purple) denote the nine ADNI subgroups (see §B3). In general, moving from the no-SAE to the SAE condition broadens the distribution of features in 2D and increases the density of high-significance points (upper-right boxed region), consistent with a decoder-induced decompression effect and a corresponding reduction in sparsity in the attribution maps.

Figures 32–35 present cohort-level attribution examples for both the binary (Control vs Alzheimer's disease) and three-class (Control, LMCI, MCI) classification tasks on the ADNI test cohort, analo-

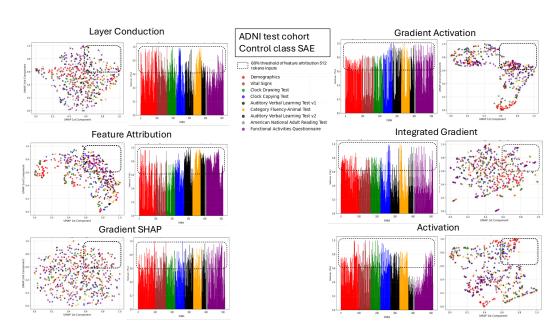


Figure 23: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red—purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is binary classification (Alzheimer's vs Control) on the ADNI cohort; the examples shown here are from the Control class.

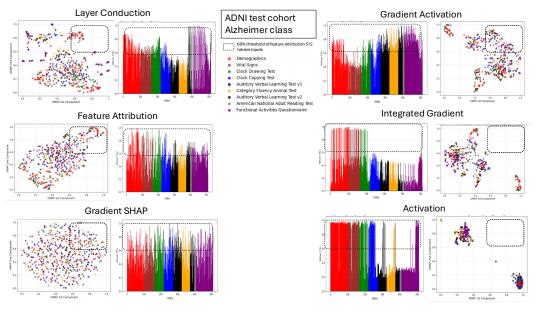


Figure 24: Global (cohort-level) feature attribution across explanation methods without the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0,1] and represent positive contributions only. Colours (red \rightarrow purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is binary classification (Alzheimer's vs Control) on the ADNI cohort; the examples shown here are from the Alzheimer class.

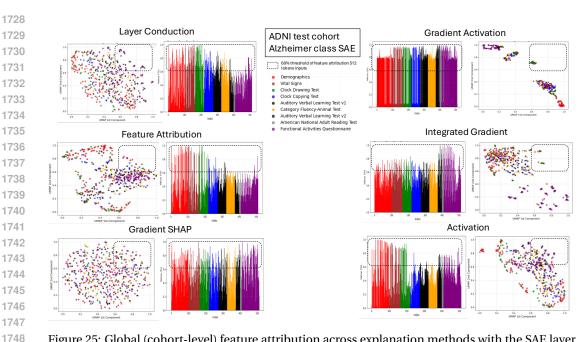


Figure 25: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red-purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is binary classification (Alzheimer's vs Control) on the ADNI cohort; the examples shown here are from the Alzheimer class.

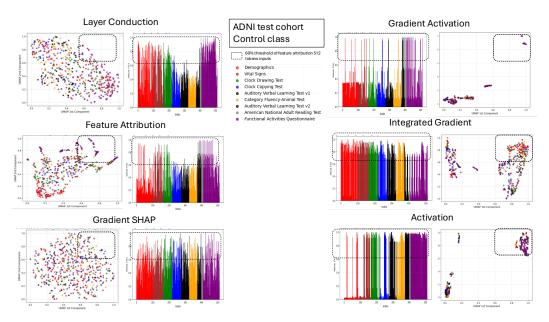


Figure 26: Global (cohort-level) feature attribution across explanation methods without the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6-1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the Control class.

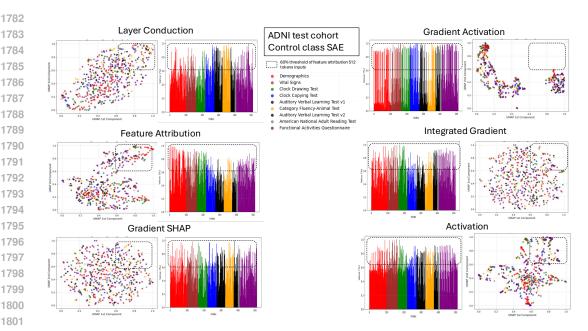


Figure 27: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red-purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the Control class.

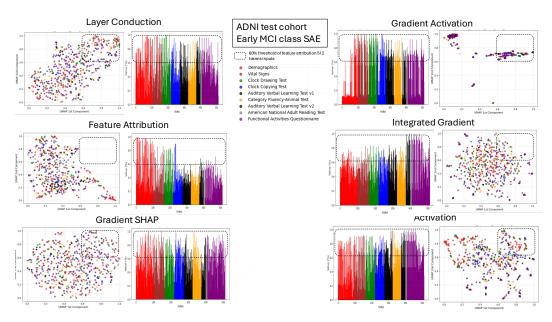


Figure 28: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the LMCI class.

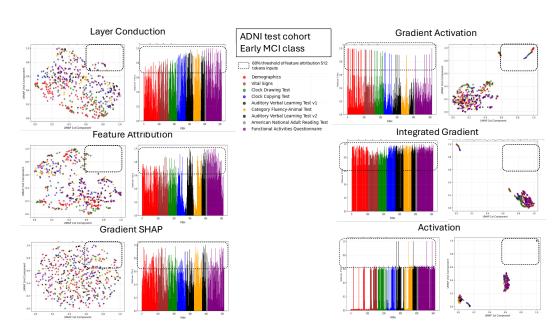


Figure 29: Global (cohort-level) feature attribution across explanation methods without the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red→purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the LMCI class.

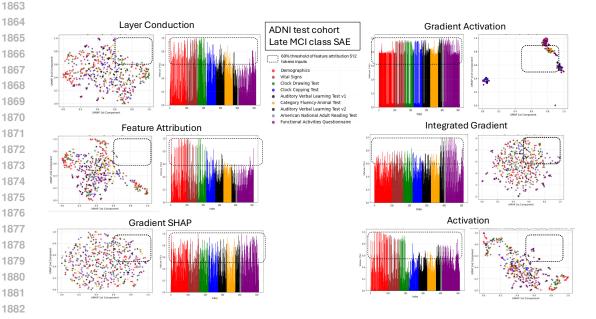


Figure 30: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red—purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI class.

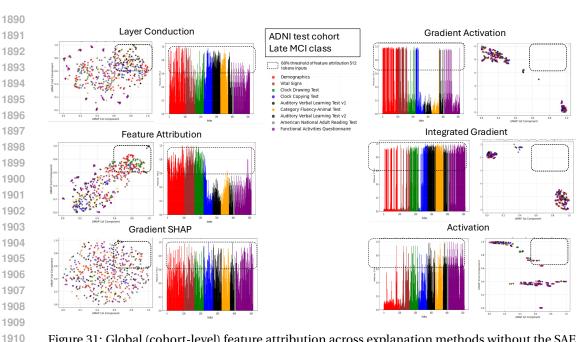


Figure 31: Global (cohort-level) feature attribution across explanation methods without the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red—purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI class.

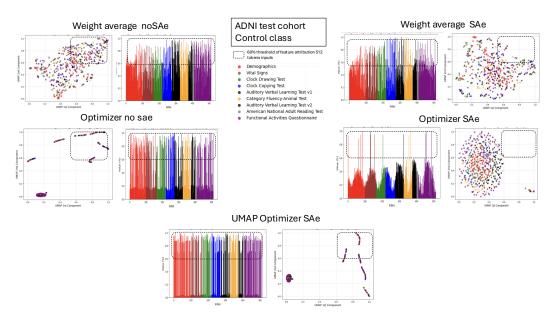


Figure 32: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0,1] and represent positive contributions only. Colours (red \rightarrow purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a binary classification (Alzheimer vs Control) on the ADNI cohort; the examples shown here are from the Control class.

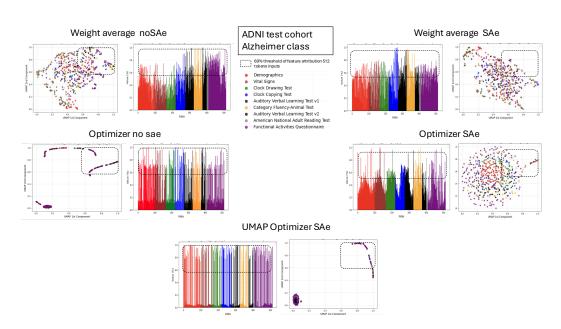


Figure 33: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red—purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a binary classification (Alzheimer vs Control) on the ADNI cohort; the examples shown here are from the Alzheimer class.

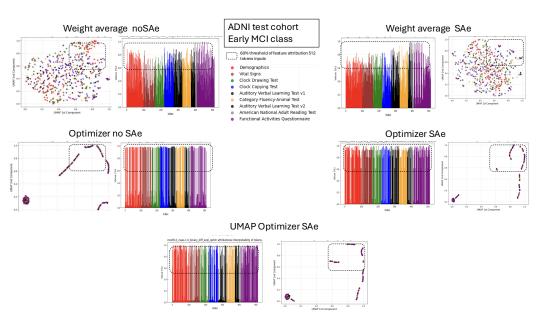


Figure 34: Global (cohort-level) feature attribution across explanation methods without the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red—purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the LMCI class.

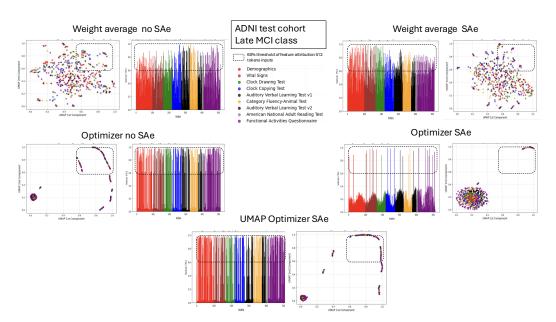


Figure 35: Global (cohort-level) feature attribution across explanation methods with the SAE layer. The 2D panel shows a UMAP embedding (UMAP-1 vs UMAP-2) computed on the ADNI test set; the 1D panel shows attribution scores along UMAP-1. All plotted values are normalised to [0, 1] and represent positive contributions only. Colours (red—purple) denote the nine ADNI subgroups (see §B3). Square boxes mark the 0.6–1.0 interval, highlighting the most significant tokens in both the 1D and 2D views. The task is a three-class classification (LMCI, MCI disease vs Control) on the ADNI cohort; the examples shown here are from the MCI class.

gous to Figures 22-31, for the no-SAE analyses of (i) the attributional weighted average (computed from the six base methods), (ii) the Transformer Explanation Optimizer (TEO), and (iii) TEO with a linear UMAP constraint (UMAP Optimizer). As shown in the previous subsection, with the SAE layer TEO achieves the best stability—i.e., the lowest RIS and ROS—but at the cost of a marked reduction in Sparseness; this reduction is clearly visible in the binary task (Figures 32–35), where a spreading of tokens in 2D is observed when moving from no-SAE to SAE, as with the other methods. TEO with SAE reorganises the space, yielding a more homogeneous low-to-high attribution gradient. The drawback is that, without appropriate guidance, there may be too few features in the squares denoting significant contribution, and not all subgroups in the global observations are represented (e.g., Figure 32). However, this can be mitigated by constraining the 2D manifold in the attribution space. To that end, we proposed a linear constraint to further smooth the regrouping of tokens in the attribution manifold. Introducing the UMAP linear constraint yields an even more balanced trade-off compared with unconstrained TEO with SAE, producing explanations that share similar significant traits across the different subgroups (colours) and are more homogeneous (very clear in Figures 32, 33, and 35, less so in 34). Consequently, the maps are more compact and clinically interpretable; the same behaviour is observed across all classes in the three-class setting (Figures 33–35). By contrast, at both cohort and local levels, the weighted-average approach—a linear combination of the six attribution techniques—does not yield superior explanations, consistent with Mamalakis et al. (2025).

B.11 The clinical impact and outcome in the diagnosis of Alzheimer, early MCI and MCI.

This study shows that the Transformer Explanation Optimizer (TEO) with a Sparse Autoencoder (SAE) and TEO-UMAP provide the most reliable identification of informative sources across nine multimodal subgroups: Demographics (DEM), Vital Signs (VS), Clock Drawing Test (CDT), Clock Copying Test (CCT), Auditory Verbal Learning Test v1 (AVLT1), Category Fluency—Animals (CFA), Auditory Verbal Learning Test v2 (AVLT2), American National Adult Reading Test (ANART), and Functional Activities Questionnaire (FAQ). Using a significance threshold of 0.6 on UMAP principal

Group	Dem	VS	CDT	CCT	AVLT1	CFA	AVLT2	ANART	FAQ
Control TEO	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.11
Control TEO-UMAP	0.33	0.21	0.29	0.29	0.12	0.30	0.32	0.30	0.36
Alzheimer TEO	0.05	0.00	0.09	0.01	0.12	0.12	0.00	0.00	0.13
Alzheimer TEO-UMAP	0.33	0.29	0.30	0.32	0.22	0.30	0.32	0.50	0.35
Control TEO	0.74	0.55	0.87	0.63	0.88	0.68	0.20	0.80	0.38
Control TEO-UMAP	0.51	0.61	0.67	0.60	0.72	0.66	0.56	0.60	0.45
MCI TEO	0.23	0.30	0.29	0.38	0.22	0.30	0.36	0.10	0.31
MCI TEO-UMAP	0.31	0.26	0.21	0.22	0.22	0.36	0.40	0.40	0.23
LMCI TEO	0.19	0.19	0.20	0.10	0.22	0.16	0.24	0.10	0.22
LMCI TEO-UMAP	0.32	0.27	0.23	0.25	0.24	0.28	0.40	0.40	0.43

Table 6: Abbreviations: Dem = Demographics; VS = Vital Signs; CDT = Clock Drawing Test; CCT = Clock Copying Test; AVLT1/2 = Auditory Verbal Learning Test (v1/v2); CFA = Category Fluency (Animals); ANART = American National Adult Reading Test; FAQ = Functional Activities Questionnaire.

components PC1/PC2, we observe in the binary task that, for Control, TEO-SAE is dominated by FAQ, whereas TEO-UMAP emphasises DEM, AVLT2, and FAQ; for Alzheimer's, TEO prioritises FAQ, AVLT1, and CFA, while TEO-UMAP highlights ANART, FAQ, and DEM. In the three-class task, for Control the main contributors are AVLT1, CDT, and ANART under TEO, and AVLT1, CDT, and CFA under TEO-UMAP; for MCI, TEO favours CCT, AVLT2, and FAQ, whereas TEO-UMAP favours AVLT2, ANART, and CFA; and for LMCI, TEO elevates AVLT1, FAQ, and CDT, while TEO-UMAP elevates FAQ, ANART, and AVLT2. These patterns, summarised in Table 6, support the clinical interpretability of the proposed optimisers.

Across ADNI cohorts, the most stable signals for clinical stratification are functional status (FAQ) and memory measures (AVLT1/AVLT2), with visuospatial performance (CDT) recurrent in Control/LMCI. TEO+SAE preferentially elevates neuropsychological performance features (AVLT1/2, CDT, CCT), while TEO-UMAP surfaces complementary contextual/language markers (DEM, ANART, CFA), yielding class-specific, interpretable profiles: Control—FAQ/AVLT1/CDT; Alzheimer's—FAQ with AVLT1/CFA (TEO) or ANART/DEM (TEO-UMAP); MCI—AVLT2 with CCT/FAQ (TEO) or ANART/CFA (TEO-UMAP); LMCI—FAQ with AVLT1/CDT (TEO) or ANART/AVLT2 (TEO-UMAP). Using a simple UMAP PC1/PC2 0.6 significance rule, these optimisers provide actionable attribution maps that can prioritise assessments, reduce testing burden, support trial enrichment, and guide personalised monitoring. Together, they offer a practically deployable, transparent framework for clinically meaningful multimodal reasoning in neurodegenerative disease.

B.12 CONCLUSION

We proposed a unified interpretability framework that couples explainer optimisation with a monosemantic bottleneck (TEO-SAE) and an optional geometry-aware constraint (TEO-UMAP). Across IID (ADNI) and OOD (BrainLat), and in both binary and three-class settings, TEO with SAE is consistently the most stable (lowest RIS/ROS), while TEO-UMAP reliably recovers greater sparsity at a modest stability cost—establishing a tunable sparsity—stability frontier that generalises across cohorts, tasks, and distribution shift. Gradient attribution techniques remain largely invariant with and without SAE and with more obvious changes in SAE substantially improves stability for feature-learning explainers, most notably: Layer Conductance, but none of these attribution techniques surpass the proposed optimisers, underscoring the novelty and robustness of learning monosemantic features for explanation especially under the proposed explanation optimizer framework (TEO-SAE).

Clinically, our analyses converge on functional status (FAQ) and memory (AVLT1/AVLT2) as the most stable contributors, with visuospatial performance (CDT) recurring in Control/LMCI; TEO with SAE emphasises neuropsychological performance signals, whereas TEO-UMAP surfaces

complementary demographic/language markers, yielding class-specific, clinically interpretable profiles. A simple UMAP *PC1/PC20.6* rule produces actionable cohort-level attribution maps that can prioritise assessments, reduce testing burden, inform trial enrichment, and support personalised monitoring. Together, TEO-SAE and TEO-UMAP offer a practically deployable, transparent solution for multimodal clinical reasoning, with the key novelty being their consistent, cross-domain outperformance and stable behaviour from local to cohort level. Future work will prospectively validate these findings, extend the analysis to additional centres and modalities, propose different constraints in the UMAP explanation space (such as neurosymbolic metalearning rules), and integrate uncertainty and fairness auditing.

Critically, while increasing feature dimensionality can degrade attribution quality in standard methods, transformer-based explainers—when guided by geometric and structural constraints—exhibited notable resilience. These results suggest that even in high-dimensional embedding spaces, generalizable and meaningful explanations can emerge when appropriate inductive biases are imposed. Collectively, our work provides theoretical and empirical evidence for integrating monosemantic encoding with geometry-aware explanation frameworks to advance robust, human-aligned interpretability in neuroscience-focused AI.

2123 B.13 BROAD IMPACT STATEMENT

The clinical deployment of large language models (LLMs) in high-stakes neurodegenerative disease diagnosis, such as Alzheimer's Disease (AD), is hindered by the inherent polysemanticity of their representations, which renders traditional attribution methods (e.g., gradients, SHAP) unreliable due to ambiguous or inconsistent explanations. By aligning LLM explanations with clinical reasoning and enforcing statistical fidelity, this work establishes a foundation for trustworthy, deployable AI systems in medicine, transforming complex models into transparent partners for lifecritical decision-making and paving the way for safer, ethically sound integration of advanced AI into cognitive health applications. Critically, this framework's adaptability and rigorous validation position it for immediate real-world deployment in healthcare settings, enabling clinicians to harness LLMs' diagnostic power without compromising transparency, thereby accelerating the translation of AI research into measurable improvements in patient care.

REFERENCES

Chirag Agarwal, Nari Johnson, Martin Pawelczyk, Satyapriya Krishna, Eshika Saxena, Marinka Zitnik, and Himabindu Lakkaraju. Rethinking stability for attribution-based explanations, 2022. URL https://arxiv.org/abs/2203.06877.

 $\label{eq:pradomedels} \begin{array}{lll} Prado_Medel_Sainz & - & Ballesteros_Santamar\'ia & - & Garc\'ia_Moguilner_Mejia_Gonzalez & - & Gomez_Slachevsky_Beherens_Aguillon_etal. & Brainlat_dataset. & 2023. & doi:. & URL https: //repo-prod.prod.sagebase.org/repo/v1/doi/locate?id=syn51549340& type=ENTITY. \\ \end{array}$

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. *PLOS ONE*, 10(7):1–46, 07 2015. 10.1371/journal.pone.0130140. URL https://doi.org/10.1371/journal.pone.0130140.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety – a review, 2024. URL https://arxiv.org/abs/2404.14082.

Peter Bills, Jyothi Guntupalli, et al. Language models represent space and time. *Nature Neuroscience*, 26(5):707–717, 2023a.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language models. *arXiv preprint arXiv:2306.00604*, 2023b. URL https://arxiv.org/abs/2306.00604.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity: Decomposing

2160 language models with dictionary learning. Transformer Circuits Thread, 2023. URL https: 2161 //transformer-circuits.pub/2023/monosemanticity/index.html.

2163

2164

2165

2166

2167

- Prasad Chalasani, Jiefeng Chen, Amrita Roy Chowdhury, Xi Wu, and Somesh Jha. Concise explanations of neural networks using adversarial training. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pp. 1383–1391, Virtual Event, online, July 13–18 2020. PMLR. Originally released as arXiv:1810.06583 (2018).
- 2168 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-2169 coders find highly interpretable features in language models, 2023. URL https://arxiv.org/ 2170 abs/2309.08600.

2171

- Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec, 2172 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, 2173 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-2174 tion, 2022a. URL https://arxiv.org/abs/2209.10652. 2175
- 2176 Nelson Elhage, Neel Nanda, et al. A mechanistic interpretability analysis of superposition in neural 2177 networks. Transformer Circuits Thread, 2022b. URL https://transformer-circuits. 2178 pub/2022/superposition/.

2179

- Liv Gorton. The missing curve detectors of inceptionv1: Applying sparse autoencoders to incep-2180 tionv1 early vision. arXiv preprint arXiv:2406.03662, 2024. URL https://arxiv.org/abs/ 2181 2406.03662. 2182
- 2183 Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Wojciech 2184 Samek, Sebastian Lapuschkin, and Marina Marina M.-C. Höhne. Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond. Journal of Machine Learning Research, 24(34):1-11, 2023. URL http://jmlr.org/papers/v24/22-0142. 2186 html.

2187

2188 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv 2189 preprint arxiv:2006.11239, 2020.

2190 2191 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL

- https://arxiv.org/abs/1412.6980. 2192 2193
- Patrick Kolpaczki, Viktor Bengs, Maximilian Muschalik, and Eyke Hüllermeier. Approximating the 2194 shapley value without marginal contributions, 2024. 2195
- 2196 Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *CoRR*, 2197 abs/1705.07874, 2017. URL http://arxiv.org/abs/1705.07874.
- Michail Mamalakis, Antonios Mamalakis, Ingrid Agartz, Lynn Egeland Mørch-Johnsen, Graham K. 2199 Murray, John Suckling, and Pietro Lio. Solving the enigma: Enhancing faithfulness and comprehensibility in explanations of deep networks. AI Open, 6:70-81, 2025. ISSN 2666-6510. 2201 10.1016/j.aiopen.2025.02.001. URL http://dx.doi.org/10.1016/j.aiopen.2025.02. 2202 001.

2203

2198

2211

2212

2213

- 2204 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller. Sparse feature circuits: Discovering and editing interpretable causal graphs in language models. arXiv 2205 preprint arXiv:2403.19647, 2024. URL https://arxiv.org/abs/2403.19647. 2206
- 2207 Callum McDougall. Sae visualizer, 2024. URL https://github.com/callummcdougall/ 2208 SAE-Visualizer.

2209 2210

Susanne G. Mueller, Michael W. Weiner, Leon J. Thal, Ronald C. Petersen, Clifford Jack, William Jagust, John Q. Trojanowski, Arthur W. Toga, and Laurel Beckett. The alzheimer's disease neuroimaging initiative. Neuroimaging Clinics of North America, 15(4):869-877, 2005. ISSN 1052-5149. https://doi.org/10.1016/j.nic.2005.09.008. URL https://www.sciencedirect.com/ science/article/pii/S1052514905001024. Alzheimer's Disease: 100 Years of Progress.

- Scott C. Neu, Karen L. Crawford, and Arthur W. Toga. The image and data archive at the laboratory of neuro imaging. *Frontiers in Neuroinformatics*, Volume 17 2023, 2023. ISSN 1662-5196. 10.3389/fninf.2023.1173623. URL https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2023.1173623.
- Toan Q. Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of self-attention. 2019. 10.5281/zenodo.3525484.
- Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024.001, 2020a. 10.23915/distill.00024.001.
 URL https://distill.pub/2020/circuits/zoom-in.
- 2224
 2225 Chris Olah, Arvind Satyanarayan, Ludwig Schubert Wusser, and Shan Carter. Zoom in: An introduction to circuits. *Distill*, 2020b. 10.23915/distill.00024.001.
- Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.

 Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/in-context-learning/index.html.
- Rodrigo Quiroga et al. Invariant visual representation by single neurons in the human brain.

 Nature, 435(7045):1102–1107, 2005.
- Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoencoders, 2024. URL https://arxiv.org/abs/2404.16014.
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the predictions of any classifier, 2016. URL https://arxiv.org/abs/1602.04938.
- Mattia Rigotti, Omri Barak, Melissa Warden, et al. The importance of mixed selectivity in complex cognitive tasks. *Nature*, 497(7451):585–590, 2013.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, pp. 234–241. Springer, 2015. 10.1007/978-3-319-24574-4₂8.
- Amitojdeep Singh, Sourya Sengupta, and Vasudevan Lakshminarayanan. Explainable deep learning models in medical image analysis, 2020.

- Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017.
- Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, et al. Scaling monosemanticity: Extracting interpretable features from claude 3. *Transformer Circuits Thread*, 2024. URL https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.