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ABSTRACT

Sampling from diffusion probabilistic models (DPMs) is often expensive for high-
quality image generation and typically requires many steps with a large model. In
this paper, we introduce sampling Trajectory Stitching (T-Stitch), a simple yet
efficient technique to improve the sampling efficiency with little or no generation
degradation. Instead of solely using a large DPM for the entire sampling trajec-
tory, T-Stitch first leverages a smaller DPM in the initial steps as a cheap drop-in
replacement of the larger DPM and switches to the larger DPM at a later stage.
Our key insight is that different diffusion models learn similar encodings under
the same training data distribution and smaller models are capable of generating
good global structures in the early steps. Extensive experiments demonstrate that
T-Stitch is training-free, generally applicable for different architectures, and com-
plements most existing fast sampling techniques with flexible speed and quality
trade-offs. On DiT-XL, for example, 40% of the early timesteps can be safely
replaced with a 10x faster DiT-S without performance drop on class-conditional
ImageNet generation. We further show that our method can also be used as a
drop-in technique to not only accelerate the popular pretrained stable diffusion
(SD) models but also improve the prompt alignment of stylized SD models from
the public model zoo. Finally, the explicit model allocation strategy of T-Stitch
significantly reduces the need of training or searching, delivering high deployment
efficiency.

1 INTRODUCTION

Diffusion probabilistic models (DPMs) (Ho et al., 2020) have demonstrated remarkable success in
generating high-quality data among various real-world applications, such as text-to-image genera-
tion (Rombach et al., 2022), audio synthesis (Kong et al., 2021) and 3D generation (Poole et al.,
2023), etc. Achieving high generation quality, however, is expensive due to the need to sample from
a large DPM, typically involving hundreds of denoising steps, each of which requires a high com-
putational cost. For example, even with a high-performance RTX 3090, generating 8 images with
DiT-XL (Peebles & Xie, 2022) takes 16.5 seconds with 100 denoising steps, which is ∼ 10× slower
than its smaller counterpart DiT-S (1.7s) with a lower generation quality.

Recent works tackle the inference efficiency issue by speeding up the sampling of DPMs in two
ways: (1) reducing the computational costs per step or (2) reducing the number of sampling steps.
The former approach can be done by model compression through quantization (Li et al., 2023b) and
pruning (Fang et al., 2023), or by redesigning lightweight model architectures (Yang et al., 2023;
Lee et al., 2023). The second approach reduces the number of steps either by distilling multiple
denoising steps into fewer ones (Salimans & Ho, 2022; Song et al., 2023; Zheng et al., 2023; Luo
et al., 2023; Sauer et al., 2023) or by improving the differential equation solver (Song et al., 2021a;
Lu et al., 2022; Zheng et al., 2023). While both directions can improve the efficiency of large DPMs,
they assume that the computational cost of each denoising step remains the same, and a single model
is used throughout the process. However, we observe that different steps in the denoising process
exhibit quite distinct characteristics, and using the same model throughout is a suboptimal strategy
for efficiency.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

16.5s 15.3s 13.9s 12.5s 11.0s 9.4s 7.9s 6.4s 4.8s 3.3s 1.7s

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
#DiT-S Steps / Total Steps

10

20

30

40

FI
D

9.20 9.17 8.99 9.03 8.95 10.06 12.46
18.04

25.44
30.11

33.46

Figure 1: Top: FID comparison on class-conditional ImageNet when progressively stitching more
DiT-S steps at the beginning and fewer DiT-XL steps in the end, based on DDIM 100 timesteps and
a classifier-free guidance scale of 1.5. FID is calculated by sampling 5000 images. Bottom: One
example of stitching more DiT-S steps to achieve faster sampling, where the time cost is measured
by generating 8 images on one RTX 3090 in seconds (s).

Ghibli Diffusion InkPunk Diffusion40% T-Stitch 40% T-Stitch

A ghibli style princess with golden hair in New York City A photo of a white cat on a tropical beach, nvinkpunk style

Small SD Small SD

3.1s 2.6s 2.6s3.1s1.9s 1.9s

Figure 2: By directly adopting a small SD in the model zoo, T-Stitch naturally interpolates the
speed, style, and image contents with a large styled SD, which also potentially improves the prompt
alignment, e.g., “New York City” and “tropical beach” in the above examples.

Our Approach. In this work, we propose Trajectory Stitching (T-Stitch), a simple yet effective
strategy to improve DPMs’ efficiency that complements existing efficient sampling methods by dy-
namically allocating computation to different denoising steps. Our core idea is to apply small DPMs
at the early denoising steps instead of using the same large model at all steps, as in previous works.
We show that by first applying a smaller DPM in the early denoising steps followed by switching
to a larger DPM in the later denoising steps, we can reduce the overall computational costs without
sacrificing the generation quality. Figure 1 shows an example of our approach using two DiT models
(DiT-S and DiT-XL), where DiT-S is computationally much cheaper than DiT-XL. With the increase
in the percentage of steps from DiT-S instead of DiT-XL in our T-stitch, we can keep increasing the
inference speed. In our experiments, we find that there is no degradation of the generation quality
(in FID), even when the first 40% of steps are using DiT-S, leading to around 1.5× lossless speedup.

Some prior arts Liu et al. (2023); Yang et al. (2024) share a similar spirit with ours, i.e., applying
different models at different steps. However, compared to their costly trained and searched model
schedules, our method is distinct in two new key insights: (1) Recent work suggests a common
latent space across different DPMs trained on the same data distribution (Song et al., 2021b; Roeder
et al., 2021). Thus, different DPMs tend to share similar sampling trajectories, which makes it
possible to stitch across different model sizes and even architectures, without significant training
or searching. (2) From the frequency perspective, the denoising process focuses on generating low-
frequency components at the early steps while the later steps target the high-frequency signals (Yang
et al., 2023). Although the small models are not as effective for high-frequency details, they can still
generate a good global structure at the beginning. In our experiments, we show that T-Stitch achieves
comparable or even better trade-offs than training/searching-based model schedules.

With comprehensive experiments, we demonstrate that T-Stitch substantially speeds up large DPMs
without much loss of generation quality. This observation is consistent across a spectrum of architec-
tures and diffusion model samplers. This also implies that T-Stitch can be directly applied to widely
used large DPMs without any re-training (e.g., Stable Diffusion (SD) Rombach et al. (2022)). Fig-
ure 2 shows the results of speeding up stylized Stable Diffusion with a relatively smaller pretrained
SD model Kim et al. (2023). Surprisingly, we find that T-Stitch not only improves speed but also

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

improves prompt alignment for stylized models. This is possibly because the fine-tuning process
of stylized models (e.g., ghibli, inkpunk) degrades their prompt alignment. T-Stitch improves both
efficiency and generation quality here by combining small SD models to complement the prompt
alignment for large SD models specialized in stylizing the image.

Note that T-Stitch is complementary to most existing fast sampling approaches. The part of the
trajectory that is taken by the large DPM can still be sped up by reducing the number of steps taken
by it, or by reducing its computational cost with compression techniques. In addition, while T-Stitch
can already effectively improve the quality-efficiency trade-offs without any overhead of re-training,
we show that the generation quality of T-Stitch can be further improved when we fine-tune the
stitched DPMs given a trajectory schedule (Section A.13). By fine-tuning the large DPM only on the
timesteps that it is applied, the large DPM can better specialize in providing high-frequency details
and further improve generation quality. Furthermore, we show that the training-free Pareto frontier
generated by T-Stitch improves quality-efficiency trade-offs to training-based methods designed for
interpolating between neural network models via model stitching (Pan et al., 2023a;b). Note that T-
Stitch is not limited to only two model sizes, and is also applicable to different DPM architectures.

We summarize our main contributions as follows:

• We propose T-Stitch, a simple yet highly effective approach for improving the inference
speed of DPMs, by applying a small DPM at early denoising steps while a large DPM at
later steps. Without retraining, we achieve better speed and quality trade-offs than individ-
ual large DPMs and even non-trivial lossless speedups.

• We conduct extensive experiments to demonstrate that our method is generally applicable to
different model architectures and samplers, and is complementary to existing fast sampling
techniques.

• Notably, without any re-training overhead, T-Stitch not only accelerates Stable Diffusion
models that are widely used in practical applications but also improves the prompt align-
ment of stylized SD models for text-to-image generation.

2 RELATED WORKS

Efficient diffusion models. Despite the success, DPMs suffer from the slow sampling speed (Rom-
bach et al., 2022; Ho et al., 2020) due to hundreds of timesteps and the large denoiser (e.g., U-Net).
To expedite the sampling process, some efforts have been made by directly utilizing network com-
pression techniques to diffusion models, such as pruning (Fang et al., 2023) and quantization (Shang
et al., 2023; Li et al., 2023b). On the other hand, many works seek for reducing sampling steps,
which can be achieved by distillation (Salimans & Ho, 2022; Zheng et al., 2023; Song et al., 2023;
Luo et al., 2023; Sauer et al., 2023), implicit sampler (Song et al., 2021a), and improved differential
equation (DE) solvers (Lu et al., 2022; Song et al., 2021b; Jolicoeur-Martineau et al., 2021; Liu et al.,
2022). Another line of work also considers accelerating sampling by parallel sampling Zheng et al.
(2023); Shih et al. (2023). As a complementary technique to the above methods, T-Stitch accelerates
large DPM sampling by leveraging pretrained small DPMs at early denoising steps, while leaving
sufficient space for large DPMs at later steps. Some recent works also explore using different mod-
els at different sizes to achieve better speed-quality trade-offs. For example, OMS-DPM Liu et al.
(2023) trains a predictor that predicts the model performance given a model schedule. DDSM Yang
et al. (2024) trains a supernet and adopts evolutionary search. Compared to them, T-Stitch is training-
free. Under a time budget, the search in T-Stitch is much more efficient since the fraction of the small
DPM directly defines a unique efficiency and generation quality trade-off.

Multiple experts in diffusion models. Previous observations have revealed that the synthesis be-
havior in DPMs can change at different timesteps (Balaji et al., 2022; Yang et al., 2023), which has
inspired some works to propose an ensemble of experts at different timesteps for better performance.
For example, Balaji et al. (2022) trained an ensemble of expert denoisers at different denoising in-
tervals. However, allocating multiple large denoisers linearly increases the model parameters and
does not reduce the computational cost. Yang et al. (2023) proposed a lite latent diffusion model
(i.e., LDM) which incorporates a gating mechanism for the wavelet transform in the denoiser to con-
trol the frequency dynamics at different steps, which can be regarded as an ensemble of frequency
experts. Following the same spirit, Lee et al. (2023) allocated different small denoisers at different
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Figure 3: Similarity comparison of latent embeddings at different denoising steps between different
DiT models. Results are averaged over 32 images.

Large DPM

t = T t = 0

!
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t = T t = 0

!

10% 20% 30% 80%…

Figure 4: Trajectory Stitching (T-Stitch): Based on pretrained small and large DPMs, we can
leverage the more efficient small DPM with different percentages at the early denoising sampling
steps to achieve different speed-quality trade-offs.

denoising intervals to specialize on their respective frequency ranges. Nevertheless, most existing
works adopt the same-sized model over all timesteps, which barely consider the speed and quality
trade-offs between different-sized models. In contrast, we explore a flexible trade-off between small
and large DPMs and reveal that the early denoising steps can be sufficiently handled by a much
efficient small DPM.

Stitchable neural networks. Stitchable neural networks (SN-Net) (Pan et al., 2023a) is motivated
by the idea of model stitching (Lenc & Vedaldi, 2015; Bansal et al., 2021; Csiszárik et al., 2021; Yang
et al., 2022), where the pretrained models of different scales within a pretrained model family can
be splitted and stitched together with simple stitching layers (i.e., 1 × 1 convs) without a significant
performance drop. Based on the insight, SN-Net inserts a few stitching layers among models of
different sizes and applies joint training to obtain numerous networks (i.e., stitches) with different
speed-performance trade-offs. The following work of SN-Netv2 (Pan et al., 2023b) enlarges its
space and demonstrates its effectiveness on downstream dense prediction tasks. In this work, we
compare our technique with SN-Netv2 to show the advantage of trajectory stitching over model
stitching in terms of the speed and quality trade-offs in DPMs. Our T-Stitch is a better, simpler and
more general solution.

3 TRAJECTORY STITCHING

In this section, we introduce Trajectory Stitching (T-Stitch) with a focus on the class of score-based
diffusion models in a continuous time (Song et al., 2021b). Due to the limited space, we leave the
preliminary in Appendix Section A.1.

Why can different pretrained DPMs be directly stitched along the sampling trajectory? First of
all, DPMs from the same model family usually takes the latent noise inputs and outputs of the same
shape, (e.g., 4×32×32 in DiTs). There is no dimension mismatch when applying different DPMs at
different denoising steps. More importantly, as pointed out in (Song et al., 2021b), different DPMs
that are trained on the same dataset often learn similar latent embeddings. We observe that this is
especially true for the latent noises at early denoising sampling steps, as shown in Figure 3, where the
cosine similarities between the output latent noises from different DiT models reach almost 100% at
early steps. This motivates us to propose T-Stitch, a novel step-level stitching strategy that leverages
a pretrained small model at the beginning to accelerate the sampling speed of large diffusion models.
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Figure 5: T-Stitch of two model combinations: DiT-XL/S, DiT-XL/B and DiT-B/S. We adopt DDIM
100 timesteps with a classifier-free guidance scale of 1.5.

Principle of model selection. Figure 4 shows the framework of our proposed T-Stitch for different
speed-quality tradeoffs. In principle, the fast speed or worst generation quality we can achieve is
roughly bounded by the smallest model in the trajectory, whereas the slowest speed or best genera-
tion quality is determined by the largest denoiser. Thus, given a large diffusion model that we want
to speed up, we select a small model that is 1) clearly faster, 2) sufficiently optimized, and 3) trained
on the same dataset as the large model or at least they have learned similar data distributions (e.g.,
pretrained or finetuned stable diffusion models).

Pairwise model allocation. By default, T-Stitch adopts a pairwise denoisers in the sampling trajec-
tory as it performs very well in practice. Specifically, we first define a denoising interval as a range
of sampling steps in the trajectory, and the fraction of it over the total number of steps T is denoted
as r, where r ∈ [0, 1]. Next, we treat the model allocation as a compute budget allocation problem.
From Figure 3, we observe that the latent similarity between different scaled denoisers keeps de-
creasing when T flows to 0. To this end, our allocation strategy adopts a small denoiser as a cheap
replacement at the initial intervals then applies the large denoiser at the later intervals. In particular,
suppose we have a small denoiser D1 and a large denoiser D2. Then we let D1 take the first ⌊r1T ⌉
steps and D2 takes the last ⌊r2T ⌉ steps, where ⌊·⌉ denotes a rounding operation and r2 = 1 − r1.
By increasing r1, we naturally interpolate the compute budget between the small and large denoiser
and thus obtain flexible quality and efficiency trade-offs. For example, in Figure 1, the configuration
r1 = 0.5 uniquely defines a trade-off where it achieves 10.06 FID and 1.76× speedup.

More denoisers for more trade-offs. Note that T-Stitch is not limited to the pairwise setting. In
fact, we can adopt more denoisers in the sampling trajectory to obtain more speed and quality trade-
offs and a better Pareto frontier. For example, by using a medium sized denoiser in the intermediate
interval, we can change the fractions of each denoiser to obtain more configurations. In practice,
given a compute budget such as time cost, we can efficiently find a few configurations that satisfy
this constraint via a pre-computed lookup table, as discussed in Section A.2.

Remark. Compared to existing multi-experts DPMs, T-Stitch directly applies models of different
sizes in a pretrained model family. Thus, given a compute budget, we consider how to allocate
different resources across different steps while benefiting from training-free. Furthermore, specu-
lative decoding (Leviathan et al., 2023) shares a similar motivation with us, i.e., leveraging a small
model to speed up large language model sampling. However, this technique is specifically designed
for autoregressive models, whereas it is not straightforward to apply the same sampling strategy to
diffusion models. On the other hand, our method utilizes the DPM’s property and achieves effective
speedup.

4 EXPERIMENTS

In this section, we first show the effectiveness of T-Stitch based on DiT (Peebles & Xie, 2022) as it
provides a convenient model family. Then we extend into U-Net and Stable Diffusion models. Last,
we ablate our technique with different sampling steps, and samplers to demonstrate that T-Stitch is
generally applicable in many scenarios.

4.1 DIT EXPERIMENTS

Implementation details. Following DiT, we conduct the class-conditional ImageNet experiments
based on pretrained DiT-S/B/XL under 256×256 images and patch size of 2. A detailed comparison

5
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Figure 6: T-Stitch based on three models: DiT-S, DiT-B and DiT-XL. We adopt DDIM 100 timesteps
with a classifier-free guidance scale of 1.5. We highlight the Pareto frontier in lines.

Table 1: T-Stitch with LDM (Rombach et al., 2022) and LDM-S on class-conditional ImageNet. All
evaluations are based on DDIM and 100 timesteps. We adopt a classifier-free guidance scale of 3.0.
The time cost is measured by generating 8 images on one RTX 3090.

Fraction of LDM-S 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FID 20.11 19.54 18.74 18.64 18.60 19.33 21.81 26.03 30.41 35.24 40.92
Inception Score 199.24 201.87 202.81 204.01 193.62 175.62 140.69 110.81 90.24 70.91 54.41
Time Cost (s) 7.1 6.7 6.2 5.8 5.3 4.9 4.5 4.1 3.6 3.1 2.9

of the pretrained models is shown in Table 6. As T-Stitch is training-free, for two-model setting,
we directly allocate the models into the sampling trajectory under our allocation strategy described
in Section 3. For three-model setting, we enumerate all possible configuration sets by increasing
the fraction by 0.1 per model one at a time, which eventually gives rise to 66 configurations that
include pairwise combinations of DiT-S/XL, DiT-S/B, DiT-S/XL, and three model combinations
DiT-S/B/XL. By default, we adopt a classifier-free guidance scale of 1.5 as it achieves the best FID
for DiT-XL, which is also the target model in our setting.

Evaluation metrics. We adopt Fréchet Inception Distance (FID) (Heusel et al., 2017) as our default
metric to measure the overall sample quality as it captures both diversity and fidelity (lower values
indicate better results). Additionally, we report the Inception Score as it remains a solid performance
measure on ImageNet, where the backbone Inception network (Szegedy et al., 2016) is pretrained.
We use the reference batch from ADM (Dhariwal & Nichol, 2021) and sample 5,000 images to
compute FID. In the supplementary material, we show that sampling more images (e.g., 50K) does
not affect our observation. By default, the time cost is measured by generating 8 images on a single
RTX 3090 in seconds.

Results. Based on the pretrained model families, we first apply T-Stitch with any two-model com-
binations, including DiT-XL/S, DiT-XL/B, and DiT-B/S. For each setting, we begin the sampling
steps with a relatively smaller model and then let the larger model deal with the last timesteps. In
Figure 5, we report the FID comparisons on different combinations. In general, we observe that us-
ing a smaller model at the early 40-50% steps brings a minor performance drop for all combinations.
Besides, the best/worst performance is roughly bounded by the smallest and largest models in the
pretrained model family.

Furthermore, we show that T-Stitch can adopt a medium-sized model at the intermediate denoising
intervals to achieve more speed and quality trade-offs. For example, built upon the three different-
sized DiT models: DiT-S, DiT-B, DiT-XL, we start with DiT-S at the beginning then use DiT-B at
the intermediate denoising intervals, and finally adopt DiT-XL to draw fine local details. Figure 6
indicates that the three-model combinations effectively obtain a smooth Pareto Frontier for both
FID and Inception Score. In particular, at the time cost of ∼10s, we achieve 1.7× speedups with
comparable FID (9.21 vs. 9.19) and Inception Score (243.82 vs. 245.73). We show the effect of
using different classifier-free guidance scales in Section A.5.

4.2 U-NET EXPERIMENTS

In this section, we show T-Stitch is complementary to the architectural choices of denoisers. We
experiment with prevalent U-Net as it is widely adopted in many diffusion models. We adopt the
class-conditional ImageNet implementation from the latent diffusion model (LDM) (Rombach et al.,
2022). Based on their official implementation, we simply scale down the network channel width

6
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Prompt: “a squirrel in the park, nvinkpunk style”

InkPunk

SD-1.4

Prompt: “a vase with different flowers”

100%0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 7: Based on a general pretrained small SD model, T-Stitch simultaneously accelerates a
large general SD and complements the prompt alignment with image content when stitching other
finetuned/stylized large SD models, i.e., “park” in InkPunk Diffusion. Better viewed when zoomed
in digitally.

Table 2: T-Stitch with BK-SDM Tiny (Kim et al., 2023) and SD v1.4. We report FID, Inception
Score (IS) and CLIP score (Hessel et al., 2021) on MS-COCO 256×256 benchmark. The time cost
is measured by generating one image on one RTX 3090.

Fraction of BK-SDM Tiny 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
FID 13.07 12.59 12.29 12.54 13.65 14.98 15.69 16.57 16.92 16.80 17.15
Inception Score 36.72 36.12 34.66 33.32 32.48 31.72 31.48 30.83 30.53 30.48 30.00
CLIP Score 0.2957 0.2957 0.2938 0.2910 0.2860 0.2805 0.2770 0.2718 0.2692 0.2682 0.2653
Time Cost (s) 3.1 3.0 2.9 2.8 2.6 2.5 2.4 2.3 2.1 2.0 1.9

from 256 to 64 and the context dimension from 512 to 256. This modification produces a 15.8×
smaller LDM-S. A detailed comparison between the two pretrained models is shown in Table 7.

Results. We report the results on T-Stitch with U-Net in Table 1. In general, under DDIM and
100 timesteps, we found the first ∼50% steps can be taken by an efficient LDM-S with comparable
or even better FID and Inception Scores. At the same time, we observe an approximately linear
decrease in time cost when progressively using more LDM-S steps in the trajectory. Overall, the
U-Net experiment indicates that our method is applicable to different denoiser architectures. We
provide the generated image examples in Section A.15 and also show that T-Stitch can be applied
with even different model families in Section A.11.

4.3 TEXT-TO-IMAGE STABLE DIFFUSION

Benefiting from the public model zoo on Diffusers (von Platen et al., 2022), we can directly adopt
a small SD model to accelerate the sampling speed of any large pretrained or styled SD models
without any training. In this section, we show how to apply T-Stitch to accelerate existing SD models
in the model zoo. Previous research from Kim et al. (2023) has produced multiple SD models with
different sizes by pruning the original SD v1.4 and then applying knowledge distillation. We then
directly adopt the smallest model BK-SDM Tiny for our stable diffusion experiments. By default,
we use a guidance scale of 7.5 under 50 steps using PNDM (Liu et al., 2022) sampler.

Results. In Table 2, we report the results by applying T-Stitch to the original SD v1.4. In addition
to the FID and Inception Score, we also report the CLIP score for measuring the alignment of the
image with the text prompt. Overall, we found the early 30% steps can be taken by BK-SDM Tiny
without a significant performance drop in Inception Score and CLIP Scores while achieving even
better FID. We believe a better and faster small model in future works can help to achieve better
quality and efficiency trade-offs. Furthermore, we demonstrate that T-Stitch is compatible with
other large SD models. For example, as shown in Figure 7, under the original SD v1.4, we achieve
a promising speedup while obtaining comparable image quality. Moreover, with other stylized SD
models such as Inkpunk style1, we observe a natural style interpolation between the two models.
More importantly, by adopting a small fraction of steps from a general small SD, we found it helps
the image to be more aligned with the prompt, such as the “park” in InkPunk Diffusion. In this case,
we assume finetuning in these stylized SD may unexpectedly hurt prompt alignment, while adopting
the knowledge from a general pretrained SD can complement the early global structure generation.
Overall, this strongly supports another practical usage of T-Stitch: Using a small general expert at

1https://huggingface.co/Envvi/Inkpunk-Diffusion

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Fraction of DiT-S

20

40

60

80

100

FI
D

10 Steps
DDPM
DDIM
DPM Solver++

0.00 0.25 0.50 0.75 1.00
Fraction of DiT-S

20

40

60

FI
D

20 Steps
DDPM
DDIM
DPM Solver++

0.00 0.25 0.50 0.75 1.00
Fraction of DiT-S

10

20

30

40

FI
D

50 Steps
DDPM
DDIM
DPM Solver++

Figure 8: Effect of T-Stitch with different samplers, under guidance scale of 1.5.
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Figure 9: Left: We compare FID between different numbers of steps. Right: We visualize the
time cost of generating 8 images under different number of steps, based on DDIM and a classifier-
guidance scale of 1.5. “T” denotes the number of sampling steps.

the beginning for fast sketching and better prompt alignment, while letting any stylized SD at the
later steps for patiently illustrating details. Furthermore, we show that T-Stitch is compatible with
ControlNet, SDXL, LCM in Section A.12 and zero-shot Text-to-Video generation in Section A.20.

4.4 ABLATION STUDY

Effect of T-Stitch with different steps. To explore the efficiency gain on different numbers of sam-
pling steps, we conduct experiments based on DDIM and DiT-S/XL. As shown in Figure 9, T-Stitch
achieves consistent efficiency gain when using different number of steps and diffusion model sam-
plers. In particular, we found the 40% early steps can be safely taken by DiT-S without a significant
performance drop. It indicates that small DPMs can sufficiently handle the early denoising steps
where they mainly generate the low-frequency components. Thus, we can leave the high-frequency
generation of fine local details to a more capable DiT-XL. This is further evidenced by the gener-
ation examples in Figure 17, where we provide the sampled images at all fractions of DiT-S steps
across different total number of steps. Overall, we demonstrate that T-Stitch is not competing but
complementing other fast diffusion approaches that focus on reducing sampling steps.

Effect of T-Stitch with different samplers. Here we show T-Stitch is also compatible with ad-
vanced samplers (Lu et al., 2022) for achieving better generation quality in fewer timesteps. To this
end, we experiment with prevalent samplers to demonstrate the effectiveness of T-Stitch with these
orthogonal techniques: DDPM (Ho et al., 2020), DDIM (Song et al., 2021a) and DPM-Solver++ (Lu
et al., 2022). In Figure 8, we use the DiT-S to progressively replace the early steps of DiT-XL un-
der different samplers and steps. In general, we observe a consistent efficiency gain at the initial
sampling stage, which strongly justifies that our method is a complementary solution with existing
samplers for accelerating DPM sampling.

T-Stitch vs. model stitching. Previous works (Pan et al., 2023a;b) such as SN-Net have demon-
strated the power of model stitching for obtaining numerous architectures that with different com-
plexity and performance trade-offs. Thus, by adopting one of these architectures as the denoiser for
sampling, SN-Net naturally achieves flexible quality and efficiency trade-offs. To show the advan-
tage of T-Stitch in the Pareto frontier, we conduct experiments to compare with the framework of
model stitching proposed in SN-Netv2 (Pan et al., 2023b). We provide implementation details in
Section A.9. In Figure 10, we compare T-Stitch with model stitching based on DDIM sampler and
100 steps. Overall, while both methods can obtain flexible speed and quality trade-offs, T-Stitch
achieves clearly better advantage over model stitching across different metrics.

Compared to training-based acceleration methods. The widely adopted training-based methods
for accelerating DPM sampling mainly include lightweight model design Zhao et al. (2023); Lee

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 10 15
Time Cost (s)

20

40

60

FI
D

M-Stitch
T-Stitch

5 10 15
Time Cost (s)

100

200

In
ce

pt
io

n 
Sc

or
e

M-Stitch
T-Stitch

Figure 10: T-Stitch vs. model stitching (M-Stitch) Pan et al. (2023b) based on DiTs and DDIM 100
steps, with a classifier-free guidance scale of 1.5.

Table 3: Comparison between T-Stitch and training/searching-based model schedules on CIFAR-10.
“#Eval Runs” indicates the number of FID evaluation runs required for both training and searching.
Baselines are the largest networks in their model families. For T-Stitch, we only adopt the smallest
network in their model family to accelerate the baselines.

(a) Comparison with DDSM Yang et al. (2024).

Name Time per Img (s) FID #Eval Runs
Baseline 0.70 7.9 -
DDSM 0.45 8.3 500
T-Stitch 0.44 8.1 1

(b) Comparison with OMS-DPM Liu et al. (2023).

Name Time per Img (s) FID #Eval Runs
Baseline 0.13 8.4 -
OMS-DPM 0.03 11.2 >6,000
T-Stitch 0.04 11.5 1

et al. (2023), model compression Kim et al. (2023), and steps distillation Salimans & Ho (2022);
Song et al. (2023); Luo et al. (2023). Compared to them, T-Stitch is a training-free and complemen-
tary acceleration technique since it is agnostic to individual model optimization. In practice, T-Stitch
achieves wide compatibility with different denoiser architectures (DiT and U-Net, Section 4.1 and
Section 4.2), and any already pruned (Section A.8) or step-distilled models (Section A.17).

Compared to other training-free acceleration methods. Recent works Li et al. (2023a); Ma
et al. (2023); Wimbauer et al. (2023) proposed to cache the intermediate feature maps in U-Net
during sampling for speedup. T-Stitch is also complementary to these cache-based methods since
the individual model can still be accelerated with caching, as shown in Section A.18. In addition, T-
Stitch can also enjoy the benefit from model quantization Shang et al. (2023); Li et al. (2023b), VAE
decoder acceleration Kodaira et al. (2023) and token merging Bolya et al. (2023) (Section A.19)
since they are orthogonal approaches.

Compared to training/searching-based model schedules. Given a time budget such as the time
cost for generating an image, there is a line of work Yang et al. (2024); Liu et al. (2023) searching
for a model schedule. In contrast to these methods, we provide a clear allocation strategy, which
essentially reduces the search space, thus significantly reducing the search cost, compared to training
or searching-based methods which have a much larger search space. For example, under 1,000 steps
and 4 different network widths in DDSM (Yang et al., 2024), the search space is 41,000. Our work
points out a simple but effective way by progressively allocating a small model at the early steps,
resulting in only 1,000 configurations at its most fine-grained level. Benefiting from such a small
space, our T-Stitch is practically way faster than existing works since the corresponding model
schedule under a time cost can be obtained by directly querying a pre-calculated lookup table on
CPU within a second. At the same time, our result is comparable or even better, as shown in Table 3.

Additional memory and storage overhead of T-Stitch. Intuitively, T-Stitch adopts a small DPM
which can introduce additional memory and storage overhead. However, in practice, the large DPM
is still the main bottleneck of memory and storage consumption. In this case, the additional overhead
from small DPM is considerably minor. For example, as shown in Table 4, compared to DiT-XL, T-
Stitch by adopting 50% steps of DiT-S only introduces additional 5% parameters, 4% GPU memory
cost, 10% local storage cost, while significantly accelerating DiT-XL sampling speed by 1.76×.

Compared with more stitching baselines. By default, we design T-Stitch to start from a small DPM
and then switch into a large DPM for the last denoising sampling steps. To show the effectiveness of
this design, we compare our method with several baselines in Table 5 based on DiT-S and DiT-XL.
These baselines are listed as below,
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Table 4: Local storage and memory cost comparison between DiT-S, DiT-XL and T-Stitch. Memory
and time cost are measured by generating 8 images in parallel on one RTX 3090.

Name Parameter (M) Local Storage (MB) Memory Cost (MB) Time Cost (s)
DiT-S 33 263 3,088 1.7
DiT-XL 675 2,576 3,166 16.5
T-Stitch (50%) 708 (×1.04) 2,839 (×1.10) 3,296 (×1.04) 9.4 (×1.76)

Table 5: Compared to other trajectory stitching baselines based on DiT-S/XL, DDIM 100 steps and
guidance scale of 1.5. FID is calculated by 5K images. Memory and time cost are measured by a
batch size of 8 on one RTX 3090.

Method FID Inception Score Time Cost
Interleave 19.02 120.04 10.1
Decreasing Prob 12.94 163.45 9.8
Large to Small 27.61 72.60 10.0
Small to Large (Ours) 10.06 200.81 9.9

• Interleaving. During denoising sampling, we interleave the small and large model along
the trajectory. Eventually, DiT-S takes 50% steps and DiT-XL takes another 50% steps.

• Decreasing Prob. Linearly decreasing the probability of using DiT-S from 1 to 0 during
the denoising sampling steps.

• Large to Small. Adopting the large model at the early 50% steps and the small model at
the last 50% steps.

• Small to Large (our default design). The default strategy of T-Stitch by adopting DiT-S
at the early 50% steps and using DiT-XL at the last 50% steps.

As shown in Table 5, in general, our default design achieves the best FID and Inception Score with
similar sampling speed, which strongly demonstrate its effectiveness.

Remarks on the small model. While a small model is required for T-Stitch, our key motivation is
that the increasingly expanded large public model zoo more or less addressed this concern in prac-
tice. First, under T-Stitch, a small model that lies in a similar data distribution as the target large
model can accelerate all its finetuned or stylized versions for free. For example, a single BK-SDM
Tiny is able to simultaneously accelerate SDv1.4, or any stylized SDs based on it, e.g., ControlNet,
as shown in Section A.12. Furthermore, T-Stitch also works for different model families. Benefit-
ing from it, we can easily accelerate U-ViT H sampling with a small DiT-S, as shown in Table 8.
Second, free lunch is generally available in large public model zoos. The open-source community
(e.g., HuggingFace.co and Civitai.com) has released tens of thousands of pretrained models, includ-
ing different scales (Segmind, 2023; Kim et al., 2023), which are pruned and knowledge distilled
versions of large stable diffusion models. In our experiments, we have never trained a SD model
from scratch, while being able to demonstrate broad applications of T-Stitch on SDXL, ControlNet,
and step-distilled diffusion models.

5 CONCLUSION

We have proposed Trajectory Stitching, an effective and general approach to accelerate existing pre-
trained large diffusion model sampling by directly leveraging pretrained smaller counterparts at the
initial denoising process, which achieves better speed and quality trade-offs than using an individ-
ual large DPM. Comprehensive experiments have demonstrated that T-Stitch achieved consistent
efficiency gain across different model architectures, samplers, as well as various stable diffusion
models. Besides, our work has revealed the power of small DPMs at the early denoising process.
Future work may consider disentangling the sampling trajectory by redesigning or training experts
of different sizes at different denoising intervals. For example, designing a better, faster small DPM
at the beginning to draw global structures, then specifically optimizing the large DPM at the later
stages to refine image details. Besides, more guidelines for the optimal trade-off and more in-depth
analysis of the prompt alignment for stylized SDs can be helpful, which we leave for future work.
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A APPENDIX

We organize our supplementary material as follows.

• In Section A.1, we introduce the preliminary of T-Stitch.
• In Section A.2, we provide guidelines for practical deployment of T-Stitch.
• In Section A.3, we provide frequency analysis during denoising sapmling process based on

DiTs.
• In Section A.4, we report the details of our adopted pretrained DiTs and U-Nets.
• In Section A.5, we show the effect of using different classifier-free guidance scales based

on DiTs and T-Stitch.
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Figure 11: Frequency analysis in denoising process of DiT-XL, based on DDIM 10 steps and guid-
ance scale of 4.0. We visualize the log amplitudes of Fourier-transformed latent noises at each step.
Results are averaged over 32 images.

• In Section A.6, we compare FID evaluation under T-Stitch with 5,000 images and 50,000
images.

• In Section A.7, we compare T-Stitch with directly reducing sampling steps.

• In Section A.8, we show T-Stitch is compatible with pruned and knowledge distilled mod-
els.

• In Section A.9, we describe the implementation details of model stitching baseline under
SN-Netv2 Pan et al. (2023b).

• In Section A.10, we show image examples when using T-Stitch with different sampling
steps based on DiTs.

• In Section A.11, we demonstrate that T-Stitch is applicable to different pretrained model
families, e.g., stitching DiT with U-ViT Bao et al. (2023).

• In Section A.12, we show more image examples in stable diffusion experiments, including
the original SDv1.4, stylized SDs, SDXL, ControlNet.

• In Section A.13, we report our finetune experiments by further finetuning the large DiTs at
their allocated steps.

• In Section A.14, we report the precision and recall metrics on class conditional ImageNet-
256 based on DiTs.

• In Section A.15, we show image examples of T-Stitch with DiTs and U-Nets.

• In Section A.16, we evaluate FID under T-Stitch by using pretrained DiT-S at different
training iterations.

• In Section A.17, we demonstrate that T-Stitch can still obtain a smooth speed and quality
trade-off under 2-4 steps with LCM Luo et al. (2023).

• In Section A.18, we show T-Stitch is also complementary to cache-based methods such as
DeepCache Ma et al. (2023) to achieve further speedup.

• In Section A.19, we evaluate T-Stitch and show image examples by applying ToMe Bolya
et al. (2023) simultaneously.

• In Section A.20, we show examples of using T-Stitch to accelerate zero-shot Text-to-Video
generation Khachatryan et al. (2023).

• In Section A.21, we report the L2-distance of latent embeddings between DiTs at different
denoising steps.

• In Section A.22, we discuss the relation with early-exit works.

• In Section A.23, we discuss the limitations of T-Stitch.
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Table 6: Performance comparison of pretrained DiT model family on class-conditional ImageNet.
FLOPs are measured by a single forward process given a latent noise in the shape of 4× 32× 32.

Parameters (M) FLOPs (G) Train Iters Time Cost (s) FID
DiT-S 33.0 5.5 5000K 1.6 33.46
DiT-B 130.5 21.8 1600K 4.0 12.30
DiT-XL 675.1 114.5 - 16.5 9.20

Table 7: Performance comparison of LDM and LDM-S on class-conditional ImageNet.

Model Param (M) Train Iter Time Cost (s) FID
LDM-S 25 400K 2.9 40.92
LDM 394 200K 7.1 20.11

A.1 PRELIMINARY

Diffusion models. We consider the class of score-based diffusion models in a continuous time (Song
et al., 2021b) and following the presentation from Karras et al. (2022). Let pdata(x0) denote the data
distribution and σ(t) : [0, 1] → R+ is a user-specified noise level schedule, where t ∈ {0, ..., T} and
σ(t − 1) < σ(t). Let p(x;σ) denote the distribution of noised samples by injecting σ2-variance
Gaussian noise. Starting with a high-variance Gaussian noise xT , diffusion models gradually de-
noise xT into less noisy samples {xT−1,xT−2, ...,x0}, where xt ∼ p(xt;σ(t)). Furthermore, this
iterative process can be done by solving the probability flow ordinary differential equation (ODE) if
knowing the score ∇x log pt(x), namely the gradient of the log probability density with respect to
data,

dx = −σ̂(t)σ(t)∇x log p(x;σ(t)) dt, (1)

where σ̂(t) denote the time derivative of σ(t). Essentially, diffusion models aim to learn a model for
the score function, which can be reparameterized as

∇x log pt(x) ≈ (Dθ(x;σ)− x)/σ2, (2)

where Dθ(x;σ) is the learnable denoiser. Given a noisy data point x0 +n and a conditioning signal
c, where n ∼ N

(
0, σ2I

)
, the denoiser aim to predict the clean data x0. In practice, the mode is

trained by minimizing the loss of denoising score matching,

E(x0,c)∼pdata,(σ,n)∼p(σ,n)

[
λσ∥Dθ(x0 + n;σ, c)− x0∥22

]
, (3)

where λσ : R+ → R+ is a weighting function (Ho et al., 2020), p(σ,n) = p(σ)N
(
n;0, σ2

)
, and

p(σ) is a distribution over noise levels σ.

This work focuses on the denoisers D in diffusion models. In common practice, they are typically
large parameterized neural networks with different architectures that consume high FLOPs at each
timestep. In the following, we use “denoiser” or “model” interchangeably to refer to this network.
We begin with the pretrained DiT model family to explore the advantage of trajectory stitching on
efficiency gain. Then we show our method is a general technique for other architectures, such as
U-Net (Rombach et al., 2022) and U-ViT (Bao et al., 2023).

Classifier-free guidance. Unlike classifier-based denoisers (Dhariwal & Nichol, 2021) that require
an additional network to provide conditioning guidance, classifier-free guidance (Ho & Salimans,
2022) is a technique that jointly trains a conditional model and an unconditional model in one net-
work by replacing the conditioning signal with a null embedding. During sample generation, it
adopts a guidance scale s ≥ 0 to guide the sample to be more aligned with the conditioning signal
by jointly considering the predictions from both conditional and unconditional models,

Ds(x;σ, c) = (1 + s)D(x;σ, c)− sD(x;σ). (4)

Recent works have demonstrated that classifier-free guidance provides a clear improvement in gen-
eration quality. In this work, we consider the diffusion models that are trained with classifier-free
guidance due to their popularity.
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Figure 12: Trajectory stitching based on three models: DiT-S, DiT-B, and DiT-XL. We adopt DDIM
100 timesteps with a classifier-free guidance scale of 1.5, 2.0 and 3.0.

A.2 PRACTICAL DEPLOYMENT OF T-STITCH

In this section, we provide guidelines for the practical deployment of T-Stitch by formulating our
model allocation strategy into a compute budget allocation problem.

Given a set of denoisers {D1, D2, ..., DK} and their corresponding computational costs
{C1, C2, ..., CK} for sampling in a T -steps trajectory, where Ck−1 < Ck, we aim to find an op-
timal configuration set {r1, r2, ..., rK} that allocates models into corresponding denoising intervals
to maximize the generation quality, which can be formulated as

max
r1,r2,...,rK

M (F (D1, r1) ◦ F (D2, r2) · · · ◦ F (DK , rK)) (5)

subject to
K∑

k=1

rkCk ≤ CR,

K∑
k=1

rk = 1, (6)

where F (Dk, rk) refers to the denoising process by applying denoiser Dk at the k-th interval indi-
cated by rk, ◦ denotes to a composition, M represents a metric function for evaluating generation
performance, and CR is the compute budget constraint. Since {C1, C2, ..., CK} is known, we can
efficiently enumerate all possible fraction combinations and obtain a lookup table, where each frac-
tion configuration set corresponds to a compute budget (i.e., time cost). In practice, we can sample
a few configuration sets from this table that satisfy a budget and then apply to generation tasks.

A.3 FREQUENCY ANALYSIS IN DENOISING PROCESS

We provide evidence that the denoising process focuses on low frequencies at the initial stage and
high frequencies in the later steps. Based on DiT-XL, we visualize the log amplitudes of Fourier-
transformed latent noises at each sampling step. As shown in Figure 11, the low-frequency ampli-
tudes increase rapidly at the early timesteps (i.e., from 999 to 555), indicating that low frequencies
are intensively generated. At the later steps, especially for t = 111 and t = 0, we observe the
log amplitude of high frequencies increases significantly, which implies that the later steps focus on
detail refinement.

A.4 PRETRAINED DITS AND U-NETS

In Table 6 and Table 7, we provide detailed comparisons of the pretrained DiT model family, as well
as our reproduced small version of U-Net. Overall, as mentioned earlier in Section 3, we make sure
the models at each model family have a clear gap in model size between each other such that we can
achieve a clear speedup.

A.5 EFFECT OF DIFFERENT CLASSIFIER-FREE GUIDANCE ON THREE-MODEL T-STITCH

In Figure 12, we provide the results by applying T-Sittch with DiTs using different guidance scales
under three-model settings. In general, T-Stitch performs consistently with different guidance scales,
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Figure 13: Trajectory stitching based on three models: DiT-S, DiT-B, and DiT-XL. We adopt DDPM
250 timesteps with a classifier-free guidance scale of 1.5.

Pretrained

Finetuned

Figure 14: Image quality comparison by stitching pretrained and finetuned DiT-B and DiT-XL at the
later steps, based on T-Stitch schedule of DiT-S/B/XL of 50% : 30% : 20%.

where it interpolates a smooth Pareto frontier between the DiT-S and DiT-XL. As common practice
in DPMs adopt different guidance scales to control image generation, this significantly underscores
the broad applicability of T-Stitch.

A.6 FID-50K VS. FID-5K

For efficiency concerns, we report FID based on 5,000 images by default. Based on DiT, we apply T-
Stitch with DDPM 250 steps with a guidance scale of 1.5 and sample 50,000 images for evaluating
FID. As shown in Figure 13, the observation between FID-50K and FID-5K are similar, which
indicates that sampling more images like 50,000 does not affect the effectiveness.

A.7 COMPARED TO DIRECTLY REDUCING SAMPLING STEPS

Reducing sampling steps has been a common practice for obtaining different speed and quality
trade-offs during deployment. Although we have demonstrated that T-Stitch can achieve consistent
efficiency gain under different sampling steps, we show in Figure 15 that compared to directly
reducing the number of sampling steps, the trade-offs from T-Stitch are very competitive, especially
for the 50-100 steps region where the FIDs under T-Stitch are even better. Thus, T-Stitch is able to
serve as a complementary or an alternative method for practical DPM sampling speed acceleration.

A.8 COMPARED TO MODEL COMPRESSION

In practice, T-Stitch is orthogonal to individual model optimization/compression. For example, with
a BK-SDM Tiny and SDv1.4, we can still apply compression into SDv1.4 in order to reduce the
computational cost at the later steps from the large SD. In Figure 16, we show that by adopting a
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Figure 15: Based on DDIM, we report the FID and speedup comparisons on DiT-XL by using
T-Stitch and directly reducing the sampling step from 100 to 10. “s” denotes the classifier-free
guidance scale. Trajectory stitching adopts the three-model combination (DiT-S/B/XL) under 100
steps.
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with BK-SDM Small at later steps

a backpack in the snow

Figure 16: Comparison of T-Stitch by adopting SDv1.4 and its compressed version (i.e., BK-SDM
Small) at the later steps.

compressed SD v1.4, i.e., BK-SDM Small, we can further reduce the time cost with a trade-off for
image quality.

A.9 IMPLEMENTATION DETAILS OF MODEL STITCHING BASELINE

We adopt a LoRA rank of 64 when stitching DiT-S/XL, which leads to 134 stitching configurations.
The stitched model is finetuned on 8 A100 GPUs for 1,700K training iterations. We pre-extract the
ImageNet features with a Stable Diffusion AutoEncoder (Rombach et al., 2022) and do not apply
any data augmentation. Following the baseline DiT, we adopt the AdamW optimizer with a constant
learning rate of 1 × 10−4. The total batch size is set as 256. All other hyperparameters adopt the
default setting as DiT.

A.10 IMAGE EXAMPLES UNDER THE DIFFERENT NUMBER OF SAMPLING STEPS

Figure 17 shows image examples generated using different numbers of sampling steps under T-Stitch
and DiT-S/XL. As the figure shows, adopting a small model at the early 40% steps has a negligible
effect on the final generated images. When progressively increasing the fraction of DiT-S, there is
a visible trade-off between speed and quality, with the final image becoming more similar to those
generated from DiT-S.
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Figure 17: Based on DDIM and a classifier-free guidance scale of 1.5, we stitch the trajectories from
DiT-S and DiT-XL and progressively increase the fraction (%) of DiT-S timesteps at the beginning.

Table 8: T-Stitch with DiT-S and U-ViT H, under DPM-Solver++, 50 steps, guidance scale of 1.5.

Fraction of DiT-S 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
FID 15.04 13.68 12.44 12.76 14.19 17.6 29.4 53.75 74.14 84.33 121.95
Time Cost (s) 15.90 13.21 11.91 10.61 9.42 7.92 6.57 5.23 3.84 2.50 1.40

A.11 T-STITCH WITH DIFFERENT PRETRAINED MODEL FAMILIES

As different pretrained models trained on the same dataset to learn similar encodings, T-Stitch is
able to directly integrate different pretrained model families. For example, based on U-ViT H (Bao
et al., 2023), we apply DiT-S at the early sampling steps just as we have done for DiTs and U-
Nets. Remarkably, as shown in Table 8, it performs very well, which demonstrates the advantage of
T-Stitch as it can be applied for more different models in the public model zoo.

A.12 MORE EXAMPLES IN STABLE DIFFUSION

We show more examples by applying T-Stitch to SD v1.4, InkPunk Diffusion and Ghibli Diffusion
with a small SD model, BK-SDM Tiny (Kim et al., 2023). For all examples, we adopt the default
scheduler and hyperparameters of StableDiffusionPipeline in Diffusers: PNDM scheduler, 50 steps,
guidance scale 7.5. In Figure 25, we observe that adopting a small SD in the sampling trajectory of
SD v1.4 achieves minor effect on image quality at the small fractions and obtain flexible trade-offs
in speed and quality by using different fractions.

Stylized SDs. For stylized SDs, such as InkPunk-Diffusion and Ghibli-Diffusion2, we show in
Figures 26 and 27 that T-Stitch helps to complement the prompt alignment by effectively utilizing
the knowledge of the pretrained small SD. Benefiting from the interpolation on speeds, styles and
image contents, T-Stitch naturally increases the diversity of the generated images given a prompt by
using different fractions of small SD.

Generality of T-Stitch . In Figure 28, we show T-Stitch performs favorably with more complex
prompts. Besides, by adopting a smaller and distilled SSD-1B, we can easily accelerate SDXL
while being compatible with complex prompts and ControlNet (Zhang et al., 2023) for practical
art generation, as shown in Figure 29 and Figure 30. Furthermore, we demonstrate that T-Stitch is
robust in practical usage. As shown in Figure 31, 8 consecutive runs can generate stable images with
great quality.

2https://huggingface.co/nitrosocke/Ghibli-Diffusion

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: Precision and Recall evaluation based on DiT-S/XL, with DDIM 100 steps and guidance
scale of 1.5.

Fraction of DiT-S 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
FID 9.20 9.17 8.99 9.03 8.95 10.06 12.46 18.04 25.44 30.11 33.46
Precision 0.81 0.81 0.81 0.81 0.80 0.76 0.72 0.67 0.62 0.59 0.58
Recall 0.74 0.74 0.74 0.74 0.75 0.75 0.74 0.73 0.69 0.65 0.63

A.13 FINETUNING ON SPECIFIC TRAJECTORY SCHEDULE

Table 9: Performance comparison of stitching pretrained
and finetuned DiTs at the later steps. We set the denois-
ing interval of DiT-S/B/XL with 50% : 30% : 20%

FID Inception Score
Pretrained 16.49 123.11
Finetuned at all timesteps 16.04 125.81
Finetuned at stitched interval 13.35 155.35

When progressively using a small
model in the trajectory, we observe
a non-negligible performance drop.
However, we show that we can sim-
ply finetune the model at the allo-
cated denoising intervals to improve
the generation quality. For example,
based on DDIM and 100 steps, allo-
cating DiT-S at the early 50%, DiT-B
at the subsequent 30%, and DiT-XL
at the last 20% obtains an FID of 16.49. In this experiment, we separately finetune DiT-B and DiT-
XL at their allocated denoising intervals, with additional 250K iterations on ImageNet-1K under
the default hyperparameters in DiT (Peebles & Xie, 2022). In Table 9, we observe a clear improve-
ment over FID, Precision and Recall by finetuning at stitched interval. This strategy also achieves
better performance than finetuning for all timesteps. Furthermore, we provide a comparison of the
generated images in Figure 14, where we observe that finetuning clearly improves local details.

A.14 PRECISION AND RECALL MEASUREMENT OF T-STITCH

Following common practice (Dhariwal & Nichol, 2021), we adopt Precision to measure fidelity and
Recall to measure diversity or distribution coverage. In Table 10, we show that T-Stitch introduces
a minor effect on Precision and Recall at the early 40-50% steps, while at the later steps we observe
clear trade-offs, which is consistent with FID evaluations.

A.15 IMAGE EXAMPLES OF T-STITCH ON DITS AND U-NETS

In Figures 23 and 24, we provide image examples that generated by applying T-Stitch with DiT-
S/XL, LDM-S/LDM, respectively. Overall, we observe that adopting a small DPM at the begin-
ning still produces meaningful and high-quality images, while at the later steps it achieves flexible
speed and quality trade-offs. Note that different from DiTs that learn a null class embedding during
classifier-free guidance, LDM inherently omits this embedding in their official implementation 3.
During sampling, LDM and LDM-S have different unconditional signals, which eventually results
in various image contents under different fractions.

A.16 EFFECT OF DIT-S UNDER DIFFERENT TRAINING ITERATIONS

In our experiments, we adopt a DiT-S that trained with 5,000K iterations as it can be sufficiently
optimized. In Figure 18, we indicate that even under a short training schedule of 400K iterations,
adopting DiT-S at the initial stages of the sampling trajectory also has a minor effect on the overall
FID. The main difference is at the later part of the sampling trajectory. Therefore, it implies the early
denoising sampling steps can be easier to learn and be handled by a compute-efficient small model.

A.17 COMPATIBILITY WITH LCM

T-Stitch can further speed up an already accelerated DPM via established training-based methods,
such as step distillations (Luo et al., 2023; Song et al., 2023). For example, as shown in Figure 32

3https://github.com/CompVis/latent-diffusion
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Figure 18: Effect of different pretrained DiT-S in T-Stitch for accelerating DiT-XL, based on DDPM,
250 steps and guidance scale of 1.5. For example, “400K” indicates the pretrained weights of DiT-S
at 400K iterations.

and Figure 33, given a distilled SDXL from LCM (Luo et al., 2023), T-Stitch can achieve further
speedup under 2 to 4 steps with high image quality by adopting a relatively smaller SD. In Table 11,
Table 12, we report comprehensive FID, inception score and CLIP score evaluations by stitching
LCM distilled SDXL and SSD-1B, where we show that T-Stitch smoothly interpolates the quality
between SDXL and SSD-1B. Finally, we assume a better and faster small model in T-Stitch will
help to obtain more gains in future works.

Table 11: T-Stitch based on LCM (Luo et al., 2023) distilled models: LCM-SDXL and LCM-SSD-
1B, under 2 sampling steps.

Faction of SSD-1B 0 0.5 1
FID 21.98 23.96 24.36
IS 28.48 27.60 28.22
CLIP Score 0.2929 0.2895 0.2844
Time Cost (ms) 768 685 634

A.18 COMPATIBILITY WITH DEEPCACHE

In this section, we demonstrate that recent cache-based methods Ma et al. (2023); Wimbauer et al.
(2023) such as DeepCache Ma et al. (2023) can be effectively combined with T-Stitch to obtain more
benefit. Essentially, as T-Stitch directly drops off the pretrained SDs, we can adopt DeepCache to
simultaneously accelerate both small and large diffusion models during sampling to achieve further
speedup. The image quality and speed benchmarking as shown in Figure 21 have demonstrated that
T-Stitch works very well along with DeepCache, while potentially further improving the prompt
alignment for stylized SDs. We also comprehensively evaluate the FID, Inception score, CLIP
score and time cost in Figure 19, where we observe combining T-Stitch with DeepCache brings

Table 12: T-Stitch based on LCM (Luo et al., 2023) distilled models: LCM-SDXL and LCM-SSD-
1B, under 4 sampling steps. Time cost is measured by generating one image on RTX 3090 in
seconds.

Faction of SSD-1B 0% 25% 50% 75% 100%
FID 17.05 18.32 21.28 23.67 25.50
IS 35.35 34.46 31.83 30.47 29.31
CLIP Score 0.3062 0.3059 0.2984 0.2912 0.2897
Time Cost (ms) 1,029 968 921 870 823
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Figure 19: Effect of combining T-Stitch and DeepCache Ma et al. (2023). We report FID, Inception
Score and CLIP score (Hessel et al., 2021) on MS-COCO 256×256 benchmark under 50 steps. The
time cost is measured by generating one image on one RTX 3090. We adopt BK-SDM Tiny and
SDv1.4 as the small and large model, respectively. For DeepCache, we adopt an uniform cache
interval of 3.
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Figure 20: Effect of combining T-Stitch and ToMe Bolya et al. (2023). We report FID, Inception
Score and CLIP score (Hessel et al., 2021) on MS-COCO 256×256 benchmark under 50 steps. The
time cost is measured by generating one image on one RTX 3090. We adopt BK-SDM Tiny and
SDv1.4 as the small and large model, respectively. For ToMe, we adopt a token merging ratio of 0.5.

improvement over all metrics. Note that under DeepCache, BK-SDM Tiny is 1.5× faster than
SDv1.4, thus the speedup gain from T-Stitch is slightly smaller than applying T-Stitch only where
the BK-SDM Tiny is 1.7× faster than SDv1.4. In addition, we observe DeepCache cannot work well
with step-distilled models and ControlNet, while T-Stitch is generally applicable to many scenarios,
as shown in Section A.12.

A.19 COMPATIBILITY WITH TOKEN MERGING

Our technique also complements Token Merging Bolya et al. (2023). For example, during the de-
noising sampling, we can still apply ToMe into both small and large U-Nets. In practice, it brings
additional gain in both sampling speed and CLIP score, and slightly improves Inception score, as
shown in Figure 20. We also provide image examples in Figure 22.
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SDv1.4 w/ DeepCache w/ DeepCache + T-Stitch

10%, 1101ms 20%, 1086ms 30%, 1041ms 40%, 979ms 50%, 975ms

10% 20%

InkPunk SD w/ DeepCache w/ DeepCache + T-Stitch

2440ms 1215ms

A blue cake topped with a beach scene.

a squirrel in the park, nvinkpunk style

30% 40% 50%

10% 20%

Ghibli SD w/ DeepCache w/ DeepCache + T-Stitch

A sky filled with vibrant hot air balloons,
ghibli style

30% 40% 50%

Figure 21: Image examples of combining T-Stitch with DeepCache Ma et al. (2023). We adopt
BK-SDM Tiny as the small model in T-Stitch and report the percentage on the top of images. All
images are generated by the default settings in diffusers von Platen et al. (2022): 50 steps with a
guidance scale of 7.5.

SDv1.4 w/ ToMe w/ ToMe + T-Stitch

10%, 2.228s 20%, 2.138s 30%, 2.052s 40%, 1.954s 50%, 1.858s

10% 20%

InkPunk SD w/ ToMe w/ ToMe + T-Stitch

2.440s 2.272s

three horses in a snowy field with trees
in the background

a man is riding a red motorcycle and
some buildings, nvinkpunk.

30% 40% 50%

10% 20%

Ghibli SD w/ ToMe w/ ToMe + T-Stitch

a ghibli style village, cows eating by a
river, sunset

30% 40% 50%

Figure 22: Image examples of combining T-Stitch and ToMe Bolya et al. (2023). We adopt BK-
SDM Tiny as the small model in T-Stitch and report the percentage on the top of images. All images
are generated by the default settings in diffusers von Platen et al. (2022): 50 steps with a guidance
scale of 7.5. We adopt a token merging ratio of 0.5 in ToMe.
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crate

coral_fungus

pillow

restaurant

admiral

dowitcher

100%0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

gyromitra

spotted
salamander

convertible

Figure 23: Image examples of T-Stitch on DiT-S and DiT-XL. We adopt DDIM and 100 steps, with
a guidance scale of 4.0. From left to right, we gradually increase the fraction of LDM-S steps at the
beginning, then let the original LDM to process later denoising steps.

A.20 EXPERIMENTS ON ZERO-SHOT TEXT-TO-VIDEO GENERATION

In this section, we show T-Stitch works very well with text-to-video generation. Based on
Text2Video-Zero Khachatryan et al. (2023), we found T-Stitch can also speedup video generation
by adopting a small model like BK-SDM Tiny. We also observed a slight improvement on prompt
alignment. For example, the “outer space” in Figure 34, where we progressively allocate BK-SDM
Tiny at the 10-50% early sampling steps.

A.21 L2-DISTANCE COMPARISON OF LATENT EMEBDDINGS FOR DITS

As a complementary analysis to Figure 3, we present the L2-distance comparison of latent embed-
dings across different steps for DiTs in Figure 35. Overall, we observe that the latent embeddings
from small and large DiTs are notably more similar during the early steps compared to the later
steps, aligning with the patterns observed in Figure 3.

A.22 COMPARISON WITH EARLY-EXIT WORKS

In general, we aim to explore the compute budget allocation for diffusion model sampling, which is
orthogonal with individual model acceleration techniques such as early-exiting or model compres-
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promontory

macaw

German_shepherd

aircraft_carrier

beacon

sewing_machine

100%0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

hen

English_springer

bison

Figure 24: Image examples of T-Stitch on U-Net-based LDM and LDM-S. We adopt DDIM and 100
steps, with a guidance scale of 3.0. From left to right, we gradually increase the fraction of LDM-S
steps at the beginning, then let the original LDM to process later denoising steps.

sion that specifically focus on one model, as discussed in Section A.8. We provide a short discussion
with early-exit works as below.

Deediff Tang et al. (2023) introduces Timestep-Aware Uncertainty Estimation Module (UEM),
which includes new trainable parameters. Compared to it, T-Stitch does not require any new pa-
rameters to train since we directly drop the small model at the early denoising steps. Adaptive Score
Estimation (ASE) Moon et al. (2023) heuristically designs block-exiting strategies based on differ-
ent architectures, then finetuning the target diffusion model with substantial training cost. Based on
DiT-XL, we found our speed-quality trade-offs are clearly better, as shown below.

Table 13: Comparison of DiT models in FID-5K scores and acceleration gains, as reported in Moon
et al. (2023).

Name FID-5K Acceleration
DiT-XL (Moon et al. (2023) implementation) 9.10 -
D1-DiT 8.89 14.38%
D3-DiT 8.99 20.99%
D4-DiT 9.19 28.70%
D6-DiT 11.41 36.80%
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SD-v1.4

a brown and white cat laying on a bed

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

SD-v1.4

a bowl that has vegetables inside of it

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

SD-v1.4

A very large tower has a clock on it

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

Figure 25: T-Stitch based on Stable Diffusion v1.4 and BK-SDM Tiny. We annotate the faction of
BK-SDM on top of images.

In Table 13, we briefly summarize the main results in Moon et al. (2023). FID-5K is evaluated based
on ImageNet-256 and DDIM sampler. “Acceleration” refers to the acceleration in sampling speed.
“n” in “Dn-DiT” represents the acceleration scale. Details for different settings can be found in
Table 2 of ASE Moon et al. (2023).

The results in Table 14 are from our Figure 1, which is based on the same experimental setting:
ImageNet-256, DDIM sampler, and FID-5K. Note that due to different implementations, our DiT-
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Inkpunk SD

an lion wearing a suit in a meeting room, nvinkpunk style

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

Inkpunk SD

A polar bear on mars, nvinkpunk style

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

Inkpunk SD

A train pulling into a station on a cloudy day, nvinkpunk style

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

Figure 26: T-Stitch based on Inkpunk-Diffusion SD an BK-SDM Tiny. We annotate the faction of
BK-SDM on top of images.

XL baseline performance can be slightly different. Furthermore, compared to these training-based
approaches, T-Stitch is training-free and can be directly applicable to many various scenarios.
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Ghibli SD

ghibli style beautiful Caribbean beach tropical (sunset)

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

Ghibli SD

a ghibli style princess with golden hair in New York City

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

Ghibli SD

ghibli style ice field white mountains ((northern lights)) starry sky low horizon

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

Figure 27: T-Stitch based on Ghibli-Diffusion SD and BK-SDM Tiny. We annotate the faction of
BK-SDM on top of images.

A.23 LIMITATIONS

T-Stitch requires a smaller model that has been trained on the same data distribution as the large
model. Thus, a sufficiently optimized small model that shares the similar latent space as the target
large model is required. Besides, adopting an additional small model for denoising sampling will
slightly increase memory usage (Table 4). Lastly, since T-Stitch provides a free lunch from a small
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Macro photography of dewdrops on a spiderweb, with morning sunlight creating 
rainbows.

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

SD-v1.4

Aerial photography of a winding river through autumn forests, with vibrant red and 
orange foliage.

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

SD-v1.4

A clock and several vases sit on a table in front of a gold framed mirror

10% 20% 30% 40% 50%

60% 70% 80% 90% 100%

SD-v1.4

Figure 28: T-Stitch with more complex prompts based on Stable Diffusion v1.4 and BK-SDM Tiny.
We annotate the faction of BK-SDM on top of images.

model for sampling acceleration, the speedup gain is bounded by the efficiency of the small model.
In practice, we suggest using T-Stitch when a small model is available and much faster than the large
model. Furthermore, when applying T-Stitch with very different architectures, the main challenge is
that the two model may have different spatial dimension for their latents, thus making it difficult to
directly switching models during sampling. We leave better stitching strategies for future works.
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highly detailed albert einstein at an epic laboratory office, shelves with detailed items in 
background, ((long shot)), highly detailed realistic painting by grandmaster, unreal engine, 
octane render, 4k, trending on artstation

Prompt: 

concept art of dragon flying over town, clouds. digital artwork, illustrative, painterly, matte 
painting, highly detailed, cinematic composition

photo, photorealistic, realism, ugly

Prompt: 

Negative Prompt:

anime artwork an empty classroom. anime style, key visual, vibrant, studio anime, highly 
detailed

photo, deformed, black and white, realism, disfigured, low contrast

Prompt: 

Negative Prompt:

SDXL, 13.6s 20%,  12.04s 40%, 11.05s 60%, 10.6s 80%, 9.7s 100%, 8.8s

claymation style captain jack sparrow on tropical island. sculpture, clay art, centered 
composition, play-doh

sloppy, messy, grainy, highly detailed, ultra textured, photo, mutated

Prompt: 

Negative Prompt:

16-bit pixel art, a cozy cafe side view, a beautiful day

sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic

Prompt: 

Negative Prompt:

Figure 29: T-Stitch with more complex prompts based on SDXL (Podell et al., 2023) and SSD-
1B (Segmind, 2023). We annotate the faction of SSD-1B on top of images. Time cost is measured
by generating one image on RTX 3090.
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highly detailed cinematic aerial view of a futuristic research complex in Antarctica, 4KPrompt: 

blur, low quality, bad quality, sketchesNegative Prompt:

SDXL, 19.7s 20%,  18.4s 40%, 17.5s 60%, 16.6s 80%, 15.6s 100%, 14.8s

Canny edgesImage

a beautiful bosai tree, masterpiece, 4KPrompt: 

blur, low quality, bad quality, sketchesNegative Prompt:

SDXL, 19.4s 20%,  18.4s 40%, 17.3s 60%, 16.4s 80%, 15.5s 100%, 14.6s

Image Depth

Ironman dancing in a futuristic city, high qualityPrompt: 

low quality, bad qualityNegative Prompt:

SDXL, 19.4s 20%,  18.4s 40%, 17.5s 60%, 16.5s 80%, 15.6s 100%, 14.7s

Image

Image Pose

Figure 30: T-Stitch with SDXL-based ControlNet. We annotate the faction of SSD-1B on top of
images. Time cost is measured by generating one image on one RTX 3090.

The optimal threshold for T-Stitch. In our observation, stitching at the early 40% minorly af-
fects the generation quality, while at the larger fractions, T-Stitch provides a clear trade-off between
a small and large model. This phenomenon has been observed across various architectures and
samplers. However, note that this 40% threshold might not hold for all use cases.
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Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k.

0% 10% 20% 30% 40% 50% 60% 70% 80% 100%90%

8 runs

Figure 31: Based on Stable Diffusion v1.4 and BK-SDM Tiny, we generate images by different
fractions of BK-SDM for 8 consecutive runs (a for-loop) on one GPU. T-Stitch demonstrates stable
performance for robust image generation. Best viewed in digital version and zoom in.

Table 14: Summary of FID-5K and acceleration results for various configurations in Figure 1.

Name FID-5K Acceleration
DiT-XL (our implementation) 9.20 -
T-Stitch (10%) 9.17 7.84%
T-Stitch (20%) 8.99 18.71%
T-Stitch (30%) 9.03 32.00%
T-Stitch (40%) 9.95 50.00%
T-Stitch (50%) 10.06 75.53%

In Figure 36, we show that different classifier-free guidance (CFG) scales may affect this optimal
threshold during our experiments with DiT models. By default, we set the CFG scale to 1.5 as it is
the default value in DiT evaluation. However, under the CFG scale of 2.0, we observe this optimal
threshold occurs at around 60%. But we should not assume a larger CFG scale would always help
T-Stitch since FID sometimes cannot reflect the desired image quality, as mentioned in the SDXL
report. We aim to demonstrate that the optimal threshold could be affected by CFG scale, as one of
the limitations of T-Stitch.

It is also intuitive that different models behave differently when using T-Stitch. For example, a) In
Figure 37, the best cut-off for DiT at CFG scale of 1.5 is around 40%. b) On the other hand, the
experiment on BK-SDM Tiny and SD v1.4 indicates that the optimal cut-off exists before the 40%
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Astronaut in a jungle, cold color palette, muted colors, detailed, 8kPrompt: 

LCM-SDXL, 768ms 100%, 634ms50%, 685ms

A picture of a cute Welsh Corgi in a bucketPrompt: 

LCM-SDXL 100%50%

Figure 32: T-Stitch based on distilled models: LCM-SDXL (Luo et al., 2023) and LCM-SSD-
1B (Luo et al., 2023), under 2 sampling steps. We annotate the faction of LCM-SSD-1B on top of
images. Time cost is measured by generating one image on RTX 3090 in milliseconds.

Self-portrait oil painting, a beautiful cyborg with golden hair, 8kPrompt: 

a close-up picture of an old man standing in the rainPrompt: 

LCM-SDXL, 1029ms 100%, 823ms25%, 968ms 50%, 921ms 75%, 870ms

LCM-SDXL 100%25% 50% 75%

Figure 33: T-Stitch based on distilled models: LCM-SDXL (Luo et al., 2023) and LCM-SSD-
1B (Luo et al., 2023), under 4 sampling steps. We annotate the faction of LCM-SSD-1B on top of
images. Time cost is measured by generating one image on RTX 3090 in milliseconds.

estimate. c) In Table 1, we have already shown that LDM-S can replace 50% early steps for the
baseline LDM with comparable or even better FID.
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Baseline

Frames

34.3s

33.1s
T-Stitch 10%

30.4s
T-Stitch 20%

28.6s
T-Stitch 30%

27.4s
T-Stitch 40%

26.7s
T-Stitch 50%

Prompt: “an astronaut dancing in the outer space”

Figure 34: T-Stitch based on Text2Video-Zero Khachatryan et al. (2023).
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Figure 35: L2-distance comparison of latent embeddings at different denoising steps between DiT
models. Results are averaged over 32 images.

At this stage, determining the optimal switching point in T-Stitch can be done very efficiently, as
discussed in our general response. For optimal results, we recommend conducting these efficient
preliminary experiments to determine the ideal switching point for specific model pairs. We leave
more interesting explorations in future works.

T-Stitch beyond pairwise. The requirement of pretrained models naturally becomes one limita-
tion for T-Stitch beyond pairwise since it relies on publicly available model weights. Furthermore,
different models may have different optimal CFG scales. This means that combining multiple mod-
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Figure 36: FLOPs difference versus FID. We report the DiT-S/XL comparison based on classifier-
free guidance scale of 1.5 and 2.0 under 50 timesteps and DDIM sampler.
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Figure 37: FLOPs difference versus FID. We report the DiT-S/XL comparison based on ImageNet-
1K and 100 timesteps. The experiments on BK-SDM Tiny and SD v1.4 are based on MS-COCO
benchmark and 50 timesteps.

els along the same sampling trajectory creates a much larger space compared to pairwise combina-
tions, making comprehensive evaluation challenging.
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