
APPENDIX A: MORE DETAILS ON MODULATED MLP LAYER

The modulated MLP layer used in our paper is similar to the style modulation in Karras et al. (2020).
Mathematically, we denote the weights of a MLP layer (1x1 convolution) by W ∈ Rdin×dout , where
din, dout, and wij denote the dimension of input and output, the element in ith row and jth column
of W , respectively. We obtain the style vector s ∈ Rdin by passing the latent variable z into two
MLP layers. The ith element of style vector si is thus used to modulate the parameter of W as,

w′
ij = si · wij , j = 1, · · · , dout, (1)

where wij and w′
ij denote the original and modulated weights, respectively.

The modulated weights are normalized to preserve training stability,

w′′
ij = w′

ij /

√∑
i

w
′2
ij + ϵ, j = 1, · · · , dout, (2)

where ϵ is a very small constant to prevent the denominator to be zero. These two equations describe
the mechanism of the modulate MLP used in our method.

APPENDIX B: DETAILED EXPERIMENTAL SETTINGS

Here, we provide the detailed hyper parameters used in all the experiments in Table 1. Among
them, some hyper parameters denote to, Ls number of self-attention layers in bottleneck encoder, Lc

number of cross-attention layers, K number of hierarchical blocks, d the feature dimension through
the entire network. The row of Fourier features describes whether we embed the coordinate into
high-frequency embeddings as suggested in (Tancik et al., 2020). β is the hyper parameter used to
balance the losses of reconstruction and KL divergence. The reconstruction term describes how we
calculate the reconstruction loss Ez∼qϕ(z|DT )[− log pθ(YT |z,XT , DC)].

1D synthetic functions 2D images 3D scenes
Ls 3 6 6
Lc 1 4 2
LK 6 6 4
d 128 512 512
dz 16 64 64

model size 2.3M 56.7M 34.3M
Fourier features ✗ ✓ ✓

batch size 100 16 32
iteration number 0.1 million 0.5 million 0.1 million

lr 5e-4 1e-4 1e-4
β 1 0.1 0.001

reconstruction term Gaussian
discrete logistic mixture

MSE
(Salimans et al.)

Training resources 1x V100 16GB 4x V100 16GB (CelebA178) 4x V100 32GB

Table 1: Hyper parameters in our experiments.

In addition, when training for 1D synthetic functions, we will randomly sample 5 to 15 context points
and 15 to 25 target points on Matern and RBF kernel. For the last four rows listed in the table 1 of
our main paper, we use importance weighted sampling to calculate the approximated log likelihood.
We use this metric because these four models are all latent variable models, where the results of
importance weighted sampling would be more accurate, especially for hierarchical latent variable
models such as NVAE (Vahdat & Kautz, 2020).

Training a VNP model for the 1D regression task requires about 5 hours. Training a 2D VNP model
on CelebA64 requires about 24 hours. Training a 3D VNP model for novel view synthesis takes
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around 40 hours. For the inference speed, VNP requires very short time for 1D and 2D tasks. On 1D
regression task, VNP takes 0.285 second for testing a batch with batch size of 2000. On the CelebA64
dataset (2D task), our VNP takes around 0.112 second to infer a single batch of size 8. On the 3D
Cars dataset, our VNP takes 5.28 second to render an image with a novel view (reasons explained in
Appendix C). All these results are tested with a single V100 GPU.

APPENDIX C: COMPARISONS WITH THE OPTIMIZATION-BASED METHOD

In this section, we provide the comparison of our VNP and the previous optimization-based method.
We take a representative optimization-based method, SIREN (Sitzmann et al., 2020) for comparison.
We conduct experiments on the 3D Car dataset Chang et al. (2015), and measure both the inference
speed and the PSNR of the novel synthesized view. Note that since SIREN requires to optimize the
network to fit for a specific signal, the iteration time of SIREN is a part of the inference time. We test
the inference speed with a single V100 GPU for both schemes.

The results are shown in Table 2. It is observed that for the task of novel view synthesis conditioned
on a single view, our proposed VNP provides much better prediction performance compared with
the optimized-based method SIREN, even if SIREN is optimized for many iterations for a given
test image. One reason is that VNP can learn the dataset prior, which complements many useful
information to predict a specific 3D signal. However, if we optimize the SIREN network to fit the
known single view, the network will be initially optimized for the right direction, but will then tend
to overfit to this single view after many iterations. As a result, it is observed that when the SIREN
network gets better prediction performance as the iteration number increased from 1 to 100. However,
the performance decreases if we apply more iterations (such as 300 iterations), compared with that of
100 iterations.

As for the inference speed, we can see that our VNP takes 5.28s to render an image in the novel view
with a single forward pass. The reason for such a long inference time is that we use a large number
of sampling points in 3D space. If an image is with the resolution of 128× 128, to render the RGB
value of every pixel, there are 128× 128× p target points, where p is the number of sampled point
along each ray (set as p = 128 in our experiment). Therefore, processing all these target points with
cross-attention requires huge GPU memory. We have to divide the image into several pixel groups,
and render these pixel groups sequentially. Currently, we have not implement any optimization of our
code. We will improve the implementation of method on tasks involving 3D signals in the future.

Note our VNP only presents slow inference speed on this 3D novel view synthesis task. On the 1D
and 2D tasks, since there are not so many target points and the model does not incorporate rendering
process, the inference speed of our method is fast.

SIREN VNP (4 blocks)
Iteration Number 1 10 30 100 300 no finetuning

Time (s) 0.21 1.35 3.68 11.59 33.68 4.79
PSNR 11.92 12.27 12.72 12.73 12.00 24.21

Table 2: Novel view synthesis conditioned on a single view. We evaluate the inference time and the
prediction performance (PSNR) on ShapeNet Cars (Chang et al., 2015).

APPENDIX D: LIMITATION

The proposed VNP inherits the limitation of NP family. NPs are interesting techniques for meta-
learning implicit neural representations due to their reduction of the high cost of training. NPs learns
the common knowledge shared by the dataset, enabling fast inference of an unseen signal without the
need of finetuning. NPs still cannot work well for dataset including diverse objects (with less shared
knowledge), e.g., ImageNet.
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