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A Implementation Details1

A.1 Neural networks2

In order to make a general optimizer, the variable size should be changeable in the last layer of3

generator networks. In this case, a self-attention network (transformer) can be a simple choice. CNN4

is advantageous in making large-size output tensors using few parameters. However, CNN has too5

strong spatial correlations, and also, its output size is not flexible. Fully connected (FC) networks6

could be easier than CNN to control output tensor size, but they have too many parameters in general.7

A multi-head attention structure with 8 heads and dmodel = 64 was used. Position-Wise Feed8

Forward network (FFNN) has a hidden layer of dff = 4× dmodel and consists of two FC layers. For9

activations, we used a hswish function. Dropout is set to zero in the generator to avoid randomness.10

Non-zero dropout generators are also tested with random feed z and age-evolution to measure the11

performances of stochastic generators. The self-attention network of this study is a modification of12

an original transformer. It is divided into a two-level structure, trunk and branches. The trunk-branch13

structure is ad hoc to reduce the memory usage of the network. The variable length is defined as14

nvariables = nsubvar×nbranches. For example, dimension = 8192 can be defined as nbranches = 415

and nsubvar = 2048.16

A.2 Optimization17

A critic network corresponds to a single-objective target. For example, two critic networks are18

prepared for (f1, f2) of ZDT1, 2, and 3. We used L1 loss for critic network training to reduce the19

excessive influence of outlier data. In the experiment, 50 mutations per objective were carried out20

for every iteration. The pool size was fixed to 500 or 1, 000, and the buffer size was fixed to 10, 000.21

Mini-batch calculation can be hard to implement due to a lack of GPU memory. Instead, we carried22

out stochastic gradient descent (SGD).23

For neural network calculations, Pytorch 1.7.1 with Python 3.7 was used. For evolution strategies,24

Pymoo 0.4.2 was used [52]. For a Bayesian optimization (GP), we used an optimization package25

(non-public) of SAMSUNG-DS.26

A.3 Test functions27

Scores of test functions were normalized to variable dimensions. For the global minimum of the28

Styblinski-Tang function, we adjusted its global minimum to 0.0 by adding 39.16617. The formula29

of Ackley, Rastrigin Rosenbrock, Styblinski-Tang, and ZDT functions are defined in Table 130
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Figure 1: Neural network structures in a single-branch GEO.
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Figure 2: A schematic figure of the Pareto efficiency and ranks.

Cartpole-V1 has (left, right) actions for every time step. We set N dimensional real space31

(x1, x2, ..., xN ), and convert it to left and right actions by assuming left : xt < 0 and32

right : 0 < xt. As a result, the black-box becomes a flat and discontinuous function.33

LeNet-5 is a small size CNN model for image classifications. We trained LeNet-5 with MNIST34

dataset. We assumed predictions of LeNet-5 as scores. Therefore, a softmax function should be35

added in the final layer to make a score range [0, 1].36

A.4 Pareto efficiency37

We introduce a simple description of Pareto efficiency in the main paper. Pareto efficiency is the38

result of a non-dominated sorting, and it evaluates points and their corresponding multi-objective39

scores by giving ranks. (Figure 2) After obtaining the ranks, the sorting is done as the follow40

(P1, P2, P3, · · · )

where Pi is rank-i Pareto efficiency. The importance of non-dominated sorting of multi-objective41

optimizations has also been studied by Tian, Ye, et al. [59].42

Like common sorting algorithms, computational speed is considered important in non-dominated43

sorting algorithm researches. For a single-objective data sorting, there are various methods such as44

bubble sort, heap sort, quick sort, and Tim sort. The difference between the sorting algorithms are45

space complexity and time complexity, especially time complexity is considered to be important. It is46

known that each has advantages and disadvantages, but the quick sort method is widely used since it47

has O(n log(n)) complexity in general. Similarly, non-dominated sorting methods have their own ad-48

vantages and disadvantages. So far, various kinds of methods have been developed [60], but methods49
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based on divide-and-conquer are predominantly preferred. They have computational complexities of50

O(n log(n)). It is recommended to use a sorting algorithm with O(n log(n)) complexity if a very51

large pool size is desired. However, in this experiment, the pool size is fixed, and the size is small52

enough. Also, the time consumption of the sorting algorithm is much smaller than that of neural53

network training. Therefore, in this experiment (pool size=1,000, and function calls = 100,000 case),54

the choice of sorting algorithm has little effect on the speed of GEO.55

Depending on the pool size and the number of mutations, the rank selection strategy of Pareto56

efficiency may vary. If the number of mutations is much larger than the pool size, the size of the rank-57

1 Pareto efficiency can be larger than the pool size. In this case, some data of rank-1 Pareto efficiency58

must be discarded. Therefore, it is recommended not to make too many mutations compared to the59

pool size. On the other hand, if the number of mutations is too small, the optimization speed may be60

too slow compared to the amount of network training.61

A.5 Exploit & explore62

We use the gradient descent technique by the surrogate model, but since this method prioritizes the63

exploit strategy, the explore strategy may be weak. Additional techniques can be used to supplement64

the explore strategy.65

Typically, random mutations can be used. We can apply random noise to the parameter of the selected66

generator. Also, the volume of random noise can be selected in various sizes.67

Another method is a mixed learning rate of a generator training. A small learning rate contributes a68

safe exploit strategy. On the other hand, a large learning rate can contribute to the explore strategy.69

By mixing small learning rates and large learning rates, we can supplement the exploit & explore70

strategy.71

A.6 Observation cost of time-sequential problems72

In real-world problems such as electronic device design and mass production processes, observation73

costs are often high. Sometimes the cost of observation is too high that we have to pay more than74

the operation of the device. Therefore, it is important to select and observe only the most valuable75

information. In the real-world problems, the most valuable information is often defined as follows:76

score =
∑

(rewards)

,where the score is observable in the final step of a simulation. We can make the most efficient77

observation by making only one observation at the end of the time step.78

Although Cartpole-V1 does not have the observation cost problem, we used it as a toy model to79

describe real-world problems which have high-cost observations.80

B Experimental results81

B.1 Single-objective test functions82

Table 2-6 shows test function optimization results in low and high dimensions. GEO outperforms83

other optimizers in high dimensions. However, it tends to be easily trapped at the local optimum84

in low dimensions. The performance degradation range strongly depends on the test function. In85

dimension 1,024, however, GEO always shows the best performance.86

B.2 Boundary conditions87

For ZDT test functions, the boundary of the search domain must be set to [0, 1]. Since the neural88

network has an open boundary, an additional bounded function is required as an activation of the last89

layer of generators. We can start with a simple bounded function, tanh. In this case, x = G(z) is90

defined as91
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Figure 3: Pareto fronts according to tanh and sin boundary conditions. 100,000 function calls.

Figure 4: Pareto fronts according to the number of branches (8, 192 = nsubvar×nbranches). 100,000
function calls.

x = (boundmax − boundmin)
tanh (G(z)) + 1

2
+ boundmin

However, one problem of tanh boundary condition is a strong edge bias. With tanh function, all92

variables outside of a boundary (x < boundmin, x > boundmax) are mapped to edge of the boundary93

(x = boundmin, x = boundmax). To avoid the bias problem, we adopted sin function. Since the94

sin function is periodic, we can avoid the edge bias. Figure 3 shows performances according to95

boundary conditions. In ZDT3, sin boundary shows better performance than tanh boundary. In96

[Styblinski-Tang, Ackley], open boundary shows better performance than others.97

B.3 Branches and pool sizes98

Figure 4 shows results according to the number of branches. The dimension of variables is fixed to99

8,192. As the number of branches increases, optimization performances decrease for both stochastic100

and non-stochastic functions. The ad hoc trunk-branch structure is memory-efficient, but it can be101

detrimental to the optimization performance.102

Figure 5 shows results according to evolution pool sizes. They have similar performances, but a103

larger pool tends to find broader range of Pareto-fronts.104

Figure 5: Pareto fronts according to the pool size. 100,000 function calls.
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Table 1: Test function definitions

Name Formula

Ackley −20 exp

[
−0.2

√
1
N

∑N
i=1 x

2
i

]
− exp

[
1
N

∑N
i=1 (cos 2πxi)

]
+ e+ 20

Rastrigin A+ 1
N

∑N
i=1

[
x2
i −A cos (2πxi)

]
, where: A = 10

Rosenbrock 1
N−1

∑N−1
i=1

[
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
]

Styblinski-Tang 1
2N

∑N
i=1

[
x4
i − 16x2

i + 5xi

]

ZDT functions

f1(x) = x1

f2(x) = g(x)h(f1(x), g(x))

g(x) = 1 +
9

N − 1

N∑
i=2

xi

0 ≤ xi ≤ 1

ZDT1 h(f1, g) = 1−
√
f1/g

ZDT2 h(f1, g) = 1− (f1/g)
2

ZDT3 h(f1, g) = 1−
√
f1/g − (f1/g) sin(10πf1)

Table 2: Optimization results of Ackley function in low dimensions. 20,000 function calls. 10 repeats.

Ackley

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.0071 ± 0.0076 0.1009 ± 0.0432 0.3014 ± 0.2451
GEO 1-layer 0.0000 ± 0.0000 0.0030 ± 0.0023 0.8575 ± 0.7513 1.9020 ± 0.2054
NSGA-II 0.0001 ± 0.0002 0.0016 ± 0.0008 0.0073 ± 0.0033 0.0411 ± 0.0066
CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
LSM ϵ1.0 0.0053 ± 0.0081 0.0261 ± 0.0118 0.1056 ± 0.0292 0.2036 ± 0.1139
LSM ϵ0.2 0.0006 ± 0.0003 0.6754 ± 1.3312 0.0354 ± 0.0076 0.8967 ± 0.9222

32 64 128

GEO 0.0694 ± 0.0576 0.0361 ± 0.0185 0.0296 ± 0.0136
GEO 1-layer 2.7931 ± 0.1655 3.4449 ± 0.1133 3.8488 ± 0.1002
NSGA-II 0.1132 ± 0.0163 0.2795 ± 0.0304 0.5510 ± 0.0369
CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
LSM ϵ1.0 0.2430 ± 0.1160 0.3432 ± 0.1225 0.8251 ± 0.2573
LSM ϵ0.2 2.5080 ± 1.2227 3.4657 ± 0.3694 3.3817 ± 0.3004
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Table 3: Optimization results of Rosenbrock function in low dimensions. 20,000 function calls. 10
repeats.

Rosenbrock

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.0543 ± 0.1507 0.5090 ± 0.4545 0.5378 ± 0.5966
GEO 1-layer 0.0000 ± 0.0000 0.3062 ± 0.2330 0.8592 ± 0.2276 3.2036 ± 1.7442
NSGA-II 0.0001 ± 0.0001 0.0888 ± 0.0488 0.5197 ± 0.1102 0.8267 ± 0.0755
CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
LSM ϵ1.0 0.3805 ± 0.3780 0.8514 ± 0.3439 1.3913 ± 0.1683 1.7246 ± 0.1924
LSM ϵ0.2 0.5814 ± 0.3466 0.5992 ± 0.3083 0.6444 ± 0.3757 0.7882 ± 0.2399

32 64 128

GEO 0.1705 ± 0.2817 0.0564 ± 0.0975 0.0164 ± 0.0170
GEO 1-layer 11.3029 ± 1.3108 32.3401 ± 3.7944 61.4009 ± 4.9140
NSGA-II 1.7519 ± 0.5589 4.0404 ± 0.4313 5.9195 ± 0.2543
CMAES 0.6532 ± 0.0278 0.9068 ± 0.0150 0.9734 ± 0.0102
LSM ϵ1.0 1.8820 ± 0.5490 2.1025 ± 0.7888 2.0884 ± 0.7405
LSM ϵ0.2 1.5623 ± 0.7663 17.4755 ± 25.1455 38.9798 ± 23.4691

Table 4: Optimization results of Rastrigin function in low dimensions. 20,000 function calls. 10
repeats.

Rastrigin

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.1027 ± 0.1635 0.1434 ± 0.2483 0.8459 ± 0.6891
GEO 1-layer 0.0000 ± 0.0000 0.3483 ± 0.1219 0.4758 ± 0.2170 1.2868 ± 0.3246
NSGA-II 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0010 ± 0.0009 0.0127 ± 0.0048
CMAES 0.2985 ± 0.3300 0.4477 ± 0.2168 0.5721 ± 0.2021 0.4166 ± 0.1446
LSM ϵ1.0 0.5375 ± 0.4406 3.6183 ± 1.9796 5.6259 ± 1.2943 5.5754 ± 1.3568
LSM ϵ0.2 0.0000 ± 0.0000 0.5076 ± 0.4908 0.3248 ± 0.3222 0.4995 ± 0.2248

32 64 128

GEO 1.8010 ± 1.2062 1.9690 ± 1.3727 0.8947 ± 1.1321
GEO 1-layer 2.8961 ± 0.3151 4.9785 ± 0.2506 6.4839 ± 0.2165
NSGA-II 0.1580 ± 0.0452 0.5013 ± 0.0478 0.9218 ± 0.0550
CMAES 0.5006 ± 0.1526 0.5208 ± 0.0961 0.6630 ± 0.0978
LSM ϵ1.0 5.1430 ± 1.5115 7.8261 ± 0.8673 8.8664 ± 0.6537
LSM ϵ0.2 0.6955 ± 0.3504 4.9844 ± 2.2791 7.5184 ± 1.6464
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Table 5: Optimization results of Styblinski function in low dimensions. 20,000 function calls. 10
repeats.

Styblinski-Tang

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.0009 ± 0.0014 0.0023 ± 0.0017 0.0161 ± 0.0176
GEO 1-layer 2.1695 ± 3.2087 8.5127 ± 2.2338 15.9916 ± 1.1828 22.4661 ± 0.5406
NSGA-II 0.7068 ± 2.1205 0.7069 ± 1.4137 3.5346 ± 2.3707 5.2253 ± 0.9198
CMAES 7.0684 ± 5.4751 12.7231 ± 3.2391 10.9560 ± 2.5971 9.7190 ± 2.3708
LSM ϵ1.0 26.2230 ± 1.9996 7.6978 ± 1.2559 6.4853 ± 3.9141 9.5768 ± 4.0347
LSM ϵ0.2 27.6515 ± 2.8802 16.1667 ± 1.6806 12.1698 ± 2.0510 19.3622 ± 3.1020

32 64 128

GEO 0.0064 ± 0.0092 1.4138 ± 4.2410 0.0000 ± 0.0000
GEO 1-layer 25.3427 ± 0.5938 27.5193 ± 0.6898 29.3574 ± 0.3288
NSGA-II 7.9346 ± 1.0712 11.2910 ± 0.5126 18.3960 ± 0.3724
CMAES 8.4820 ± 2.2159 9.9841 ± 0.6612 9.2883 ± 0.5663
LSM ϵ1.0 9.7605 ± 4.3111 8.7600 ± 2.9911 17.5349 ± 4.3426
LSM ϵ0.2 18.9152 ± 2.6356 32.2802 ± 2.4185 33.5116 ± 2.6515

Table 6: Optimization results of test functions in high dimensions. 50,000 function calls. 10 repeats

Ackley

Dimension 256 512 1024

GEO 0.0091 ± 0.0036 0.0117 ± 0.0037 0.0084 ± 0.0029
NSGA-II 0.3294 ± 0.0219 0.7342 ± 0.0273 1.4256 ± 0.0477
CMAES 0.0000 ± 0.0000 0.0003 ± 0.0000 0.0291 ± 0.0035

Rosenbrock

Dimension 256 512 1024

GEO 0.0006 ± 0.0006 0.0004 ± 0.0003 0.0005 ± 0.0004
NSGA-II 5.0726 ± 0.2486 5.9915 ± 0.2358 6.9435 ± 0.1485
CMAES 0.9742 ± 0.0062 1.0011 ± 0.0337 1.0292 ± 0.0301

Rastrigin

Dimension 256 512 1024

GEO 0.2034 ± 0.4046 0.0018 ± 0.0020 0.0034 ± 0.0057
NSGA-II 0.5636 ± 0.0317 0.9810 ± 0.3457 1.7443 ± 0.0638
CMAES 0.9573 ± 0.1040 1.3981 ± 0.1383 3.7305 ± 0.6978

Styblinski-Tang

Dimension 256 512 1024

GEO 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
NSGA-II 14.4536 ± 0.3616 22.3592 ± 0.2035 28.8298 ± 0.1541
CMAES 9.6913 ± 0.4508 9.3711 ± 0.1878 9.2048 ± 0.2450
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