
A Appendix

In this section, we provide more details on experimental settings, several additional experiments, and
the visual interpretation of the results of the ablation experiments: attention types.

A.1 Experimental Settings

Table 6: Experimental settings. S denotes the segmentation task, C denotes the classification task.

Configuration value
device 2 NVIDIA GeForce RTX 3090 GPUs
optimizer AdamW
learning rate 5e-4
weight decay 5e-2
learning rate schedule cosine
warmingup epochs 10
augmentation ScaleAndTranslate
batch size 32(C), 16(S)
number of points 1, 024(C), 2, 048(C, S), 8, 192(C)
number of patches 64(C), 128(C, S), 512(C)
patch size 32
training epochs 300
loss function Cross-Entropy(C), Negative Log-Likelihood(S)

A.2 Additional Experiments

In this subsection, we evaluate the performance of rotation robustness of the proposed methods, and
some additional experimental results.

Table 7: Additional experiments on rotation robustness. We test the rotation robustness of Point-
GT on classification tasks for ModelNet40. The models are trained on the training set without rotation
and evaluated with two rotation settings. Therein, Z denotes the test set that is randomly rotated
along the Z-axis and SO(3) denotes the test set with random rotation followed by SO(3).

Methods Z SO(3)
Transformer[45] 27.1 11.6
Point-GT-G (Ours) 29.1 11.5
Point-GT-DM (Ours) 28.9 12.1

Table 8: Additional shape classification results on SHREC 15 [22].We report the type of input
feature and the accuracy (%). SHREC 15 is a non-rigid shape dataset with 1,200 shapes from 50
categories. Shapes in SHREC15 are 2D surfaces embedded in 3D space. We follow a ratio of seven
to three to split the training and validation sets. During the evaluation, we randomly sampled 2,048
points from each shape as input. All the results of the proposed approach illustrated are evaluated
without voting.

Methods Input Feature Accuracy
PointNet++[28] XYZ 60.18
GeoNet[15] XYZ 94.67
Transformer[45] XYZ 82.00
Point-GT-G (Ours) XYZ 85.43
Point-GT-DM (Ours) XYZ 83.43
Point-MAE[26] XYZ 90.29
Point-GT-MAE (Ours) XYZ 97.14

A.2.1 Comparison Between Graph-based GSA and Data Manifold-based GSA

Since there are some differences in results between the graph-based GSA and the data manifold-based
GSA, we give explanations from two aspects: methodology and visual interpretation experiments.
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Methodology First, for the data with complex structures and missing data points, e.g., ScanOb-
jectNN dataset, Table 2 shows that graph-based GSA performs worse than manifold-based GSA. This
phenomenon may be probably because manifold-based GSA captures the better geodesic features for
the data with noise.

Secondly, for the noise-free data, e.g., ShapeNetPart dataset, the computing of geodesic is easier to
calculate. Graph-based GSA and manifold-based GSA have similar results, illustrated in Table 4. The
difference in the results possibly results from the incidental bias of the geodesic distances computing.

Thirdly, for datasets with small sample sizes, such as few-shot ModelNet40 and SHREC 15, the
graph-based GSA seems to show a more robust performance, e.g., Table 3 and Table 8. This probably
denotes that the data manifold-based method is less efficient for learning the geodesic features of
small datasets.

Finally, compared with manifold-based GSA, the shortest path algorithm of graph-based GSA is
non-differentiable. In the paper, graph-based GSA first utilizes the k-NN to compute the local
neighborhood, and then Floyd’s shortest path algorithm is used to estimate the geodesic distance
of all pairs of the points. This process is separated and non-differentiable in the whole model and
has complex computing. Although the powerful performance of PyTorch and Autograd makes the
network work successfully, some imprecise gradient propagation may lead to worse results. As for
the data manifold-based GSA, the projection manifold, Oblique Manifold, is differentiable, which
can avoid such a dilemma. Overall, since the differentiability often plays an important role in the
global optimization, this possibly leads to the difference in results.

Visual interpretation In Section A.3 and Fig. 4, we have illustrated the attention heat maps of the
several attention types mentioned in the ablation experiments.

A.3 Visual Interpretation

In this subsection, we show a visual interpretation of the differences in performance of the attention
types mentioned in ablation experiments in Fig. 4. In the caption, the "Dot." denotes the standard
dot-product self-attention, and the "Dot.-less" denotes the "Dot." without linear transformation. The
results of the quantitative ablation experiments are presented in Section 4.4 in the paper.

The Fig. 4 indicates the following results:

• The Dot-less self-attention ("Dot.-less" ) gives a better focus area than standard dot-product
self-attention ("Dot."). This confirms our assumption that a general linear transformation
may lead to reducing the ability of geometric structure feature extraction of the point cloud,
i.e., a general linear transformation reduces the performance of the self-attention mechanism.

• The proposed GSA methods give more precise focus areas than the "Dot." and the "Dot.-
less" methods. This confirms our motivation that similar Euclidean distances can not reveal
the geodesic distances and geometric semantics. In short, the dot product multiplication in
Euclidean space is insufficient to capture accurate internal non-Euclidean structures of point
cloud objects.

• The graph-based GSA and the data manifold-based GSA show similar attention patterns,
which confirms the validity of our proposed methods.
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(a) Dot. (b) Dot.-less (c) Graph-based 
GSA

(d) DM-based 
GSA

Figure 4: Attention Heat Maps. From left to right, attention heat maps of (a) Dot., (b) Dot.-less, (c)
Graph-based GSA and (d) DM (Data Manifold)-based GSA are illustrated. The red point is the query
point, and a higher attention score means a higher attention weight.
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