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A DETAILS OF EXPERIMENTAL SETTINGS

Al

DATASET DESCRIPTION

‘We describe the dataset we use for evaluation.

* TUEV (Obeid & Picone, 2016): A subset of the TUH EEG Corpus (Obeid & Piconel, 2016),
which is an abnormal-related event type dataset. This dataset was recorded using 23 elec-
trodes at a sampling rate of 256 Hz. All data are categorized into one of six annotations: (1)
spike and sharp wave (SPSW), (2) generalized periodic epileptiform discharges (GPED),
(3) periodic lateralized epileptiform discharges (PLED), (4) eye movement (EYEM), (5)
artifact (ARTF), and (6) background (BCKG).

* DREAMER (Katsigiannis & Ramzan,2017): A multi-modal emotional dataset containing
EEG (14 channels, 128 Hz) and ECG recordings evoked by audio-visual stimuli of 25
subjects. The recordings are labeled using the valence/arousal/dominance scale, as assessed
through Self-Assessment Manikins (SAM).

¢ Left/Right Hand Motor Imagery (LeftRight Hand) (Zakrzewski et al., 2022): A dataset
where EEG signals (64 channels, 512 Hz) were recorded by the Biosemi ActiveTwo system,
including 52 participants. The EEG signals are classified into two motor imagery classes:
left hand and right hand.

* Crowdsourced (Williams et al.l 2023): The dataset includes EEG recordings (2048 Hz)
from 60 participants engaged in a resting state task with eyes open and eyes closed. Only 13
participants who used the 14-channel EPOC+, EPOC X, and EPOC devices were included
in the experiments.

A.2 DATASET PREPROCESSING

We follow the preprocessing steps of LaBraM (Jiang et al.l [2024) as closely as possible to prevent
distribution shifts caused by inconsistencies in preprocessing. First, to filter out noise, we apply
a bandpass filter with a bandwidth between 0.1 Hz and 75 Hz. Then, we use a 50 Hz notch filter
to remove power-line interference. Finally, all signals are resampled to 200 Hz. To ensure that
neural networks process the signals stably, we scale the signal values to mainly lie between -1 and
1 by dividing them by 100. Each signal is segmented based on the dataset’s characteristics and
references, with the following details.

* TUEV is segmented into 5-second, non-overlapping samples (Jiang et al., [2024)).

* DREAMER includes 3 seconds of baseline data at the beginning of the signals. We only
use the remaining 60 seconds and divide it into twenty 3-second samples. Valence is used
as the label (Cui et al.l [2020).

» LeftRight Hand is sampled for 2 seconds from each trial, specifically the part related to
motor imagery (Zakrzewski et al., [2022)).

* Crowdsourced is segmented into 4-second samples following |Williams et al.[(2023)).

A.3 EVALUATION METRICS

We adapt the three metrics for evaluation.

» Balanced accuracy (BACC) is the average of recall across each class. BACC is par-
ticularly effective when class ratios are imbalanced. We use BACC for both binary and
multi-class classification tasks.

* AUROC is the area under the receiver operating characteristic (ROC) curve. AUROC is
used to determine how far the model’s predictions are from random predictions. Binary
classification tasks are evaluated using AUROC.

» Cohen’s Kappa represents the measure of interrater agreement for qualitative items, com-
monly used to assess how much better the agreement is compared to random chance. We
adopt Cohen’s Kappa for multi-class classification tasks.
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A.4 BASELINE MODEL DESCRIPTION

We employ not only additive fine-tuning methods but also supervised and self-supervised modeling
methods as baselines to confirm that the proposed method preserves the original superiority of EEG
foundation models compared to other baselines.

Supervised modeling methods. The baselines of supervised modeling methods are from [Yang
et al.| (2024) and Jiang et al.| (2024). We use the open source code of |Yang et al.[(2024) and evaluate
baseline models on datasets as mentioned above in a supervised learning manner. SPaRCNet (Jing
et al., |2023) is a Dense-Net (Huang et al.,|[2017) type neural network, containing 1D-CNN based
Dense blocks. ContraWR (Yang et al.l 2023) is structured to apply a short-time Fourier transform
(STFT) to the input signal and then pass the transformed 2D signal through a sequence of ResBlocks
derived from ResNet (He et al., 2016). CNN-Transformer (Peh et al., [2022) is a neural network
consisting of a CNN-based encoder and a transformer encoder designed to extract long-range signal
patterns. FFCL (Li et al.| 2022) is designed to fuse spatial and temporal features, which are extracted
by the CNN network and the LSTM network, respectively. ST-Transformer (Song et al., 2021) has
a hierarchical architecture that sequentially applies spatial and temporal attention to capture the
global dependency in the signal.

Self-supervised modeling methods. The baselines for self-supervised modeling methods include
those that first learn semantic representations through a pre-training process and then perform the
downstream task. BIOT (Yang et al.| [2024) is pre-trained with contrastive learning, which aims to
align the embeddings of the original signal and the perturbed signal. BIOT’s architecture consists
of a biosignal tokenization module and multiple transformer blocks. BIOT uses six EEG datasets
recorded using the same channel configuration for pre-training. EEG2Rep (Foumani et al., 2024)),
a transformer-based neural network, performs a self-prediction pretext task that predicts masked
patches in the latent space. EEG2Rep is pre-trained on two types of datasets with the same channel
configuration. LaBraM (Jiang et al.,[2024)) is an EEG foundation model pre-trained on a large EEG
dataset, regardless of configurations such as channel order and signal length. LaBraM uses masked
patch prediction as a pretext task and is validated on multiple out-of-source downstream tasks.

A.5 HYPERPARAMETER SETTINGS

We describe the hyperparameter settings we use for training here.

Table 4: Hyperparameters for TaKF™ training on LaBraM.

Hyperparameters Values
Learnable latent query vector number 5
TaKF Cross-attention blocks 6
latent query vector dimension 32
Cross-attention head number 4
Adapter layers 6
Adapter Modules Down-projection dimension 25
Transformer encoder layers 12
Token dimenstion 200
LaBraM MLP size 800
Attention head number 10
Batch size 64
Learning rate Se-4
Minimal learning rate le-6
Optimizer AdamW
Weight decay 0.05
Total epochs 50
Early stop patience 5
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Table 5: Hyperparameters for TaKF™ training on BIOT.

Hyperparameters Values
Learnable latent query vector number 5
TaKF Cross-attention blocks 2
latent query vector dimension 24
Cross-attention head number 4
. Adapter layers 2
Adapter Modules Down-projection dimension 64
Transformer encoder layers 4
Token dimenstion 256
BIOT MLP size 1024
Attention head number 8
Batch size 64
Learning rate le-3
Optimizer Adam
Weight decay le-5
Total epochs 100
Early stop patience 5

Table 6: Hyperparameters for TaKF(FF) training on LaBraM.

Hyperparameters Values
Learnable latent query vector number 5
Cross-attention blocks 8
TaKF latent query vector dimension 32
Cross-attention head number 4
MLP size 128
Transformer encoder layers 12
Token dimenstion 200
LaBraM MLP size 800
Attention head number 10
Batch size 64
Learning rate Se-4
Minimal learning rate le-6
Optimizer AdamW
Weight decay 0.05
Total epochs 50
Early stop patience 5

B DETAIL EXPERIMENTS ON BCI TASK

The details of our evaluation results are described as follows. The results are divided by the cat-
egories of baseline models, with sections separated by horizontal lines in the table. Our primary
comparison focuses on additive fine-tuning methods. Therefore, for both LaBraM and BIOT, we
mark the best (Bold) and second-best (underline) results only within the additive fine-tuning meth-

ods.
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Table 7: Performance comparison to the competitors in emotion recognition. FT and LP denote
fine-tuning and linear probing, respectively, while PT represents Prefix-Tuning.

LeftRight Hand DREAMER
BACC AUROC BACC AUROC
SPaRCNet (Jing et al.|[2023) 69.06 + 5.16 77.75 +£6.02 53.61 +2.05 54.86 + 3.82
ContraWR (Yang et al.[[2023) 59.20 + 5.47 66.25 + 8.31 55.67 £4.96  58.85 + 5.23
CNN-Transformer (Peh et al.|[2022) 50.28 +0.56 51.94 £ 1.17 50.37 £ 0.64 49.23 +4.13
FFCL (Li et al.;[2022) 60.79 + 5.80 66.58 + 8.33 56.25+4.10  59.04 £ 7.17
ST-Transformer (Song et al.{[2021) 62.70 + 5.87 70.62 £ 8.47 49.93+0.93  49.51 +£2.03
EEG2Rep (Foumani et al.|[2024) 60.26 + 5.79 66.34 + 8.18 55.63 +2.85 58.02 £2.74
LaBraM-FT (Jiang et al.[[2024) 60.74 + 3.51 41.44 +5.32 55.67 +3.64  59.60 £4.79
BIOT-FT (Jiang et al.|[2024) 49.32 +£0.70 49.55 +0.91 49.04 £1.94  48.88£3.13
LaBraM-LP 54.95 + 3.23 68.11 + 7.67 34.61 +2.25 39.68 + 3.29
LaBraM-Adapter (Houlsby et al.|[2019) 65.37 £ 11.17 74.75 +£5.89 59.86 - 0.98 56.88 +1.52
LaBraM-PT (Li & Liang|[2021) 63.18 +10.45 72.06 + 14.11 55.56 +1.94  52.44 +3.48
LaBraM-MAM Adapter (He et al.|[2021) 64.55 + 9.87 71.93 £ 14.79 57.73+£0.59  51.724+2.05
(Ours) LaBraM-TaKF+ 67.04+14.20 75.46+12.74 | 56.17+1.45 54.27+1.14
BIOT-LP 50.11 +0.61 50.53 £ 1.09 49.78 £0.95  49.78 £ 2.66
BIOT-Adapter 49.85 +0.90 49.81 +1.46 50.35 +1.73  49.32+2.35
BIOT-PT 49.89 +0.43 51.53 £ 0.69 50.40 +1.31 49.57 £1.69
BIOT-MAM Adapter 50.15 +0.42 51.81 +1.51 50.23 +£1.38 51.49+3.51
(Ours) BIOT-TaKF+ 50.49 £ 0.75 50.61 + 0.87 50.43+1.55 49.924+1.20

Table 8: Performance comparison to the competitors in motor-imagary classification. FT and LP
denote fine-tuning and linear probing, respectively, while PT represents Prefix-Tuning.

Crowdsourced TUEV
BACC AUROC BACC Cohen’s x
SPaRCNet (Jing et al.|[2023) 60.93 + 15.24 70.11 £+ 14.28 41.61 4+ 2.62 42.33 +1.81
ContraWR (Yang et al.|[2023) 56.85 4+ 15.59 68.15 +23.67 | 43.84 +3.49  39.124+2.37
CNN-Tran. (Peh et al.||2022) 52.91 +5.41 60.29 4+ 14.88 40.87 +1.61 38.15+1.34
FFCL (Li et al.|[2022) 60.94 + 8.91 69.26 + 18.27 39.79 £ 1.04 37.32+1.88
ST-Tran. (Song et al.|[2021) 60.71 + 11.99 74.99 4+ 9.32 39.84 +2.28  37.65 + 3.06
EEG2Rep (Foumani et al.|[2024) 69.27 £+ 3.08 76.22 £+ 4.40 23.47 £ 0.35 12.81 +2.10
LaBraM-FT (Jiang et al.||2024) 62.04 +10.51 65.30 £ 11.15 64.09 &+ 0.65 66.37 &+ 0.93
BIOT-FT (Yang et al.|[2024) 57.71 £8.11 69.42 +9.39 52.81 £ 2.25 52.73 £ 2.49
LaBraM-LP 54.95 + 3.23 68.11 + 7.67 34.61 £ 2.25 39.68 + 3.29
LaBraM-Adapter (Houlsby et al.|2019) 65.37 +£11.17 74.75 +£5.89 59.86 +0.98 56.88+1.52
LaBraM-PT (Li & Liang|[2021) 63.18 +10.45 72.06 £ 14.11 55.56 £ 1.94 52.44 + 3.48
LaBraM-MAM Adapter (He et al.|[2021) 64.55 + 9.87 71.93 +14.79 57.734+0.59  51.72+2.05
(Ours) LaBraM-TaKF+ 67.04+14.20 7546 +12.74 | 56.17+1.45 54.27+1.14
BIOT-LP 61.87 +8.16 68.62 +9.17 37.47+1.25  46.66 +2.48
BIOT-Adapter 58.16 - 8.24 65.44 + 5.70 45.54 + 2.77 51.12 +4.33
BIOT-PT 59.98 4 7.56 72.55 + 8.30 36.01 +1.45 35.09 +2.67
BIOT-MAM Adapter 58.36 + 7.76 70.08 £6.90 | 48.49+1.83 47.58 +3.46
(Ours) BIOT-TaKF* 63.83 + 7.06 70.44 +£4.70 46.66 +=1.22 51.56 +2.03

C ABLATION ON FEATURE DISTILLATION POINTS IN TRANSFORMER

BLOCKS

To ensure that TaKF functions as intended, we conduct an ablation study to determine the optimal
point for TaKF to extract representation features from the transformer block of the EEG foundation
model. We adopt the TaKF(+FF) introduced in Section [6.3] for the ablation study, using LaBraM
as the EEG foundation model. We elaborate on three cases. Case 1: extraction before the pro-
jection layer in the attention layer. TaKF(+FF): extraction before the residual connection in the
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attention layer. Case 2: extraction before the feed-forward layer. Case 3 extraction after the feed-
forward layer. We use three datasets to highlight the differences in extraction positions and report
the results in Table[9] It is noteworthy that whether the representation features pass through the feed-
forward layer is a key factor in determining the characteristics of TaKF. It can be observed that on the
DREAMER and Crowdsourced datasets, the results of TaKF, Case 1, and Case 2 are quite similar,
while in Case 3, there is a slight degradation. In contrast, in TUEV, Case 3 achieves the best perfor-
mance. We designed each component of TaKF* with two intentions. First, TaKF functions solely
to make the model more expressive by learning new task-relevant patterns in a low-dimensional
space. Second, the adapter modules transform the prior knowledge of the EEG foundation model
into a task-specific form. Therefore, extracting the representation features obtained before the feed-
forward layer, specifically before the residual connection in the attention layer, aligns more closely
with the intended purpose compared to those obtained after the feed-forward layer.

Table 9: Ablation study to validate the effectiveness of where the representation features are ex-
tracted from within the transformer block. The lowest performance values are underlined.

TUEV DREAMER Crowdsourced
BACC Cohen’s k BACC AUROC BACC AUROC
LaBram-TaKF(+FF) | 53.21 +2.44 51.90+1.72 | 56.85 £4.29 60.01 £5.52 | 62.30 £822  68.76 4 6.87
Case 1 53.31 £1.53 48.86 +2.99 | 55.65 £2.79 60.70 £6.07 | 62.01 =11.45 68.00 & 18.83
Case 2 57.25+3.89 53.48+3.30 | 55.66 + 1.87 60.25 +5.28 | 62.61 +9.98 67.49 + 12.22
Case 3 57.76 £2.90 50.97+3.89 | 54.65 +2.90 59.04 +8.43 | 61.87+5.50 65.13 +£18.11

Case 1: Extraction from before the projection layer in the attention layer
Case 2: Extraction from before the feed-forward layer
Case 3: Extraction from after the feed-forward layer

D ABLATION ON DATA SCALE

We present the detailed results of the ablation study on data scale in Tables |10 and To verify
the strength of our proposed methods in a data scarcity scenario, we selected two datasets, Crowd-
sourced and LeftRight Hand. Bold values represent the best results. Notably, TaKFT demonstrates
high data efficiency in low-data scenarios.

Table 10: Ablation about data scale on Crowdsourced. BACC and AUROC are used as evaluation
metric. FT denotes fine-tuning, and PT represents Prefix-Tuning.

Crowdsourced (BACC)

4-shot 8-shot 12-shot
LaBraM-FT (Jiang et al.|[2024) 70.29 + 14.00 75.04 + 15.80 79.54 + 14.34
LaBraM-Adapter (Houlsby et al.|[2019) 60.47 £9.31 67.44 + 14.11 71.59 +12.45
LaBraM-PT (Li & Liang/[2021) 53.67 £ 7.96 60.57 £+ 14.25 65.59 £+ 15.01
LaBraM-MAM Adapter (He et al.|[2021) | 55.95 + 8.43 58.31 £7.84 57.81 £8.79
(Ours) LaBraM-TaKF* 73.42 +8.43 78.63 £12.88 81.46+11.16

Crowdsourced (AUROC)

4-shot 8-shot 12-shot
LaBraM-FT 76.62 £+ 15.80 81.16 £ 16.21 87.14 £ 11.55
LaBraM-Adapter 67.81 +14.53 74.29 + 16.15 79.11 +15.58
LaBraM-PT 55.72 +£ 11.83 63.94 £17.61 71.03 + 18.75
LaBraM-MAM Adapter 58.81 + 10.62 62.08 £ 9.29 60.33 £11.24
(Ours) LaBraM-TaKF* 80.03 £14.52 84.71+13.86 88.99 1+ 10.82
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Table 11: Ablation about data scale on LeftRight Hand. BACC and AUROC are used as evaluation
metric. FT denotes fine-tuning, and PT represents Prefix-Tuning.

LeftRight Hand (BACC)

4-shot 8-shot 12-shot
LaBraM-FT (Jiang et al.|[2024) 53.52 + 8.31 53.22 +11.05 54.49 4+ 16.14
LaBraM-Adapter (Houlsby et al.|[2019) 50.55 + 3.89 51.72 £ 6.07 53.05 + 8.23
LaBraM-PT (Li & Liang/[2021) 51.30 + 7.47 50.75 + 6.02 55.53 +14.48
LaBraM-MAM Adapter (He et al.|[2021) 51.00 + 4.88 50.30 £+ 6.44 50.27 + 6.30
(Ours) LaBraM-TaKF* 53.35 4+ 10.10 53.80+12.13 55.46 +13.33

LeftRight Hand (AUROC)

4-shot 8-shot 12-shot
LaBraM-FT 53.97 +£10.64 54.01 +13.22 55.00 & 17.44
LaBraM-Adapter 52.09 £+ 7.00 54.16 + 10.46 54.45 +11.15
LaBraM-PT 52.20 + 8.43 50.41 4+ 7.86 55.63 + 16.48
LaBraM-MAM Adapter 52.23 + 6.22 53.80 & 8.13 49.91 £ 8.08
(Ours) LaBraM-TaKF T 53.40 £13.29 5550+14.33 57.12+15.04
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