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1 COMPARISON WITH NON-DIFFUSION-MODEL-BASED NR IQA METHODS

Table 1 presents a quantitative comparison between DFOSD and several non-diffusion-model-based
no-reference image quality assessment (NR IQA) methods, including BSRGAN, RealSR-JPEG,
Real-ESRGAN, and SwinIR (Zhang et al., 2021; Ji et al., 2020; Wang et al., 2021; Liang et al., 2021).
Across all evaluated datasets, DFOSD consistently outperforms these methods in NR IQA metrics.
Specifically, while GAN-based methods like BSRGAN and Real-ESRGAN achieve competitive
performance in traditional full-reference (FR) metrics such as PSNR and SSIM, they lag behind
DFOSD in NR IQA metrics, which better capture perceptual quality aspects such as image clarity,
quality, and detail.

Datasets Methods NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑

DRealSR

BSRGAN 4.6896 35.49 0.4650 0.5703
RealSR-JPEG 7.4922 22.41 0.3183 0.4100
Real-ESRGAN 4.7157 35.25 0.4767 0.5180
SwinIR 4.6729 35.81 0.4617 0.5070
DFOSD 4.1682 40.30 0.5703 0.6914

RealSR

BSRGAN 4.6609 63.59 0.5279 0.5436
RealSR-JPEG 6.9524 36.07 0.3413 0.3612
Real-ESRGAN 4.6917 59.68 0.5386 0.4899
SwinIR 4.6864 59.63 0.5111 0.4652
DFOSD 3.9255 69.21 0.6402 0.6683

Table 1: Performance comparison of DFOSD with non-diffusion-model-based NR IQA methods
across three datasets. The best results for each metric among the methods are highlighted in red.

As shown in Table 1, DFOSD achieves superior performance across all NR IQA metrics compared to
non-diffusion-model-based methods. Specifically, DFOSD exhibits lower NIQE scores, indicating
higher perceptual quality and better image clarity. Additionally, DFOSD outperforms better in the
MUSIQ, ManIQA, and ClipIQA metric, further demonstrating its ability to preserve and enhance
image details. These results underscore the effectiveness of DFOSD in generating high-quality
super-resolved images that maintain superior visual fidelity without relying on diffusion model-based
architectures.

Visual Comparison. Figure 1 provides a visual comparison of images generated by DFOSD and the
non-diffusion-model-based methods mentioned above. While GAN-based methods like BSRGAN
and Real-ESRGAN produce visually appealing results, they often introduce artifacts and lack the
fine-grained details that DFOSD preserves. In contrast, DFOSD consistently generates images with
sharper edges, more accurate textures, and overall higher visual fidelity, aligning better with human
perceptual judgments of image quality.

Despite the competitive performance of GAN-based and transformer-based methods in FR metrics,
their NR IQA scores reveal shortcomings in capturing perceptual quality nuances. The superior
performance of DFOSD in NR IQA metrics indicates its enhanced capability to generate images
that are not only quantitatively superior but also qualitatively more pleasing to the human eye. This
highlights the importance of incorporating NR IQA evaluations when assessing the true visual
effectiveness of super-resolution models.
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r α NIQE↓ MUSIQ↑ ManIQA↑ ClipIQA↑

4 4 4.0909 68.50 0.6327 0.6521
8 8 3.9706 69.41 0.6365 0.6571

16 16 3.9255 69.21 0.6402 0.6683
8 64 9.4521 29.35 0.3298 0.2808

64 128 5.4717 65.42 0.5853 0.5517

Table 2: Impact of different LoRA rank and α on DFOSD performance.

Conditional input NIQE↓ MUSIQ↑ ManIQA↑ ClipIQA↑

empty string 4.2647 67.42 0.6291 0.6437
DAPE extracted prompt 4.0499 69.35 0.6453 0.6493

random noise 3.9899 69.17 0.6391 0.6373
learnable text embedding 3.9255 69.21 0.6402 0.6683

Table 3: Impact of different UNet conditional input on DFOSD performance.

2 ADDITIONAL ABLATION STUDIES

In this section, we present further ablation studies that complement those discussed in the main text.

LoRA Settings. We primarily investigate the impact of varying the α and rank settings of LoRA on
the performance of DFOSD. The performance of DFOSD under different LoRA configurations is
presented in Table 2. With lower α and rank values, the LoRA parameters are insufficient to achieve
optimal results. As both α and rank increase, the fine-tuning capability of LoRA on the model is
enhanced, leading to gradual improvements in performance. However, setting either α or rank too
high results in significant overfitting, thereby degrading performance on the test set.

UNet Conditional Input. We investigate the impact of different conditional inputs for the UNet on
the model’s performance, including using an empty string as a prompt, employing DAPE to extract
prompts from low-resolution (LR) images, utilizing random noise as a text embedding, and using a
learnable text embedding. Table Table 3 presents the results of these experiments. Although DAPE
shows significant advantages over using an empty string as a prompt, its performance is comparable
to that of the learnable text embedding.

3 ALGORITHM OF DFOSD

The pseudo-code of our DFOSD training algorithm is summarized as Algorithm 1.

4 IMPLEMENTATION DETAILS

This section provides the implementation details of our DFOSD, including model hyperparameters,
training procedures, and evaluation settings.

4.1 HYPERPARAMETER SETTINGS

During the training process, several key hyperparameters of DFOSD are crucial for achieving optimal
performance. Table 4 summarizes these important hyperparameters used in our experiments.

4.2 EVALUATION DETAILS

We evaluate DFOSD and other methods on entire images from each test set. Following the imple-
mentations of StableSR and OSEDiff, we also apply the Adaptive Instance Normalization (AdaIN)
algorithm to post-process generated images, ensuring that the color and style of the generated images
closely match those of the input low-resolution (LR) images.

For evaluating large images, we adopt a tiling strategy to address memory limitations. Specifically,
each image is divided into overlapping patches of size 512ˆ512 pixels, with a 64-pixel overlap

2
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Algorithm 1 Training Algorithm for DFOSD

Require:
ϵϕ: Pretrained Stable Diffusion (SD) UNet
Eϕ, Dϕ: Pretrained SD VAE Encoder and Decoder
S: Training dataset
N : Number of training iterations

1: Initialize generator Gθ from pretrained SD model:
Eθ Ð Eϕ Ź Initialize encoder from SD VAE
ϵθ Ð ϵϕ with trainable LoRA Ź Initialize UNet with LoRA
Dθ Ð Dϕ Ź Initialize decoder from SD VAE

2: Initialize guidance module Dθ using downsampling and middle blocks from pretrained SD UNet
3: for i “ 1 to N do
4: Sample a batch of pxL, xHq from S

/* Generator Step */
5: zL “ EθpxLq Ź Encode low-resolution image

6: ẑH “
zL´

?
1´ᾱTL

ϵθpzL;TLq
?

ᾱTL

Ź Denoising step

7: x̂H “ DθpẑHq Ź Decode high-resolution image
8: Lspatial “ LMSEpxH , x̂Hq ` λ2LEA-DISTSpxH , x̂Hq Ź Compute spatial loss
9: Sample t P r0, T s

10: LG “ ´ExL„pdata, t„r0,T s rlogDθ pF pẑH , tqqs Ź Compute generator adversarial loss
11: Update Gθ using Lspatial ` λ1LG

/* Discriminator Step */
12: zH “ EθpxHq Ź Encode ground-truth high-resolution image
13: Sample t P r0, T s

14: LD “ ´ExL„pdata, t„r0,T s rlog p1 ´ Dθ pF pẑH , tqqqs

15: ´ExH„pdata, t„r0,T s rlogDθ pF pzH , tqqs

16: Update Dθ using LD
17: return Gθ

Hyperparameter Value

Generator Learning Rate 5ˆ10´5

Discriminator Learning Rate 5ˆ10´7

Number of Training Iterations 100,000
Batch Size 16
Generator Adversarial Loss Weight (λ1) 5ˆ10´3

EA-DISTS Loss Weight (λ2) 1

Table 4: Key hyperparameters for training DFOSD.

between adjacent patches to ensure smooth transitions. We perform inference independently on each
image patch and subsequently stitch them together. For the overlapping regions, we average the
results to maintain consistency and continuity across the entire image.

The models used for each evaluation metric are listed in Table 5. All metrics are computed using the
pyiqa library. For PSNR and SSIM, we evaluate the Y channel in the YCbCr color space of the
images to focus on luminance information, which is more indicative of perceived image quality.

5 LIMITATIONS AND DISCUSSIONS

While our method demonstrates promising results, it has certain limitations. Firstly, we have not
yet incorporated recently proposed larger diffusion models, such as SDXL, as the base models for
the generator. Consequently, the effectiveness of our approach on large-scale models remains to
be validated. Secondly, our method employs a fixed guidance scale during training. Although the
guidance scale is less critical for super-resolution tasks, users may still desire the flexibility to adjust
the generation intensity in specific scenarios.
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Metric Model File
LPIPS LPIPS v0.1 alex-df73285e.pth
DISTS DISTS weights-f5e65c96.pth
MUSIQ musiq koniq ckpt-e95806b9.pth
ManIQA MANIQA PIPAL-ae6d356b.pth
ClipIQA RN50.pt (CLIP module)

Table 5: Models used for each evaluation metric. All metrics are computed using the pyiqa library.
For PSNR and SSIM, evaluations are performed on the Y channel in the YCbCr color space.

6 MORE VISUAL COMPARISONS

Figures 2, 3 presents additional visual comparison results with compared methods (Wang et al.,
2024a; Yue et al., 2024; Lin et al., 2024; Wu et al., 2024b; Wang et al., 2024b; Wu et al., 2024a;
Zhang et al., 2021; Ji et al., 2020; Wang et al., 2021; Liang et al., 2021). Our DFOSD demonstrates
superior visual quality, detail, and realism in highly degraded scenarios, fine hair details, text, and
richly textured regions.
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LR BSRGAN RealSR-JPEG
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Figure 1: Visual comparison of super-resolved images generated by DFOSD and non-diffusion-
model-based methods. DFOSD produces images with sharper edges and more realistic textures,
demonstrating superior perceptual quality.
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Figure 2: More visulization comparisons of different DM-based Real-ISR methods. Zoom in for best
view.
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Figure 3: More visulization comparisons of different DM-based Real-ISR methods. Zoom in for best
view.
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