ONE-STEP DIFFUSION-BASED REAL-WORLD IMAGE SUPER-RESOLUTION

Anonymous authors

Paper under double-blind review

1 COMPARISON WITH NON-DIFFUSION-MODEL-BASED NR IQA METHODS

Table 1 presents a quantitative comparison between DFOSD and several non-diffusion-model-based no-reference image quality assessment (NR IQA) methods, including BSRGAN, RealSR-JPEG, Real-ESRGAN, and SwinIR (Zhang et al., 2021; Ji et al., 2020; Wang et al., 2021; Liang et al., 2021). Across all evaluated datasets, DFOSD consistently outperforms these methods in NR IQA metrics. Specifically, while GAN-based methods like BSRGAN and Real-ESRGAN achieve competitive performance in traditional full-reference (FR) metrics such as PSNR and SSIM, they lag behind DFOSD in NR IQA metrics, which better capture perceptual quality aspects such as image clarity, quality, and detail.

Datasets	Methods	NIQE↓	MUSIQ↑	MANIQA↑	CLIPIQA↑
DRealSR	BSRGAN	4.6896	35.49	0.4650	0.5703
	RealSR-JPEG	7.4922	22.41	0.3183	0.4100
	Real-ESRGAN	4.7157	35.25	0.4767	0.5180
	SwinIR	4.6729	35.81	0.4617	0.5070
	DFOSD	4.1682	40.30	0.5703	0.6914
RealSR	BSRGAN	4.6609	63.59	0.5279	0.5436
	RealSR-JPEG	6.9524	36.07	0.3413	0.3612
	Real-ESRGAN	4.6917	59.68	0.5386	0.4899
	SwinIR	4.6864	59.63	0.5111	0.4652
	DFOSD	3.9255	69.21	0.6402	0.6683

Table 1: Performance comparison of DFOSD with non-diffusion-model-based NR IQA methods across three datasets. The best results for each metric among the methods are highlighted in red.

As shown in Table 1, DFOSD achieves superior performance across all NR IQA metrics compared to
 non-diffusion-model-based methods. Specifically, DFOSD exhibits lower NIQE scores, indicating
 higher perceptual quality and better image clarity. Additionally, DFOSD outperforms better in the
 MUSIQ, ManIQA, and ClipIQA metric, further demonstrating its ability to preserve and enhance
 image details. These results underscore the effectiveness of DFOSD in generating high-quality
 super-resolved images that maintain superior visual fidelity without relying on diffusion model-based
 architectures.

Visual Comparison. Figure 1 provides a visual comparison of images generated by DFOSD and the
 non-diffusion-model-based methods mentioned above. While GAN-based methods like BSRGAN
 and Real-ESRGAN produce visually appealing results, they often introduce artifacts and lack the
 fine-grained details that DFOSD preserves. In contrast, DFOSD consistently generates images with
 sharper edges, more accurate textures, and overall higher visual fidelity, aligning better with human
 perceptual judgments of image quality.

Despite the competitive performance of GAN-based and transformer-based methods in FR metrics,
 their NR IQA scores reveal shortcomings in capturing perceptual quality nuances. The superior
 performance of DFOSD in NR IQA metrics indicates its enhanced capability to generate images
 that are not only quantitatively superior but also qualitatively more pleasing to the human eye. This
 highlights the importance of incorporating NR IQA evaluations when assessing the true visual effectiveness of super-resolution models.

		<u>o</u>	NIOE	MUSIO	• ManIOA	A↑ ClinIOA	$\Lambda \uparrow$
		a	mQL↓	MUSIQ	wiantQr		7
	4	4	4.0909	68.50	0.6327	0.6521	
	8	8	3.9706	69.41	0.6365	0.6571	l
	16	16	3.9255	69.21	0.6402	0.6683	3
	8	64	9.4521	29.35	0.3298	0.2808	3
	64	128	5.4717	65.42	0.5853	0.5517	7
Fable 2:	Imp	act of	different	t LoRA ra	nk and α o	n DFOSD p	erformanc
Conditional input			NIQE↓	MUSIQ↑	ManIQA↑	ClipIQA↑	
empty string			4.2647	67.42	0.6291	0.6437	
DAPE extracted prompt							
DAPE	extra	acted	prompt	4.0499	69.35	0.6453	0.6493
DAPE ra	extra indoi	ncted n noi	prompt se	4.0499 3.9899	69.35 69.17	0.6453 0.6391	0.6493 0.6373
DAPE ra learnab	extra indoi le tez	ncted n noi xt eml	prompt se bedding	4.0499 3.9899 3.9255	69.35 69.17 69.21	0.6453 0.6391 0.6402	0.6493 0.6373 0.6683

Table 3: Impact of different UNet conditional input on DFOSD performance.

2 ADDITIONAL ABLATION STUDIES

In this section, we present further ablation studies that complement those discussed in the main text.

LoRA Settings. We primarily investigate the impact of varying the α and rank settings of LoRA on the performance of DFOSD. The performance of DFOSD under different LoRA configurations is presented in Table 2. With lower α and rank values, the LoRA parameters are insufficient to achieve optimal results. As both α and rank increase, the fine-tuning capability of LoRA on the model is enhanced, leading to gradual improvements in performance. However, setting either α or rank too high results in significant overfitting, thereby degrading performance on the test set.

UNet Conditional Input. We investigate the impact of different conditional inputs for the UNet on
 the model's performance, including using an empty string as a prompt, employing DAPE to extract
 prompts from low-resolution (LR) images, utilizing random noise as a text embedding, and using a
 learnable text embedding. Table Table 3 presents the results of these experiments. Although DAPE
 shows significant advantages over using an empty string as a prompt, its performance is comparable
 to that of the learnable text embedding.

086 087

089 090 091

092

094

054

056

069

071 072

073

3 ALGORITHM OF DFOSD

The pseudo-code of our DFOSD training algorithm is summarized as Algorithm 1.

4 IMPLEMENTATION DETAILS

This section provides the implementation details of our **DFOSD**, including model hyperparameters, training procedures, and evaluation settings.

096 4.1 Hyperparameter Settings

- During the training process, several key hyperparameters of DFOSD are crucial for achieving optimal performance. Table 4 summarizes these important hyperparameters used in our experiments.
- 100 101
- 4.2 EVALUATION DETAILS

We evaluate DFOSD and other methods on entire images from each test set. Following the implementations of StableSR and OSEDiff, we also apply the Adaptive Instance Normalization (AdaIN) algorithm to post-process generated images, ensuring that the color and style of the generated images closely match those of the input low-resolution (LR) images.

For evaluating large images, we adopt a tiling strategy to address memory limitations. Specifically, each image is divided into overlapping patches of size 512×512 pixels, with a 64-pixel overlap

Desertines			
kequire:			
ϵ_{ϕ} : Pretrained S	Stable Diffusion (SD) UNet		
E_{ϕ}, D_{ϕ} : Pretrai	ined SD VAE Encoder and Decoder		
\mathcal{S} : Training data	aset		
N: Number of t	training iterations		
1: Initialize gener	ator \mathcal{G}_{θ} from pretrained SD model:	.	
$E_{\theta} \leftarrow E_{\phi}$	(▷ Initialize encoder f	rom SD V
$\epsilon_{\theta} \leftarrow \epsilon_{\phi}$ with $D_{\phi} \leftarrow D_{\phi}$	I trainable LOKA	⊳ Initialize UNG	rom SD V
$D_{\theta} \leftarrow D_{\phi}$ 2. Initialize guidat	nce module \mathcal{D}_{α} using downsampling and midd	le blocks from pretrai	ned SD UN
3: for $i = 1$ to N (do	ie blocks from pretra	
4: Sample a ba	ttch of (x_L, x_H) from S		
/* Generator S	tep */		
5: $z_L = E_{\theta}(x_L)$		ightarrow Encode low-reso	olution ima
6: $\hat{z}_{II} = \frac{z_L - \sqrt{2}}{\sqrt{2}}$	$\sqrt{1-\bar{lpha}_{T_L}} \epsilon_{ heta}(z_L;T_L)$	⊳ D	enoising s
0. <i>2</i> H	$\sqrt{\bar{lpha}_{T_L}}$	~	
7: $\hat{x}_H = D_\theta(\hat{z}$	(H)	⊳ Decode high-reso	olution ima
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$MSE(x_H, x_H) + \lambda_2 L_{EA-DISTS}(x_H, x_H)$	⊳ Compu	ie spatial lo
9. Sample $t \in 10^\circ$	[0, T] [0, T] $[\log \mathcal{D}_{\theta}(F(\hat{x}_{T}, t))] \rightarrow 0$	Compute generator ad	versarial l
11: Update \mathcal{G}_{θ} u	$\sum_{i=1}^{n} p_{\text{data}}, t \sim [0, T] \left[\log \mathcal{L}_{\theta} \left(1 \left(\mathcal{L}_{H}, \theta \right) \right) \right] \qquad \mathcal{L}_{\theta}$ $\text{Ising } \mathcal{L}_{\text{spatial}} + \lambda_{1} \mathcal{L}_{\theta}$	compute generator ad	versuriur iv
/* Discriminate	or Step */		
12: $z_H = E_\theta(x$	$_{H})$ \triangleright Encode g	ground-truth high-reso	olution ima
13: Sample $t \in$	[0,T]		
14: $\mathcal{L}_{\mathcal{D}} = -\mathbb{E}_{x_{\mathcal{D}}}$	$L \sim p_{\text{data}}, t \sim [0,T] \left[\log \left(1 - \mathcal{D}_{\theta} \left(F \left(\hat{z}_{H}, t \right) \right) \right) \right]$		
15: $-\mathbb{E}_{x_{j}}$	$H \sim p_{\text{data}}, t \sim [0,T] \left[\log \mathcal{D}_{\theta} \left(F(z_H, t) \right) \right]$		
16: Update \mathcal{D}_{θ} i	using $\mathcal{L}_{\mathcal{D}}$		
17. return Ga			
$\frac{1}{2}$			
17. τετατή 9 _θ	Hyperparameter	Value	
17. τeturn 9θ	Hyperparameter Generator Learning Rate	$\frac{\text{Value}}{5 \times 10^{-5}}$	
17. return 9θ	Hyperparameter Generator Learning Rate Discriminator Learning Rate	Value 5×10^{-5} 5×10^{-7}	
17. return 9θ	Hyperparameter Generator Learning Rate Discriminator Learning Rate Number of Training Iterations	Value 5×10^{-5} 5×10^{-7} 100,000	
17. return 9θ	Hyperparameter Generator Learning Rate Discriminator Learning Rate Number of Training Iterations Batch Size	Value 5×10^{-5} 5×10^{-7} 100,000 16	
17. τ ετάτη 9θ	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3}	
17. τ ετάτη 9θ	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1	
17. τeturn 9θ	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1	
17. τeturn 9θ	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for training	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.	
17. τetuin 9θ	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for training	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.	
17. τetum 9θ	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for training	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.	
between adjacent pa	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We performed	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1g DFOSD.m inference independ	ently on e
between adjacent pa image patch and su	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the own	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1g DFOSD.m inference independent of the properties of the proper	ently on ea
between adjacent pa image patch and su results to maintain c	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the ovconsistency and continuity across the entire in	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.m inference independent erlapping regions, we hage.	ently on ea
between adjacent pa image patch and su results to maintain c The models used for	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the own sonsistency and continuity across the entire in the each evaluation metric are listed in Table 5.	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.m inference independent erlapping regions, we hage.All metrics are computed on the set of the	ently on ea e average ited using
between adjacent pa image patch and su results to maintain c The models used for pyiqa library. For	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the owconsistency and continuity across the entire inr each evaluation metric are listed in Table 5.PSNR and SSIM, we evaluate the Y channel	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.m inference independent erlapping regions, we hage.All metrics are compared in the YCbCr color	ently on ea e average ated using c space of
between adjacent pa image patch and su results to maintain c The models used for pyiqa library. For images to focus on l	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the overconsistency and continuity across the entire inceach evaluation metric are listed in Table 5.PSNR and SSIM, we evaluate the Y channeluminance information, which is more indication	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.m inference independenterlapping regions, we have.All metrics are computed in the YCbCr colorcive of perceived image	ently on ea e average uted using r space of ge quality.
between adjacent pa image patch and su results to maintain c The models used for pyiqa library. For images to focus on l	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the owconsistency and continuity across the entire inr each evaluation metric are listed in Table 5.PSNR and SSIM, we evaluate the Y channeluminance information, which is more indication	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.m inference independenterlapping regions, we have.All metrics are computed in the YCbCr coloreven of perceived image	ently on ea e average uted using r space of ge quality.
between adjacent pa image patch and su results to maintain c The models used for pyiqa library. For images to focus on l 5 LIMITATION	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the overconsistency and continuity across the entire inr each evaluation metric are listed in Table 5.PSNR and SSIM, we evaluate the Y channeluminance information, which is more indicatorsS AND DISCUSSIONS	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1g DFOSD.m inference independenterlapping regions, we have.All metrics are compared in the YCbCr colorel in the YCbCr colortive of perceived image	ently on ea e average f ited using c space of f ge quality.
between adjacent pa image patch and su results to maintain c The models used for pyiga library. For images to focus on l 5 LIMITATION While our method c	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the owconsistency and continuity across the entire inceach evaluation metric are listed in Table 5.PSNR and SSIM, we evaluate the Y channeluminance information, which is more indicaS AND DISCUSSIONSlemonstrates promising results, it has certain	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.m inference independent erlapping regions, we have a limitations. Firstly.	ently on ea e average uted using space of ge quality.
between adjacent pa image patch and su results to maintain c The models used for pyiqa library. For images to focus on l 5 LIMITATION While our method c yet incorporated rec	HyperparameterGenerator Learning RateDiscriminator Learning RateNumber of Training IterationsBatch SizeGenerator Adversarial Loss Weight (λ_1)EA-DISTS Loss Weight (λ_2)Table 4: Key hyperparameters for trainingtches to ensure smooth transitions. We perforbsequently stitch them together. For the ownconsistency and continuity across the entire incach evaluation metric are listed in Table 5.PSNR and SSIM, we evaluate the Y channeluminance information, which is more indicationS AND DISCUSSIONSlemonstrates promising results, it has certaintently proposed larger diffusion models, such	Value 5×10^{-5} 5×10^{-7} $100,000$ 16 5×10^{-3} 1 g DFOSD.m inference independenterlapping regions, we have a service of perceived imagea limitations. Firstly, and SDXL, as the base	ently on ea e average f ited using f space of f ge quality. , we have n se models

be validated. Secondly, our method employs a fixed guidance scale during training. Although the
 guidance scale is less critical for super-resolution tasks, users may still desire the flexibility to adjust
 the generation intensity in specific scenarios.

-	Metric	Ν	Iodel File			
-	LPIPS	LPIPS_v0.1_a	alex-df7328	5e.pth		
	DISTS	DISTS_weigł	nts-f5e65c9	6.pth		
	MUSIQ	musiq_koniq_	ckpt-e95806	b9.pth		
	ClipIQA	MANIQA_PIP RN50.p	AL-ae6d356k t (CLIP module	e)		
- Table 5: Models used	for each ev	aluation metric Al	1 metrics are cor	mnuted using t	he nyi ga lihr	arv
For PSNR and SSIM,	evaluations	s are performed on	the Y channel in	n the YCbCr co	olor space.	ury.
6 MORE VISUA	l Compa	RISONS				
Figures 2, 3 presents 2024a; Yue et al., 202 Zhang et al., 2021; Ji superior visual qualit richly textured region	additional 24; Lin et a et al., 2020 y, detail, an s.	visual comparison I., 2024; Wu et al. ; Wang et al., 2021 d realism in highly	n results with co ., 2024b; Wang ; Liang et al., 20 y degraded scen	ompared meth et al., 2024b;)21). Our DFC arios, fine hair	ods (Wang et Wu et al., 202- SD demonstra details, text, a	al., 24a; ates and
References						
Xiaozhong Ji, Yun Ca resolution via kerne	ao, Ying Ta el estimation	i, Chengjie Wang, n and noise injectio	Jilin Li, and Fe on. In <i>CVPRW</i> ,	viyue Huang. I 2020.	Real-world sup	per-
Jingyun Liang, Jiezha Image restoration u	ang Cao, G sing swin ti	uolei Sun, Kai Zha ransformer. In <i>ICC</i>	ang, Luc Van G CVW, 2021.	ool, and Radu	Timofte. Swii	nir:
Xinqi Lin, Jingwen H Chao Dong. Diffbi 2024.	e, Ziyan Ch r: Towards	nen, Zhaoyang Lyu blind image restor	, Ben Fei, Bo D ration with gene	ai, Wanli Ouya rative diffusion	ang, Yu Qiao, a n prior. In <i>ECC</i>	and CV,
Jianyi Wang, Zongshe diffusion prior for 1	ng Yue, Sha real-world i	ngchen Zhou, Kelv mage super-resolut	rin C. K. Chan, a tion. <i>IJCV</i> , 2024	nd Chen Chang la.	ge Loy. Exploiti	ing
Xintao Wang, Liangb super-resolution wi	oin Xie, Cha th pure syn	ao Dong, and Ying thetic data. In <i>ICC</i>	g Shan. Real-es V, 2021.	rgan: Training	g real-world bli	ind
Yufei Wang, Wenhan Yu Qiao, Alex C K step. In <i>CVPR</i> , 202	Yang, Xiny ot, and Biha 24b.	vuan Chen, Yaohui an Wen. Sinsr: Dif	Wang, Lanqing fusion-based im	Guo, Lap-Pui age super-resc	Chau, Ziwei L plution in a sing	Liu, gle
Rongyuan Wu, Lingcl real-world image su	nen Sun, Zh uper-resolut	iyuan Ma, and Lei ion. <i>arXiv preprin</i>	Zhang. One-ste t arXiv:2406.08	p effective diff 177, 2024a.	usion network	for
Rongyuan Wu, Tao Y Towards semantics	Yang, Ling -aware real-	chen Sun, Zhengq world image super	iang Zhang, Sh r-resolution. In (uai Li, and L <i>CVPR</i> , 2024b.	ei Zhang. See	esr:
Zongsheng Yue, Jiany super-resolution by	vi Wang, an residual sh	d Chen Change Lo ifting. In <i>NeurIPS</i>	y. Resshift: Effi , 2024.	cient diffusion	model for ima	age
Kai Zhang, Jingyun I model for deep blir	Liang, Luc id image su	Van Gool, and Ra per-resolution. In J	du Timofte. De ICCV, 2021.	signing a prac	ctical degradati	ion

Figure 1: Visual comparison of super-resolved images generated by DFOSD and non-diffusionmodel-based methods. DFOSD produces images with sharper edges and more realistic textures, demonstrating superior perceptual quality.

268

269

Figure 2: More visulization comparisons of different DM-based Real-ISR methods. Zoom in for best view.

377 view.