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ABSTRACT

Denoising diffusion models have emerged as a formidable method, consistently
surpassing previous state-of-the-art benchmarks. However, a notable challenge in
time series-related tasks like anomaly detection and forecasting is the condition-
ing for models to reconstruct inputs accurately or generate samples based on past
time steps rather than producing entirely new samples. To address this, we intro-
duce a novel technique that enhances the sampling capabilities of denoising diffu-
sion models for time series analysis, namely Spatio-Temporal Diffusion Models
(STDM). While recent methods fall short of mapping contextual neighborhood
dependencies directly into the sampling of a noisy sample, we focus on guiding
the forward process of the diffusion model. The degeneration of a sample is based
on the idea that values of neighboring time steps are highly correlated. We benefit
from this assumption by presenting a diffusion step-dependent convolutional ker-
nel to capture spatial relations and a combined, correlated noise to degenerate the
input. Our method can be integrated seamlessly into various existing time series
diffusion models. We compare the results of anomaly detection and forecasting
when using the traditional and our novel forward process. In our experiments on
synthetic and real-world datasets, we show that an adaption of the forward process
can be beneficial, as our approach outperforms diffusion models with the ordinary
forward process in task-specific metrics, underscoring the efficacy of our strategy
in enhancing time series analysis through advanced diffusion techniques.

1 INTRODUCTION

Time series analysis is a cornerstone of modern applications across a multitude of domains, includ-
ing healthcare (Morid et al., 2023), climate modeling (Mudelsee, 2019), industrial manufacturing
(Ali Nemer et al., 2022), and cyber security (Al-Ghuwairi et al., 2023). Deep learning-based models
have demonstrated remarkable capabilities in discerning patterns and dependencies within multivari-
ate time series data. These models excel in reconstructing signals to detect anomalies and predicting
future timestamps. Crucially, these tasks often necessitate unsupervised training, as existing datasets
frequently lack labeled data, or the output itself is a time series.

Time series analysis inherent different challenges: An accurate reconstruction of input data is
paramount for anomaly detection (Chandola et al., 2009), as anomalous data cannot be generated
during inference due to the training dataset predominantly consisting of nominal state data. Time
series forecasting necessitates the model to learn the historical patterns of the time series to predict
future time steps (Lim & Zohren, 2021). Some approaches for forecasting include a reconstruction
of the past time steps (Kollovieh et al., 2023).

In recent years, Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) have garnered
significant attention in generative tasks owing to their exceptional ability to produce high-quality
samples. These models operate by progressively distorting an input with Gaussian noise, training a
model to reverse this process by estimating the corruption at various levels.

A critical aspect of time series anomaly detection and forecasting is to ensure the model utilizes
the time series as an input during inference rather than generating a new, realistic time series from
pure Gaussian noise. Current diffusion models fall short of paying attention to the temporal patterns
within the time series during the forward process and rely solely on incorporating conditions during
training and sample generation.

1
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Figure 1: Difference between STDM and DDPM forward process at different diffusion steps. Both
are using a linear scheduler and 100 diffusion steps. The original sample (left) is part of the Solar
dataset.

In this paper, we propose Spatio-Temporal Diffusion Models (STDM), a novel technique that guides
the diffusion model in reconstructing multivariate time series data by refining the forward process.
Based on the idea of correlation neighboring time steps (Wu et al., 2021), our approach employs
a convolution-based sampler that benefits from spatial relations within the time series while intro-
ducing a correlated noise to corrupt it to an unrecognizable state. Figure 1 shows the difference
between STDM and the traditional DDPM forward process using a single channel of a time se-
ries. The mapped dependencies enable us to address task-specific challenges more effectively and
to train more robust models. Our approach seamlessly replaces the standard diffusion sampling pro-
cess and can be combined with various conditioning techniques. Adapting existing diffusion models
for anomaly detection and forecasting offers distinct advantages over the traditional forward process
when working with standard datasets.

We summarize our most important contributions as outlined below:

1. We introduce a novel diffusion forward process for time series data that takes spatial corre-
lations into account while remaining a Markov chain.

2. Due to the similar structure as ordinary forward steps, our approach can be easily integrated
into existing diffusion models.

3. We show that our approach can improve the results of time series diffusion models in
anomaly detection and forecasting tasks.

The structure of this paper is as follows: Section 2 provides information on time series tasks, de-
noising diffusion probabilistic models (DDPMs), and approaches to conditioning and guidance. Our
guided degradation process is detailed in Section 3. Section 4 demonstrates the effectiveness of our
approach by modifying existing diffusion models. Finally, Section 5 summarizes the strengths and
limitations of our approach.

2 PRELIMINARIES

2.1 PROBLEM STATEMENT

Let x0 ∈ Rd×T be a multivariate time series with a sequence length of T and d features at every
time step. The index 0 indicates that the data is in its uncorrupted, original form. The objective for
a denoising network ϵθ is task-specific for times series analysis.

Anomaly detection. In an anomaly detection task, non-normal time steps in x0 should be detected.
The network is trained to reconstruct the complete input, while the majority of the training data
represent the nominal state. Therefore, anomalies cannot be reconstructed accurately. Depending
on the evaluation strategy, a corresponding time step is considered abnormal if the reconstruction
error surpasses a pre-defined or calculated threshold.

Forecasting. For time series forecasting, the values of the future time steps should be predicted.
Given x0, the model aims to continue the time series realistically for a definite amount of time
steps. Depending on the approach, the model’s output could also include a reconstruction of the

2
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observation. Forecasting techniques can also be used for anomaly detection (Hundman et al., 2018)
by comparing predicted and actual targets.

2.2 DIFFUSION MODELS

DDPMs are well-known diffusion models introduced by Ho et al. (2020). In the forward diffusion
process, a sample x0 ∼ q(x0) is corrupted by gradually adding noise ϵ ∼ N (0, I) to become a
Gaussian noise vector xK at the final diffusion step K. This process can be described as the Markov
chain

q
(
x1:K

∣∣ x0
)
=

K∏
k=1

q
(
xk|xk−1

)
(1)

with
q
(
xk
∣∣ xk−1

)
= N

(
xk;
√
1− βk xk−1, βkI

)
(2)

with βk ∈ [0, 1] being the noise variance at diffusion step k ∈ [1,K]. It is possible to sample at any
arbitrary step k in a closed loop form with ᾱk :=

∏k
i=1 αi, αk := 1− βk and ϵ ∼ N (0, I) as

xk =
√
ᾱk x0 +

√
1− ᾱk ϵ . (3)

The backward denoising process starts with xk ∼ q
(
xk
)
= N (0, I) and can be described as

pθ
(
xk−1

∣∣xk
)
= N

(
xk−1;µθ

(
xk, k

)
,Σθ

(
xk, k

))
, (4)

where Σθ

(
xk, k

)
is set to σ2

kI and

µθ

(
xk, k

)
=

1
√
αk

(
xk − 1− αk√

1− ᾱk
ϵθ
(√

ᾱk x0 +
√
1− ᾱk ϵ, k

))
, (5)

where ϵθ is a trainable function, parameterized by θ that predicts the noise ϵ of xk that is added
during the forward process. ϵθ can be trained via the simplified objective function (Ho et al., 2020)

L =
∥∥ϵ− ϵθ

(
xk, k

)∥∥2 . (6)

Once trained, a sample can be generated from Gaussian noise by iteratively denoising the input K
times (see e.g., Ho et al. (2020)).

2.3 CONDITIONING DIFFUSION MODELS FOR TIME SERIES DATA

Several methods exist that include conditions to generate a certain output. Class-agnostic (Nichol
& Dhariwal, 2021) or text-based conditioning (Podell et al., 2024) is often used for computer vision
tasks, where a label or text prompt is given, describing the object or scene to generate. The objective
function in Eq. (6) at diffusion step k can be supplemented with a conditioning vector c

L =
∥∥ϵ− ϵθ

(
xk, k, c

)∥∥2 . (7)

Non-categorical conditioning often makes use of alternative ideas on how to tailor a model towards
a desired output.

In their work on Conditional score-based diffusion models (CSDI), Tashiro et al. (2021) combined
a diffusion model with time series imputation. Their approach involves randomly masking por-
tions of a sample, requiring the model to estimate the missing values. To guide the model towards
reconstructing the masked sections, the authors utilize the unmasked parts of the signal as a condi-
tion. This condition remains uncorrupted by noise, allowing the model to leverage information from
neighboring values for accurate imputation effectively. Based on CSDI, Chen et al. (2023b) intro-
duced a novel masking strategy for imputation in IMDiffusion, specifically designed for time series
anomaly detection. Their method ensures that all data points in the time series are imputed by em-
ploying two imputation instances along with two complementary masks. The resulting instances are
merged to achieve a complete reconstruction of the sample, thereby enhancing the model’s ability
to detect anomalies more precisely.

3
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Shen & Kwok (2023) propose TimeDiff that integrates two distinct conditioning strategies to en-
hance time series forecasting. During the training phase, they combine past information with the
future ground truth, utilizing the resulting latent vector as the primary component of the condition.
At the inference stage, the model relies solely on past time steps. Additionally, a linear autore-
gressive model provides a preliminary approximation of future time steps, serving as a secondary
condition to further refine the model’s predictions.

DiffusionAE (Pintilie et al., 2023) is an anomaly detection model that combines autoencoders and
diffusion models. An autoencoder reconstructs an input signal and passes the reconstruction to the
diffusion model. The authors showed that the model is more robust to small noise levels since the
non-optimal autoencoder reconstruction can be seen as a slightly corrupted input, further perturbed
throughout the forward process. During anomaly detection, the signal is corrupted in fewer forward
steps than during training to retain information about the original signal.

The incorporation of latent vectors is a different approach for directing the generation process of
diffusion models. Rasul et al. (2021) showed the beneficial impact of conditioning when doing short-
term time series forecasting. They utilized an additional RNN to capture the temporal dependencies
of previous time steps and integrated the updated hidden state in their model. In MG-TSD, Fan et al.
(2024) refined this method by using various granularity levels of the signal as input.

Most approaches for time series forecasting condition their generative models on observed values of
past time steps or their latent representation. Instead, Kollovieh et al. (2023) employ a self-guidance
mechanism that allows sampling from a class-agnostic distribution during the backward process.

Besides the presented mechanisms, self-conditioning (Chen et al., 2023a) is often used in diffusion
models, as it can be applied without external sources. The model is directly conditioned by its
previous estimate of x̂0. To ensure that the model does not focus entirely on self-conditioning, it is
zeroed out with 50 % probability.

All these approaches have in common that the degeneration of the sample relies on the forward
process introduced in Ho et al. (2020). Our approach reinvents this step by taking the spatio-temporal
correlations of time series into account.

3 GUIDED DEGRADATION PROCESS

While previous approaches have predominantly focused on altering the denoising process to influ-
ence the diffusion model’s outcome, our methodology innovatively manipulates the forward process.
This adjustment facilitates faster convergence during training and enhances robustness during infer-
ence. Our forward process corrupts the sample while preserving the temporal relationships within
the signal. As demonstrated by Bansal et al. (2023), the diffusion process need not be strictly Gaus-
sian and can be realized through various mechanisms. However, the options for guided degradation
of time series data remain limited.

We propose STDM, a novel forward process for time series diffusion models that employs convolu-
tional operators to corrupt the input signal. This forward process is defined as a Markov chain, akin
to traditional diffusion models. The sample for the subsequent diffusion step k + 1 is obtained au-
toregressively by convolving the current sample xk with a fixed Gaussian kernel H∗1 and corrupting
the smoothened sample with diffusion step specific noise ϵk ∼ Nk (0, I)

xk+1 = H∗1 ∗ xk + bkϵ
k (8)

where ∗ denotes the convolution operator, and bk ∈ [0, 1] is predefined by a scheduler, controlling
the impact of the noise on the signal. Unfolding the recursion yields

xk+1 = H∗(k+1) ∗ x0 +

k∑
j=0

H∗(k−j) ∗
(
bjϵ

j
)
, (9)

where H∗k represents the combined kernel

H∗k = H∗1 ∗H∗1 ∗ ... ∗H∗1︸ ︷︷ ︸
k times

(10)
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and H∗0 = I. We chose the initial kernel H∗1 = [h−1, h0, h1] to be of length l1 = 3. For the first
diffusion steps, the influence of the kernel is local, as just neighboring time steps in the time series
impact the values. With increasing k, the kernel size expands and captures global dependencies.
The discrete convolution can be expressed as a matrix multiplication when H∗ is converted into the
Toeplitz matrix

H̄ =



h0 h1

h−1 h0 h1

. . .

h−1 h0 h1

h−1 h0


. (11)

To minimize the computational overhead during training and inference, we compute the kernel H∗k

for every k beforehand. The expectation of xk+1 given the initial signal x0 is

E
(
xk+1

∣∣ x0
)
= E

H̄k+1x0 +
k∑

j=0

H̄k−jbjϵ
j

∣∣∣∣∣∣ x0

 (12)

= H̄k+1x0 , (13)

where H̄k corresponds to H∗k, which leads to the conditional distribution

q
(
xk
∣∣ x0

)
= N

xk; H̄kx0,

k−1∑
j=0

H̄2jb2k−j

 . (14)

The derivation of the covariance matrix is detailed in Appendix A.

Hence, the forward diffusion process can be written very similar to the ordinary diffusion process as

xk = H∗(k−1) ∗ x0 + wk−1 , (15)

where wk ∼ N
(
0,
∑k−1

j=0 H̄
2jb2k−j

)
is a Gaussian noise, which is spatially and temporally corre-

lated.

As the dimensions through x1:K must stay the same, padding is needed. We chose a reflective
padding strategy on x0, as border effects are reduced. For a large k, the size of H∗ increases up to
lK−1 = 2(K − 1) + l1, necessitating extensive padding. To mitigate the computational burden, we
truncate the tails of the kernel, as their contributions are minimal.

The difference between STDM and DDPM is displayed in Figure 1. A time series x0 is gradually
corrupted at different diffusion steps k. In DDPM, the proportion of Gaussian noise increases with
k (as shown in Eq. 3), leading to a noisy signal characterized by abrupt changes in adjacent values.
Conversely, our forward process (see Eq. 15) leverages correlated values during noise application.
Figure 2 separately visualizes the smoothing effect of H̄ on a single channel of an uncorrupted
sample x0 of length 48 from the Solar dataset at different diffusion steps and the resulting xk.
The sample is identical to that in Figure 2. The time series values are represented as a colored
bar, where the color denotes the value at each time step. x0 is a fine-grained time series with high
variations between adjacent time steps. As k evolves, the window of neighboring values influencing
each time step becomes global, resulting in a more uniform bar without abrupt value changes (left
side). Simultaneously, to the increasing diffusion step k, the influence of the original sample on the
resulting xk (right side) diminishes, with the corresponding wk becoming increasingly dominant.
During inference, xK is initialized as a normally distributed noise vector. Two further channels of
the same sample are displayed in appendix B.

Traditional diffusion models try to predict the error ϵk, thereby minimizing Eq. (7). However, in
our approach, the error with respect to x0 is according to Eq. (15) a combined, correlated noise
dependent on H̄k. Consequently, the model must predict the entire difference between xk and x0

and not only the noise level. Therefore, the training objective can be formulated as

L = Ex0,k,c

[∥∥x0 −
(
xk − ϵθ

(
xk, k, c

))∥∥2] , (16)

5
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k = 1

H̄kx0 xk

k = 2
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k = 25

k = 50

k = 98

k = 99

Figure 2: A single channel of a sample from the Solar dataset (top), the smoothing process of the
sample (left), and the noisy sample at different diffusion steps k (right). In this example, we used a
linear scheduler for b.

Algorithm 1 Training

1: repeat
2: x0 ∼ q(x0)
3: k ∼ Uniform({1, ...,K})
4: wk−1 ∼ N

(
0,

∑k−2
j=0 H̄2jb2k−1−j

)
5: xk = H∗(k−1) ∗ x0 + wk−1

6: ∇θ∥x0 −
(
xk − ϵθ

(
xk, k, c

))
∥2

7: until converged

Algorithm 2 Sampling

1: xK ∼ N (0, I)
2: w = get all w(K)
3: for k = K, ..., 1 do
4: ϵ̂ = ϵθ

(
xk, k, c

)
5: x̂0 = xk − ϵ̂
6: if k > 1 then
7: xk−1 = H∗(k−2) ∗ x̂0 + wk−2

8: end if
9: end for

10: return x̂0

where c is a model- and task-specific conditioning vector. Conditioning remains essential, as the
sampling process initiates at xK ∼ N (0, I), and the diffusion network lacks prior information
about the original signal.

Algorithm 1 and 2 show the training and sampling process, respectively. During training, k is drawn
randomly from the univariate distribution, and wk−1 is a new Gaussian distribution in every iteration.
During inference, the sample-specific w for every k can be computed beforehand.

4 EXPERIMENTS

4.1 BASELINES

We trained the different models on a single Nvidia RTX-4090 GPU. The implementation of the used
baseline approaches can be found online at the author’s Github:

• DiffusionAE: https://github.com/fbrad/DiffusionAE/

• TimeGrad: https://github.com/zalandoresearch/pytorch-ts/
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Table 1: Anomaly detection results (bigger is better) of DiffusionAE with the traditional degrada-
tion process (-DDPM) and the modified version with convolution-based degradation (-STDM). The
values represent the F1K-AUC and ROCK-AUC of 5 independent runs. The best values for each
dataset are displayed in bold.

DiffusionAE-DDPM DiffusionAE-STDM

F1K -AUC ROCK -AUC F1K -AUC ROCK -AUC

Global 0.883±0.003 0.985±0.003 0.900±0.005 0.982±0.003
Contextual 0.777±0.005 0.915±0.003 0.793±0.022 0.913±0.009
Seasonal 0.946±0.004 0.996±0.001 0.954±0.001 0.996±0.002
Shapelet 0.685±0.045 0.928±0.011 0.749±0.017 0.948±0.003
Trend 0.530±0.069 0.882±0.016 0.698±0.095 0.923±0.008

To ensure a fair comprehension, we did not change hyperparameters affecting the model structure,
like input sample size, layer depth, or embedding strategy. Also, preprocessing steps, like normal-
ization and warm-up strategies, and post-processing, like adaption of metrics, remain untouched.
Instead, we adjusted the number of forward and backward steps and the variance scheduler limits as
the degradation procedure differed. We chose a linear scheduler with b1 = 0.05 and bK = 0.20.

4.2 RESULTS

To validate our process, we evaluated state-of-the-art diffusion-based methodologies for anomaly
detection and time series forecasting. We compare the outcomes of the original implementations
with our novel technique. The details of the used datasets are listed in appendix C. Anomaly de-
tection and time series forecasting come with different metrics. We use the typical scores for each
discipline. We refer to appendix D for a detailed explanation of the metrics.

Anomaly Detection. Pintilie et al. (2023) generated synthetic multivariate datasets to assess Dif-
fusionAE, each embodying distinct anomaly types as delineated by NeurIPS-TS (Lai et al., 2021).
Their diffusion model’s efficacy was quantified using F1K-AUC and ROCK-AUC metrics. The
F1K score computation adhered to the PA%K protocol (Kim et al., 2022), which employs point
adjustment as utilized by Su et al. (2019) for varying K% of the time steps within an anomaly be-
ing detected correctly. To ensure threshold independence, ROC curves were generated for multiple
thresholds K. The metrics in Table 1 represent the mean area under the curve (AUC) for F1K and
ROCK across five independent runs for each dataset. According to Pintilie et al. (2023), the sam-
pling process must not begin at the final diffusion step with Gaussian noise, as stated in algorithm 2,
but starts at an intermediate step depending on the dataset.

In our comparative analysis of the two sampling methodologies, our convolution-based sampler con-
sistently outperforms the traditional diffusion process in F1K-AUC scores across all five synthetic
datasets. The ROCK-AUC scores remain predominantly high and stable. Notably, our approach
demonstrates a remarkable enhancement in the dataset characterized by shape-based anomalies,
achieving a relative improvement of 9.4% in anomaly detection performance (F1K-AUC). Further-
more, our approach significantly boosts the detection scores by 31.8% for the trend-based dataset,
where the traditional method exhibits notable deficiencies. However, the detection results are still
lower and more volatile than those of the other datasets, which is traceable to a more accurate recon-
struction of the anomalous segments Pintilie et al. (2023). Figure 3 shows a channel of two samples
of the Trend dataset. Our approach (blue line) could not reconstruct the anomalous segments, which
are highlighted in red. An imperfect reconstruction indicates an anomaly.

Forecasting. We tested our degeneration algorithm on five open-source forecasting datasets. The
efficiency of a model for probabilistic time series forecasting is commonly evaluated using CRPSsum
(Continuous Ranked Probability Score) after Salinas et al. (2019) and NRMSEsum (Normalized Root
Mean Squared Error). Table 2 compares the standard DDPM-based method of Rasul et al. (2021)
with our novel approach. Their forecasting algorithm handles every time step of a time series sepa-
rately. The degradation is on a feature level. We kept this setting and applied our forward process to
the feature dimension, assuming the channels are also correlated. Therefore, the results of the fore-
casting datasets are mixed. With STDM applied, TimeGrad could enhance the forecasting results in

7
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Figure 3: The sample from the Trend dataset (black) and the reconstruction (blue). The anomaly
label is visualized in red.

Table 2: Forcasting results (smaller is better) of TimeGrad and MG-TSD with the traditional degra-
dation process (-DDPM) and the modified version with convolution-based degradation (-STDM).
The values represent the CRPSsum and NRMSEsum of 10 independent runs. The best values for each
dataset are displayed in bold.

TimeGrad-DDPM TimeGrad-STDM

CRPSsum NRMSEsum CRPSsum NRMSEsum

Solar 0.3744±0.0448 0.7454±0.0776 0.2956±0.0486 0.6222±0.1090
Electricity 0.0222±0.0013 0.0402±0.0025 0.0453±0.0110 0.0620±0.0227
Traffic 0.0431±0.0081 0.0795±0.0300 0.0420±0.0101 0.0692±0.0234
Taxi 0.1265±0.0100 0.2339±0.0176 0.1214±0.0224 0.2270±0.0194

most of the investigated datasets. The diffusion model encounters the most challenges when applied
to the Solar dataset with both forward processes.

5 CONCLUSION

In this paper, we introduced STDM, a novel technique to guide the forward process in diffusion
models specifically tailored for time series data. Our approach involves the smoothing of the signal,
which is subsequently corrupted by Gaussian noise. The noises at various stages exhibit correlations
and spatial dependencies across their dimensions. The forward process to any arbitrary intermediate
diffusion step can be computed in a single step. Given that our novel forward process mirrors the
structure of the conventional diffusion process, it can be seamlessly integrated with existing diffusion
models.

Our experiments underscore the efficacy of our approach, demonstrating enhancements in anomaly
detection and forecasting tasks with minimal effort. For a fair comparison, a model-specific adjust-
ment of parameters is out of scope but we believe that further hyperparameter optimizations hold
the potential to yield even more impressive results. This work paves the way for future research
and applications, offering a robust framework for improving the performance of diffusion models in
various time series analysis tasks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility and completeness of this paper, we have included an appendix with
additional information. In appendix C, the used open-source datasets are presented. Appendix D
provides an overview of the used metrics for performance measurement. While the baseline methods
are publicly available (see section 4.1), the implementation details of our algorithm can be seen in
the pseudocode in section 3. Our code will be made publicly accessible once the paper is accepted.
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A DERIVATION OF THE COVARIANCE MATRIX

The covariance matrix of the conditional distribution in Eq. (14) can be written as

Cov
(
xk+1

)
= E

(
xk+1xk+1′)− E

(
xk+1

)
E
(
xk+1

)′
(17)

= E
[(
H̄xk + bkϵk

) (
H̄xk + bkϵk

)′]− E
(
H̄xk + bkϵk

)
E
(
H̄xk + bkϵk

)′
(18)

= H̄ E
(
xkxk′) H̄ ′ + E

(
H̄xkbkϵ

′
k

)
+ E

(
bkϵkx

k′H̄ ′)+ E
(
b2kϵkϵ

′
k

)
− H̄ E

(
xk
)
E
(
xk′) H̄ ′

(19)

= H̄ Cov
(
xk
)
H̄ ′ + b2kI (20)

B MULTIVARIATE FORWARD PROCESS

Figure 4 visualizes a multivariate version of the degradation process. There are two channels dis-
played for every forward diffusion step.

x0

0 47

k = 1

H̄kx0 xk

k = 2

k = 10

k = 25

k = 50

k = 98

k = 99

Figure 4: Two channels of a sample from the Solar dataset (top), the smoothing process of the
sample (left), and the noisy sample at different diffusion steps k (right). In this example, we used a
linear scheduler for b.
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C DATASETS

C.1 ANOMALY DETECTION

The synthetic datasets listed in Table 1 can be obtained via the project website of the DiffusionAE
algorithm: https://github.com/fbrad/DiffusionAE/. The main dataset statistics are
listed in Table 3. Each synthetic dataset has five dimensions and anomalies in train and test data.
For more details, we refer to Pintilie et al. (2023).

Table 3: Information about the synthetic datasets for anomaly detection task

Name Anomaly Type Dimensions Train Val Test

Global point 5 20000 10000 20000
Contextual point 5 20000 10000 20000
Seasonal pattern 5 20000 10000 20000
Shapelet pattern 5 20000 10000 20000
Trend pattern 5 20000 10000 20000

C.2 FORECASTING

For the time series forecasting benchmark datasets, we use Solar, Electricity, Traffic,
and Taxi.They can all be obtained via the GluonTS library (Alexandrov et al., 2020). The details
are listed in Table 4.

Table 4: Information about the datasets for forecasting task

Name Number of Series Frequency Context Length Prediciton Length

Solar 137 hour 24 24
Electricity 370 hour 24 24
Traffic 963 hour 24 24
Taxi 1214 30 min 24 24

D METRICS

D.1 ANOMALY DETECTION

The F1 score is a reliable indicator of the accuracy of anomaly detection algorithms. It can be cal-
culated by determining the number of true positives (TPs), false negatives (FNs), and false positives
(FPs). Regarding the evaluation strategy, the numbers can vary. For detection on a time-step level,
every time-step is categorized depending on the anomaly score as normal or anomalous. With the
point-adjustment strategy (Su et al., 2019), the categorization of every time step can be adapted in
a post-processing step: Every time step within an anomalous segment is considered as abnormal as
long as one time step is categorized correctly, which leads to higher F1 scores. Generally, the F1
score can be formulated as the harmonic mean between precision and recall

F1 = 2
P R

P + R
, (21)

where precision P is

P =
TP

TP + FP
, (22)

and recall R is
R =

TP
TP + FN

. (23)

For fairer comparison, Pintilie et al. (2023) calculated the F1 scores for different percentages of
abnormal time steps in an anomaly segment being detected correctly. The F1K-AUC results in
Table 1 are the area under the curve for the different F1 scores.
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The threshold categorizing time steps as normal or abnormal is crucial for a high overall detection
result, the true positive rate (TPR) and false positive rate (FPR), which can be written as

TPR =
TP

TP + FN
(24)

and
FPR =

FP
FP + TN

. (25)

To eliminate this dependency, the ROC was determined for different threshold values as

ROC = 0.5 (1 + TPR − FPR) . (26)

The area under the different ROC values is represented in Table 1 as ROCK-AUC

D.2 FORECASTING

The metrics for forecasting are pre-implemented in the GluonTS library (Alexandrov et al., 2020).
We summarize the used ones as follows.

CRPSsum: CRPS is a frequently used metric for probabilistic forecasting methods, introduced by
Matheson & Winkler (1976). It measures the compatibility of a cumulative distribution function F
with the observation y as

CRPS (F, y) =

∫
R
(F (x)− 1 (x ≥ y))

2
dx , (27)

where 1 is the Heaviside step function. Salinas et al. (2019) extended the score to CRPSsum for
multivariate time series data as

CRPSsum = Et

[
CRPS

(
F−1

sum,
∑
i

xi
t

)]
, (28)

where F−1
sum is obtained by first summing samples across dimensions and then sorting to get quantiles.

NRMSE: NRMSE represents the normalized version of the Root Mean Squared Error. According
to Fan et al. (2024) it can be written as

NRMSE =

√√√√√mean
((

Ŷ − Y
)2)

mean (|Y |)
, (29)

where Ŷ is the predicted time series and Y is the target.
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