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A Summary

In Appendix B, we explain in details the proof in the main paper. In Appendix C, we describe in
details all the training setups, hyper-parameters, datasets and evaluation details. In Appendix D, we
performed more experiments on ablation study and further analysis. We will release the code upon
publications.

B Proof

Interpreting Quantization Error as Cosine Similarity. Quantization error between the continuous
codes v and the hash codes b can be interpreted geometrically:

min ‖v − b‖2 s.t. b ∈ {−1, 1}K , (1)

in which v is in continuous space, b = sgn(v) is in binary space. We expand equation (1) to get:

‖v − b‖2 = 〈v − b ,v − b〉
= ‖v‖2 − 〈v ,b〉 − 〈b ,v〉+ ‖b‖2

= ‖v‖2 − 2〈v ,b〉+ ‖b‖2

= ‖v‖2 + ‖b‖2 − 2 ‖v‖ ‖b‖ cos θvb. (2)

According to equation (3) in the main paper, retrieval is only based on the similarity in the direction
of two hash codes. Hence, we can ignore the magnitude of v by normalizing it to have the same norm
with b, i.e., ‖v‖ =

√
K and interpret quantization error as only the angle θvb between v and b:

‖v − b‖2 = ‖v‖2 + ‖b‖2 − 2 ‖v‖ ‖b‖ cos θvb

=
√
K

2
+
√
K

2
− 2
√
K
√
K cos θvb

= 2K − 2K cos θvb = 2K(1− cos θvb). (3)

Since 2K is a constant, we can then conclude that maximize the cosine similarity between v and b
leads to a low quantization error, leading to a better approximation in hash codes.
∗equal contribution.
†corresponding author (cs.chan@um.edu.my).
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Expectation of Hamming Distance. Given a K-bit Hamming space HK ∈ {−1,+1}K , for any two
binary vectors bi,bj sampled with probability p for +1 on each bit, the expectation of Hamming
distance is E[D(bi,bj)] = 2K · p(1 − p). For any two bits, bi, bj , the probability of obtaining
different bits:

Pr[bi 6= bj ] = Pr[(bi = +1) ∧ (bj = −1)] + Pr[(bi = −1) ∧ (bj = +1)]

= p(1− p) + (1− p)p
= 2p(1− p). (4)

Then, the expectation of Hamming distance of 1-bit can be computed as:

E[D(bi, bj)] = 1 · Pr[bi 6= bj ] + 0 · Pr[bi = bj ]

= 1 · Pr[bi 6= bj ] + 0 · (1− Pr[bi 6= bj ])

= Pr[bi 6= bj ]

= 2p(1− p). (5)

Since every bit in a binary code is independent sampled, hence the expectation of Hamming distance
of K-bits can be computed as:

E[D(bi,bj)] =
K∑

k=1

E[D(bi, bj)]

=

K∑
k=1

2p(1− p)

= 2K · p(1− p). (6)

C Training Setup

Code Implementations. For HashNet [2], DTSH [24], GreedyHash [21], JMLH [20] and CSQ [27]
methods, we referred from author’s open-source repository at 3, 4, 5, 6 and 7 respectively. For SDH-C
[13], DPN [6] and Bi-Half [11] methods, we implemented by ourselves according to the papers. We
implemented all the methods with PyTorch [15].

License. The source codes of HashNet and CSQ were released under MIT license. The source code
of JMLH was released under Anti 996 license. The source code of DELG [1] was released under
Apache License 2.0. We didn’t find any license information for the source codes of DTSH and
GreedyHash.

Architecture. For category-level retrieval tasks (i.e., ImageNet100, NUS-WIDE, MS-COCO), we
use pre-trained Alexnet [8] as the backbone for all methods, then a fully-connected layer as latent
layer is appended after the outputs of the backbone (i.e., 4096-dimensions vector). Then, we set
the learning rate of the backbone network to be one-tenth of the learning rate of the latent layer.
For instance-level retrieval tasks (i.e., GLDv2,ROxf,RPar), we use a pre-trained model released
from DELG8 (R50-DELG-GLDv2-clean) to compute the global descriptors (i.e., 2048-dimensions
vector), then we use a fully-connected layer as the latent layer. We only train the latent layer in this
setting.

Data Augmentation. For ImageNet100 [4] and MS-COCO [12], we perform random resized crop
with crop size of 224 × 224 and random horizontal flips during training phase. For NUS-WIDE [3],
we resize the images to 256 × 256 and perform random crop with crop size of 224 × 224 before
randomly flip it in horizontal. We normalize image inputs with means of 0.485, 0.456, 0.406 and
standard deviation of 0.229, 0.224, 0.225 for each channel. For GLDv2,ROxf andRPar, we didn’t
perform any data augmentations.

3https://github.com/thuml/HashNet
4https://github.com/Minione/DTSH
5https://github.com/ssppp/GreedyHash
6https://github.com/ymcidence/TBH
7https://github.com/yuanli2333/Hadamard-Matrix-for-hashing
8https://github.com/tensorflow/models/tree/master/research/delf
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C.1 Hyper-parameters

Methods Hyperparameters

HashNet α = 1, β = 1
DTSH α = 5, λ = 1
SDH-C α = 1, λ0 = 0.001, λ1 = 0.001, λ2 = 0.001
GreedyHash α = 1, p = 3
JMLH λ = 0.1
DPN m = 1
CSQ λ1 = 0.001

CE –
CE+BN –
CE+BiHalf γ = 6

OrthoCos m = 0.2, s =
√
K

OrthoCos+BiHalf m = 0.2, s =
√
K, γ = 6

OrthoCos+BN m = 0.2, s =
√
K

OrthoArc+BN m = 0.2, s =
√
K

Table 1: Hyper-parameters for methods. For SDH-C method, α, λ0, λ1, λ2 are the hyperparameters
for classification objective, quantization, bit variance and orthogonality on projection weights respec-
tively. For methods using BiHalf, we follow author’s open source source code9for the hyperparameter
γ. For OrthoCos, OrthoCos+BiHalf, OrthoCos+BN and OrthoArc+BN, K represent number of
bits in hash codes. For other methods, we follow the original symbols used in original papers.

For category-level retrieval tasks, we train for 100 epochs on all methods using Adam Optimizer [7]
with initial learning rate of 0.0001, weight decay of 0.0005, β1 = 0.9 and β2 = 0.999. We lowered
the learning rate to 0.00001 after 80 epochs of training. We train all methods with batch size of 256
on a single Nvidia Tesla P100 GPU. Table 1 summarises method-specific hyper-parameters for every
method we ran for comparison and also our methods.

For instance-level retrieval datasets, we train for 10 epochs using Adam optimizer with initial learning
rate of 0.001, weight decay of 0.0005, β1 = 0.9 and β2 = 0.999. The learning rate is lowered
to 0.0001 and 0.00001 at epoch 4 and 7 respectively. We train all methods with batch size of 256
on a single Nvidia Tesla P100 GPU. We use the same method-specific hyper-parameters as the
category-level retrieval tasks.

C.2 Datasets

ImageNet100 is a subset of ImageNet [4] with only 100 classes. We follow the settings from [2, 6, 21],
all the validation images from 100 classes are used as query set while the remaining 128K images as
database and 13K images are randomly sampled from the database for training.

NUS-WIDE [3] consists of 81 concepts with 269K multi-labeled images. We follow the settings from
previous works, where we selected 195k images from 21 of the most frequent concepts. For each
concept, we selected 100 images randomly as query set while the remaining images as database.
Then 500 images per concept are sampled randomly from the database for training.

MS-COCO [12] is an image recognition, segmentation, and captioning dataset. We used the public
released dataset from [2]10 where images with no category information have been pruned. Then,
we obtain 122K images by combining the training and validation images. Finally, 5K images are
sampled randomly as query set, with the remaining images as the database, then we random sample
10K images from the database for training.

Google Landmark Datasets V2 (GLDv2) [25]. To understand the effectiveness of different hashing
methods in large-scale instance-level retrieval (i.e., tremendous number of classes), we choose GLDv2
for large-scale experiments. Due to expensive cost of training from scratch, we use their released

9https://github.com/liyunqianggyn/Deep-Unsupervised-Image-Hashing
10https://github.com/thuml/HashNet/tree/master/pytorch/data/coco
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pre-trained model11 (R50-DELG-GLDv2-clean) to compute the global descriptor for 1.2M training
images, 1129 queries and 762K database images. The descriptors are 2048-dimension vectors, act as
input to the latent layer. All the images are scaled to 512 × 512. We use 1.2M training images to
train the latent layer (i.e., GLDv2-trained), then use it to compute hash codes for queries and database
images for evaluations.

ROxf andRPar are revisited annotated datasets of Oxford [17] and Paris [18]. ROxf/RPar contains
4993/6322 database images, and a different query set for each, both with 70 images. We are also
using pre-trained R50-DELG-GLDv2-clean to compute the global descriptors, but follow DELG[1]
settings with 3 scales { 1√

2
, 1,
√
2} to produce multi-scale image representations, and the 3 descriptors

are first L2 normalized, then average-pooled to obtain a single descriptor. Images are scaled from
1024 with 3 scales and the aspect ratio was remained. We then use the GLDv2-trained latent layer to
compute hash codes for evaluations.

License. ImageNet and NUS-WIDE are released under Noncommercial license. For MS-COCO, the
annotations are under Creative Commons Attribution 4.0 License and the use of the images must
abide by the Flickr Terms of Use12. All train set images in GLDv2 have CC-BY licenses without the
NonDerivs (ND) restriction, all index and test set images are licensed under CC-0 or Public Domain
licenses and the annotations are licensed by Google under CC BY 4.0 license. ForROxf andRPar
datasets, all the use of images must respect the Flickr Terms & Condition of Use13.

C.3 Evaluation Detail

For ImageNet100, NUS-WIDE and MS-COCO datasets, we strictly follow evaluation protocol used
by HashNet [2] (also by previous works [6, 21, 14, 20, 26, 9, 27]) to evaluate for mean average
precision (mAP), see 14. For GLDv2 dataset, we follow the evaluation protocol of DELG [1] to
calculate the mAP scores, see 15. For ROxf and RPar datasets, we follow the evaluation protocol
released by authors [19], see 16.

D Ablation Study & Further Analysis

D.1 Effect of Cosine and Angular Margins

OrthoCos OrthoArc

Margin ImageNet100
(mAP@1K)

MS-COCO
(mAP@5K)

ImageNet100
(mAP@1K)

MS-COCO
(mAP@5K)

64 128 64 128 64 128 64 128

m = 0.0 0.698 0.686 0.754 0.745 0.697 0.687 0.754 0.745
m = 0.1 0.706 0.706 0.767 0.763 0.705 0.704 0.764 0.761
m = 0.2 0.710 0.718 0.776 0.778 0.711 0.715 0.773 0.774
m = 0.3 0.712 0.724 0.784 0.788 0.713 0.723 0.781 0.784
m = 0.4 0.714 0.726 0.788 0.796 0.714 0.727 0.786 0.792
m = 0.5 0.712 0.726 0.791 0.800 0.712 0.727 0.790 0.798

Table 2: The performance of different margins for 64 and 128 bits on different benchmark datasets.

In the main paper, we setm = 0.2 for optimization. In ablation study, we have performed experiments
with various m from the range of m = 0.0 to m = 0.5 to understand how the margin can help to
further improve intra-class variance. Theoretically, if m is too large, the performance will decrease
and the model fails to converge because of the vanishing of the feature space which caused by

11https://github.com/tensorflow/models/tree/master/research/delf
12https://www.flickr.com/creativecommons/
13https://www.flickr.com/help/terms
14https://github.com/thuml/HashNet/blob/master/pytorch/src/test.py
15https://github.com/tensorflow/models/blob/master/research/delf/delf/python/

datasets/google_landmarks_dataset/metrics.py
16https://github.com/filipradenovic/revisitop/blob/master/python/evaluate.py
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the cosine constraint [23]. In Table 2, we summarizes the performance of various margins for
ImageNet100 (single label) and MS-COCO (multi labels). We didn’t repeat the experiments for
3 times, but we run with the same seed for all different margins under different margin types, i.e.,
cosine margin (OrthoCos+BN) and angular margin (OrthoArc+BN).

Effect of margins. When no margin is applied (i.e., m = 0.0), the performances of 128-bits models
are lower than 64-bits models, a likely explanation is that 128-bits leads to overfitting without margin.
As margin increases, all 128-bits models perform consistently better than 64-bits models. While
the performances degrade in single-label ImageNet100 after m = 0.4, we notice that multi-labels
MS-COCO did not show the sign of performance degrading. We suspect with two reasons: i)
[23] suggested that m ∈ [0, C

C−1 ). MS-COCO has lower number of classes, i.e., C = 80 while
ImageNet100 has C = 100. Hence, MS-COCO can endure with higher margin; ii) This improvement
is from the regularization of label smoothing [16], which regularizes the extreme margin effect (e.g.
sensitive to noisy data) and remedy the cosine constraint (e.g. the model is trained to maximize
probabilities of multiple classes). We further running with m > 0.5, the performance are degrading
for ImageNet100 while negligible improvement (less than 0.1%) for MS-COCO. Hence we report
only the performance with m ≤ 0.5.

Margin Types. We observed that cosine margin (OrthoCos+BN) slightly outperform angular margin
(OrthoArc+BN) by about 0.13% on average. Hence we can conclude that using both margin methods
will lead to comparable performance, both methods will improve the minimization of intra-class
variance, which lead to better performance. Nevertheless, we think that cosine margin has a better
benefit over the computation complexity (angular margin requires a few more computation steps than
cosine margin).

D.2 Effect of Scales in Cosine Similarity

OrthoCos OrthoArc

Scale ImageNet100
(mAP@1K)

MS-COCO
(mAP@5K)

ImageNet100
(mAP@1K)

MS-COCO
(mAP@5K)

64 128 64 128 64 128 64 128

s = 1 0.706 0.712 0.785 0.797 0.700 0.705 0.785 0.795
s = 2 0.706 0.715 0.786 0.798 0.702 0.708 0.787 0.797
s = 4 0.710 0.718 0.787 0.799 0.707 0.715 0.788 0.799
s =
√
2 log (C − 1) 0.713 0.723 0.783 0.795 0.713 0.723 0.781 0.793

s =
√
64 0.710 0.725 0.776 0.789 0.710 0.725 0.774 0.787

s = 10 0.702 0.721 0.768 0.781 0.700 0.719 0.765 0.779
s =
√
128 - 0.718 - 0.778 - 0.715 - 0.774

Table 3: The performance of different scales for 64 and 128 bits on different benchmark datasets.
For s =

√
2 log (C − 1), ImageNet100 has C = 100, s = 6.1793 and MS-COCO has C = 80, s =

6.4985.

In the main paper, the loss function for learning to hash is:

L = − 1

N

N∑
n=1

log
exp (

√
K cos (θyn))

exp (
√
K cos (θyn

)) +
∑C

i=1,i6=yn
exp (

√
K cos (θni))

(7)

By default, we scale the cosine similarity to have a norm of
√
K which follows the norm of binary

codes (we use the symbol s to represent the scale, e.g., s =
√
K). Nonetheless, the scale in [23, 5]

does play an important role in the optimization, which affect the performance if the scale is not
suitable. Furthermore, AdaCos [28] analyzed the importance of scale and showed how it can further
improve the performance with adaptive scaling. Hence, we trained with a various range of scales, with
a multiples of 2 and we summarize the effect of scales in Table 3. We didn’t repeat the experiments
for 3 times, but we run with the same seed for all different scales under different margin types, i.e.,
cosine margin (OrthoCos+BN) and angular margin (OrthoArc+BN), the margin m is fixed as 0.2.
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Effect of scales. We observe that all models often requires lower scale than
√
K in order to achieve

the best performance. While we were tweaking with different scales, we found that adaptive scale,
s =
√
2 log (C − 1) often produced the best (or closer to the best) performance. Hence, we conclude

that in practice, we can follow the work done in AdaCos [28], by setting s =
√
2 log (C − 1) instead

of s =
√
K.

D.3 Orthogonal Targets Generation
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Figure 1: Minimum hamming distance between any two classes of binary orthogonal targets. The
y-axis is in log2 scaling, since Hamming distance of 0 cannot be displayed properly in log2 scaling,
therefore we set both Hamming distance of 0 and 1 as 1 for the display purpose.

Orthogonal Targets ImageNet100 (mAP@1K) NUS-WIDE (mAP@5K) MS COCO (mAP@5K)
16 32 64 128 16 32 64 128 16 32 64 128

Hadamard Matrix 0.603 0.683 0.717 0.721 0.803 0.829 0.838 0.845 0.718 0.765 0.778 0.777
MaxHD 0.620 0.680 0.711 0.720 0.806 0.832 0.842 0.851 0.717 0.758 0.778 0.779
Bernoulli Distribution 0.608 0.679 0.711 0.718 0.804 0.830 0.845 0.850 0.706 0.759 0.776 0.777

Table 4: Performance of different methods for 4 different bits on different benchmark datasets.
MaxHD refer to Maximum Hamming Distance method, see Algorithm 3. Bold values indicate best
performance in the column.

We use different methods to generate targets, and then plot the minimum Hamming distance between
orthogonal targets of any two classes against different number of bits (K ∈ [4, 16, 32, 64, ..., 2048])
in Figure 1a. With lower K (i.e., 2K < C), Hadamard Matrix relies on Bernoulli distribution [27],
but with higher K s.t. 2K ≥ C, the Hadamard Matrix guarantees the minimum Hamming distance
is the maximal expectation of inter-class Hamming distance (i.e., K

2 ) because of the property of
orthogonality in the Hadamard matrix. MaxHD (see Algorithm 3) generate targets with the objective
of maximum inter-class Hamming Distance, even at lower bits, it has the largest minimum Hamming
Distance (closer to K

2 ) and consistently larger than Bernoulli distribution Bern(0.5) at any number
of bits. Table 4 summarizes the performance with different methods of orthogonal targets generation.
At lower bits, MaxHD performs the best due to the optimization of the objective (i.e., with 1%
improvement in ImageNet100), but at higher bits, the improvement become negligible (e.g., less than
0.5% improvement).

In practice, we can simply use Bern(0.5) to generate binary orthogonal targets. As shown in Figure
1b, at K = 128 is sufficient to handle a million classes C = 1, 000, 000, with minimum Hamming
distance of ∼ 32 between any two classes. To guarantee a better separability in such tremendous
number of classes, we can increase K to 256-bits or even higher, so that the minimum Hamming
distance between any two classes will be higher.

D.4 Multi-class Classification Losses

Our method uses only single classification objective, and the performance depends on the choice
of classification loss. We noticed the uses of different loss methods have significant difference
on multi-class classification, and thus we did an ablation study on how different losses affect the
performance on multi-class datasets. In this study, we use 64-bits OrthoCos+BN with m = 0.2 and
s =
√
K on NUS-WIDE [3] and MS-COCO [12].
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Loss Methods NUS-WIDE (mAP@5K) MS COCO (mAP@5K)

BCE Sigmoid 0.791 0.400
Sigmoid + Imbalance Weights 0.827 0.717

CE Softmax + Label Smoothing [16] 0.850 0.785
Table 5: Performance of different multi-class classification loss on two multi-class benchmark datasets
with 64-bits OrthoCos+BN. BCE denotes Binary Cross Entropy and CE denotes Cross Entropy.
Bold values indicate best performance in the column.

We ran the experiments on three different methods (Sigmoid, Sigmoid + Imbalance Weights, and
Softmax + Label Smoothing [16]) and Table 5 shows the results of these methods, we notice that
our proposed method (Softmax + Label Smoothing) performs the best on both datasets with at most
38.5% improvements. We conclude that it is very important to apply imbalance weights or label
smoothing in multi-labels datasets. Otherwise, a large number of negative classes will dominate the
loss minimization. HashNet [2] also found this problem and solved with a imbalance mask to balance
between positive and negative data pairs.

Note that JMLH [20] is using the first option by default (Sigmoid) which performs badly, hence we
apply our method for JMLH in multi-labels datasets.

For imbalance weights, we simply only focus on the target and incorrect17 classes, i.e., with scale of
1, while non-target classes are with lower scale, i.e., 1/C. The imbalance weights are adaptive to
different samples.

For label smoothing, see Algorithm 1 for details.

D.5 Domain Shifting

Mean and Variance GLDv2 (mAP@100) ROxf-Hard (mAP@all) RParis-Hard (mAP@all)
128 512 2048 128 512 2048 128 512 2048

Unchanged 0.035 0.107 0.149 0.015 0.036 0.135 0.048 0.159 0.406
µ = 0, σ = 1 0.025 0.100 0.145 0.158 0.376 0.437 0.397 0.606 0.675
µ = 0, σ = σnew 0.025 0.100 0.145 0.158 0.376 0.437 0.397 0.606 0.675
µ = µnew, σ = 1 0.034 0.108 0.149 0.184 0.359 0.447 0.416 0.608 0.669
µ = µnew, σ = σnew 0.034 0.108 0.149 0.184 0.359 0.447 0.416 0.608 0.669

Table 6: Performance of different mean and variance on Batch Normalize layer for 3 different numbers
of bits on different instance-level benchmark datasets. Bold values indicate best performance in the
column.

As the model is trained with GLDv2, the running mean and variance in the BN layer might experience
domain shifting problem [10] when testing directly on different datasets (e.g.,ROxf andRPar). We
empirically found that using running mean and variance from GLDv2 will lead to a large performance
drop in Hamming distance retrieval. One simple solution is to recompute the mean and variance from
all continuous codes in the database, then update the running mean and variance with the computed
mean and variance. We first analyze the equation of BN during inference stage:

v =
γ√
σ + ε

· v̂ + (β − γµ√
σ + ε

) = γ
v̂ − µ√
σ + ε

+ β, (8)

in which v̂ is the inputs (i.e., the continuous codes before normalization), v is the outputs (i.e., the
continuous codes after normalization), µ is the running mean, σ is the running variance, γ is the scale,
β is the bias and ε is an arbitrarily small positive quantity (e.g., ε = 10−7). Then we can compute the
hash codes b through a sign function, which outputs the value of +1 if v > 0, otherwise −1. We can
see that the sign function ignore the magnitude of v. However, if we shift v by µ, i.e. vshift = v − µ,
then we can see that if µ > v, then vshift becomes negative and hence taking a negative code −1.
Hence, the shifting will affect the performance of Hamming distance retrieval, we notice that using
the learned scale and bias γ, β and the running mean and variance µ, γ from GLDv2 will cause large
performance drop inROxf-Hard, andRPar-Hard.

17predictions that are incorrect.
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To fix the performance dropping, we first reset γ and β to 1 and 0 instead of trained values. Then,
we set µ and σ with the new computed mean and variance from v̂ (i.e., the continuous codes before
normalization), namely µnew and σnew. Finally, we evaluate with the new hash codes for mAP scores
on GLDv2 [25],ROxf-Hard, andRPar-Hard.

We have tried 4 different ways for the fix which are i) update both mean µ as 0 and variance σ as 1;
ii) update only variance σ with σnew and mean µ remain 0; iii) update only mean µ with µnew and
variance σ remain 1; iv) update both mean and variance with µnew and σnew.

The results are summarized in Table 6. We observe that there are huge improvement on the perfor-
mances of bothROxf andRPar, with at most 34.4% and 44.1%, by using the computed mean and
variance from the respective datasets. There is no performance boost on GLDv2 dataset as it is in
the same domain. We also observe that whether or not to update the variance σ will not affect the
performance because it will only affect the magnitude, which is ignored by the sign function.

D.6 Visualization of Hash Codes
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Figure 2: t-SNE visualization with 10 random classes on 64-bits hash codes of ImageNet100.

In Figure 2, we plot the t-SNE visualization [22] on our method and two other methods to compare
the quality of hash codes generated. We select 10 random classes from ImageNet100 and plot the
t-SNE visualization using the hash codes from these classes. We can observe that the hash codes
generated by our method is more compact, well separated and have more discriminant structure
compare to HashNet[2] and GreedyHash[21]. Hence, the better quality of the hash codes result in a
better and accurate image retrieval.

D.7 The Separability of Hamming distances

We have selected few previous works and visualize the histogram of intra-class and inter-class
Hamming distances with 64-bits ImageNet100.

To compare between the effectiveness of pair-wise, triplet-wise and point-wise, we have selected
HashNet [2], DTSH [24] and GreedyHash [21] and plot them in Figure 3a, 3b and 3c respectively.
It can be seen that the separability is improving from pair-wise (13.90) to triplet-wise (16.47) and
finally point-wise (17.34), indicating the effectiveness of point-wise method in learning to hash.

Further, we compare between different code balance schemes, i.e., no code balance (CE), code
balancing with BN (CE+BN) and code balancing with Bi-Half (CE+BiHalf) and they were plotted
in Figure 3d, 3e and 3f respectively. Note that CE model perform the worst among all methods,
the separability is lowest and the overlapping between the histogram of intra-class and inter-class is
quite obvious. Although CE+BN shows a little improve in the separability, it can be seen that the
histogram of inter-class distances become denser, indicating lesser overlapping and hence improve
the performance. Lastly, CE+BiHalf has a proxy derivative to solve vanishing gradient problem,
showing highest separability, hence perform the best among different code balance schemes.

To compare between pre-defined targets based methods (i.e., DPN [6] and CSQ [27]) with our
method (OrthoCos+BN), they were plotted in Figure 3g, 3h and 3i respectively. It is clearly to see
that there are a lot of Hamming distances of 0 within the same class, indicating lower intra-class
variance in all 3 methods. We conclude that learning with pre-defined targets can result in more
accurate hash codes.
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(a) HashNet [2]
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(b) DTSH [24]
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(c) GreedyHash [21]
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(d) CE

0 8 16 24 32 40 48 56 64
Hamming distance

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

 F
re

qu
en

cy

11.92
intra-class
inter-class

(e) CE+BN
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(f) CE+BiHalf[11]
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(g) DPN [6]
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(h) CSQ [27]
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(i) OrthoCos+BN

Figure 3: Histogram of intra-class and inter-class Hamming distances with 64-bits ImageNet100. The
arrow annotation is the separability in Hamming distances, E[Dinter]− E[Dintra]. We normalized
the frequency so that sum of all bins equal to 1.

E Algorithm

Algorithm 1 summarizes our method, OrthoHash for learning to hash. Algorithm 2 summarizes
how we compute for hash centers and orthogonality ‖HHᵀ − I‖. Algorithm 3 summarizes how we
generate the binary orthogonal targets with the objective of maximum inter-class Hamming distance
heuristically.
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Algorithm 1: PyTorch-style pseudocode for OrthoHash
# net: backbone network
# latent: hash latent layer
#
# o: binary orthogonal target (CxK)
# prob = torch.ones(C, K) * 0.5
# o = torch.bernoulli(prob) * 2.0 - 1.0
#
# N: batch size
# C: number of classes
# q: dimensionality of feature representations
# K: number of bits
# scale: default is

√
K, but can be adjusted

#
# to_vec: convert scalar-label(s) to one-hot vector
# mm: matrix-matrix multiplication

for x, y in dataloader:
# compute representations
f = net(x) # Nxq

# compute continuous codes
v = latent(f) # NxK

# convert to label vector
# e.g. [[1, 3], [0]] -> [[0, 1, 0, 1], [1, 0, 0, 0]]
y_vec = to_vec(y) # NxC

# l2 normalization on continuous codes and orthogonal target
v_norm = v / v.norm(p=2, dim=1) # NxK
o_norm = o / o.norm(p=2, dim=1) # CxK

# compute cosine similarity
cs_logits = mm(v_norm, o_norm.t()) # NxC
# add cosine margin and scaling
margin_logits = scale * (cs_logits - y_vec * margin)

# label smoothing for multi-class
if is_multiclass:

y_vec = y_vec / y_vec.sum(dim=1) # NxC
# e.g. y_vec = [[0, 1, 0, 1], [1, 0, 0, 0]]
# e.g. y_vec.sum(dim=1) = [2, 1]
# e.g. new y_vec = [[0, 0.5, 0, 0.5], [1.0, 0, 0, 0]]

# softmax cross entropy loss
log_logits = log_softmax(margin_logits)
loss = - (y_vec * log_logits).sum(dim=1).mean()

# optimization step
loss.backward()
optimizer.step()

12



Algorithm 2: PyTorch-style pseudocode for Hash Centers Computation and Orthogonality
# N: number of data in database
# K: number of bits
# C: number of classes
#
# V: database continuous codes (NxK)
# Y: database labels (Nx1)
#
# mm: matrix-matrix multiplication
# eye: identity matrix

# compute binary hash codes
B = V.sign() # NxK
# initialize hash centers
H = zeros(C, K) # CxK
for i in range(C):

# compute average hash codes for i-th class
avg_B = B[Y == i].mean(dim=0) # K
H[i] = avg_B.sign()

# Compute Orthogonality
ortho = (mm(H, H.t()) - eye(C)).norm(p=2)
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Algorithm 3: PyTorch-style pseudocode for generating MaxHD orthogonal targets
# C: number of class
# K: number of bits
#
# maxtries: 10000
# initdist: 0.61
# mindist: 0.2
# reducedist: 0.01
#
# get_hd: compute hamming distance between two vectors, and normalize
output to 0-1

o = torch.zeros(C, K)
i = 0
count = 0
currdist = initdist

while i < C:
# generate target through bernoulli distribution
prob = torch.ones(K) * 0.5
c = torch.bernoulli(prob) * 2.0 - 1.0
nobreak = True

# to compare distance with previous classes
for j in range(i):

# if target satisfies constraint
if get_hd(c, o[j]) < currdist:

i -= 1
nobreak = False
break

# if successfully found a target
if nobreak:

o[i] = c
else:

count += 1

# if not able to search a target
if count >= maxtries:

count = 0
# decrease the constraint
currdist -= reducedist
# reach constraint limit
if currdist < mindist:

raise ValueError(’Cannot find target’)
i += 1

# shuffle the orthogonal targets
o = o[torch.randperm(C)]
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