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1 DATASET DETAILS
1.1 Existing deraining datasets.
The field of rain removal has seen the development of numerous
datasets. To facilitate comparison, we present a summary of com-
monly utilized datasets in Table 1, which includes information about
data resolution, availability of ground truth, and whether the data
is real or simulated. The table also provides details on the rainy data
simulation method employed, as well as information on whether
the data is in video or multi-view format.

Acquiring pairwise real-world datasets for image deraining is a
challenging task due to the difficulty in obtaining ground truth rain-
free images. Wang et al. [7] tackled this issue by capturing video
data of a static scene with rain, analyzing the video’s histogram, and
designing an algorithm to extract the corresponding rain-free image.
While this approach allowed them to generate paired real-scene
data, the shooting conditions were highly constrained, requiring
static scenes and a stationary camera, which differs significantly
from practical applications.

Alternatively, researchers have employed simulation methods
to create synthetic deraining datasets, including the use of clas-
sic algorithms [4], the development of new algorithms [8], and
the utilization of commercial software. Yan et al. [8] synthesized
pairs of rain-free light field data by leveraging depth information
and considering the effects of rain streaks, motion blur, and fog.
However, their simulation method has inherent limitations that may
not accurately reflect real-world rainy scenarios. Specifically, two
main issues arise: 1) Rain is rendered independently of the scene,
resulting in a loss of interaction between the rain and the scene,
leading to inaccuracies in color and distribution. 2) Setting multiple
cameras to render a consistent rain map does not guarantee that the
simulated camera parameters match those of real cameras, causing
a domain gap between the rain and the background. To better repre-
sent such scenarios, we created a rainy scene using Maya software
and modeled the scene and rain. We used ray tracing rendering to
obtain paired data that more accurately captures the effects of a
real-world scene.

1.2 Dataset Description
We construct the dataset designed to provide a comprehensive and
diverse set of scenes for the draining task. We generated the dataset
by Maya [1], a powerful 3D modeling and rendering software that
can simulate vivid visual effects of rainy weather. Our dataset con-
tains 10 scenes, each with 50 viewpoints.

1.2.1 View Consistent Raindrops. In real-world scenarios, when
one captures a rainy scene with multiple cameras from different
viewpoints, the projections of the same raindrop in different cap-
tured images should satisfy view consistency, which is the most

important characteristic of light field datasets. To ensure the view
consistency of raindrops in our dataset, we constructed the 3D
model for each raindrop in the scene and rendered raindrops to-
gether with other 3D scene objects. Specifically, we first constructed
a 3D raindrop field for each scene where raindrops were uniformly
distributed in the 3D space and let the raindrop field cover all scene
objects captured by different cameras. Then, we generated all view
images via the Arnold for Maya [1] renderer.

Note that other rainy datasets usually construct rainy images
in the 2D image space, i.e., combine the clean image and the rain-
streak image based on a simple linear formulation. Although some
methods generate the rain-streak image by considering the scene
depth, it is still difficult to generate real-world-like rainy images be-
cause the generation of rain-steak image is independent of the clean
image, and there are no interaction effects, e.g., refraction, reflec-
tion, and scattering, between raindrops and light rays. In contrast,
our dataset constructs raindrops, scene objects, and light sources
in 3D space of Maya [1] software which can generate interaction
effects between raindrops and light rays during the render process
and produce more realistic visual effects of rainy scenes.

Besides, our dataset provides a range of rain densities and direc-
tions, as well as different orientations of rain streaks in different
scenes. This is important as rain in the real world is often accompa-
nied by wind, causing the orientation of rain streaks to vary. The
density of rain streaks is also varied to reflect the different levels of
rainfall experienced in the real world.

1.2.2 Scene Objects. To ensure that the dataset is representative of
real-world scenarios, our dataset constructs all scenes using outdoor
objects such as cars, bridges, roads, buildings, and boats, etc. This
is intended to make it easier for supervised deep learning-based
deraining methods to generalize to other unseen outdoor rainy
scenes.

1.2.3 Camera Distribution. The viewpoints of each scene are dis-
tributed roughly on the surface of a sphere, with all cameras ori-
ented toward the center of the sphere. All 50 cameras make up
an array, with each row having 10 cameras. This distribution is
intended to maximize the overlap rate of the scene content cap-
tured by different cameras, providing compensatory and diverse
information for use in deraining tasks.

1.3 Data Format
1.3.1 View Images. Each view image is in .png format with a size
of 1024 × 1024. We named all 50 view images in a zigzag sequence
in the camera array, i.e.,

1.3.2 Depth Maps. We provide the ground truth depth map of each
view in .mat format. The naming format of depth maps is the same
as that of view images, i.e., the zigzag sequence in the camera array.
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Table 1: Comparison of deraining datasets. The data simulation methods include rain streak synthesis algorithms [4, 8] and
commercial software (Photoshop, Adobe, Maya).

Dataset Data Type Resolution Video Multi-view Simulation Method

Rain200L/H [9] Syn 481 × 321 × × Algorithm [4]
DDN-Data [3] Syn 512 × 384 × × Photoshop
DID-Data [10] Syn 586 × 586 × × Photoshop
RainCityscapes [5] Syn 2048 × 1024 × × Photoshop
RainSynL/H25 [6] Syn 640 × 360 ✓ × Algorithm [4]
Proposed Syn 1024 × 1024 × ✓ Maya

NTURain [2] Syn, Real 640 × 480 ✓ × Adobe
RLMB [8] Syn, Real 5 × 5 × 512 × 512 × ✓ Algorithm [8]
SPA-Data [7] Real 256 × 256 (train) 512 × 512 (test) × × Algorithm [7]

001.png, 002.png, ... 010.png
011.png, 012.png, ... 020.png

... ... ... ...
041.png, 042.png, ... 050.png

1.3.3 Camera Parameters. We provide the ground truth camera
parameters of all views in a .csv file. The .csv file is organized as
follows.

• Camera Name: the name of each camera with format
cameraShape-𝑖 to indicate the 𝑖𝑡ℎ camera’s parameters.

• Position X: the x value of the camera position in the world
coordinate.

• Position Y: the y value of the camera position in the world
coordinate.

• Position Z: the z value of the camera position in the world
coordinate.

• RotationX: the camera Euler angle degree around the x-axis
of the world coordinate system.

• Rotation Y: the camera Euler angle degree around the x-axis
of the world coordinate system.

• Rotation Z: the camera Euler angle degree around the x-axis
of the world coordinate system.

• Focal Length: the focal length of the camera in𝑚𝑚.
• Horizontal Aperture: the horizontal size of the camera
aperture in𝑚𝑚.

• Vertical Aperture: the vertical size of the camera aperture
in𝑚𝑚.

2 ADDITIONAL EXPERIMENTAL RESULTS
To provide a more comprehensive evaluation of our proposed
method, we present a video demo showcasing experimental results
on four test datasets from our proposed dataset. The demo includes
our generated results, predicted rain maps, and comparisons with
baseline methods, allowing readers to gain a detailed understanding
of our method’s performance across various scenarios.

To further evaluate the effectiveness and generalizability of our
approach in real-world scenarios, we extended the RainyScape-
3DGS framework to process video data captured in a natural rainy
environment. Using a mobile phone, we recorded an outdoor scene
on a rainy day, focusing on traffic lights as the primary foreground

objects. This setup allowed us to assess the performance of our
method in the presence of dynamic rain and complex scene geome-
try. The captured video was then cropped to obtain a sequence of
110 frames, each with a resolution of 720×720 pixels. Subsequently,
we employed Colmap software to estimate the camera parameters
necessary for rendering.

It is worth noting that the video data captured in this real-world
scenario presents additional challenges compared to the view-
consistent rain data used in our primary experiments. The outdoor
scene is open and unconstrained, with dynamic rain that varies in
intensity and direction over time. These factors introduce complex-
ities in terms of rain streak appearance, motion, and interaction
with the scene, making rain-free scene reconstructionmore difficult.
By successfully processing this real-world dataset, we demonstrate
the robustness and adaptability of our method to diverse and chal-
lenging rainy conditions encountered in practical applications. The
experimental results of the real-world video processing, which are
showcased in the demo, yield several key observations:

(1) Ourmethod can be effectively extended to process video data,
significantly suppressing the impact of rain on the scene.

(2) The proposed framework successfully decouples high-frequency
details from dynamic rain, exhibiting superior preservation
of high-frequency details while minimizing the presence of
rain streaks compared to baseline methods.

(3) As the camera captures an open scene, distant background
objects are convolved with only a small amount of Gauss-
ian kernels, resulting in a lower rendering quality for the
background.

These findings highlight the potential of ourmethod to be applied
to a wide range of real-world scenarios, even when dealing with
videos captured using mobile devices. However, it is important
to acknowledge that the rendering quality of distant background
objects in open scenes may be compromised due to the limited
influence of the Gaussian kernels. Future research could investigate
techniques to enhance the background rendering quality in such
cases.

3 DISCUSSION AND FUTUREWORK
Our proposed RainyScape demonstrates effectiveness in handling
real-world rainy scenarios, but several limitations warrant further
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discussion and present opportunities for future research. Firstly,
the post-processing stage relies on a simple blending approach
based on the generated rain map, which heavily depends on the
accuracy of the estimated rain map. Secondly, rain streaks close
to scene objects may be mistakenly identified as part of the scene,
leading to ambiguities in the deraining process. Lastly, during the
3D Gaussian Splatting (3DGS) process, a portion of the rain streaks
may be wrapped by Gaussian kernels and treated as part of the
scene, resulting in rendered results that still exhibit some residual
rain effects.

To address these limitations, several avenues for future work
can be explored. Investigating advanced blending techniques, such
as learning-based methods or adaptive weighting schemes, could
improve the post-processing stage and enhance the overall de-
raining quality. Incorporating semantic information could provide
additional context to disambiguate rain streaks from scene objects.
Furthermore, exploring corresponding processing methods during
Gaussian kernel splitting or deformation could help suppress the
residual rain remaining in the scene after the 3DGS process. By
addressing these challenges and exploring the suggested research
directions, we believe that the performance and applicability of our
method can be further enhanced.
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