Published as a conference paper at ICLR 2024

SPARSEFORMER: SPARSE VISUAL RECOGNITION VIA
LIMITED LATENT TOKENS

Ziteng Gao Zhan Tong Limin Wang
Show Lab, National University of Singapore Ant Group Nanjing University
Mike Zheng Shou™?

Show Lab, National University of Singapore

ABSTRACT

Human visual recognition is a sparse process, where only a few salient visual
cues are attended to rather than every detail being traversed uniformly. How-
ever, most current vision networks follow a dense paradigm, processing every
single visual unit (such as pixels or patches) in a uniform manner. In this paper,
we challenge this dense convention and present a new vision transformer, coined
SparseFormer, to explicitly imitate human’s sparse visual recognition in an end-
to-end manner. SparseFormer learns to represent images using a highly limited
number of tokens (e.g., down to 9) in the latent space with sparse feature sampling
procedure instead of processing dense units in the original image space. There-
fore, SparseFormer circumvents most of dense operations on the image space and
has much lower computational costs. Experiments on the ImageNet-1K classi-
fication show that SparseFormer delivers performance on par with canonical or
well-established models while offering more favorable accuracy-throughput trade-
off. Moreover, the design of our network can be easily extended to the video
classification task with promising performance with lower compute. We hope
our work can provide an alternative way for visual modeling and inspire fur-
ther research on sparse vision architectures. Code and weights are available at
https://github.com/showlab/sparseformer.

1 INTRODUCTION

Designing neural architectures for visual recognition has long been an appealing yet challenging
topic in the computer vision community. In past few years, there has been an paradigm shift for
vision architectures from convolutional neural networks (CNNs) (Krizhevsky et al., 2012; He et al.,
2016; Huang et al., 2017; Radosavovic et al., 2020; Liu et al., 2022) to vision transformers (ViTs)
(Dosovitskiy et al., 2021; Touvron et al., 2021; Liu et al., 2021a; Wang et al., 2021). Though their
underlying operations may vary, both architectures involve the traversal of every pixel or patch in an
image to densely model visual patterns and image semantics. This traversal convention stems from
the sliding window approaches (Ojala et al., 1996), assuming that foreground objects may appear
uniformly at any spatial location in an image, and continues to dominate the design of modern visual
neural networks.

However, as humans, we do not need to examine every detail in a scene for perception. Instead, our
eyes can quickly identify regions of interest with just few glimpses, and then recognize edges and
textures, as well as high-level semantics (Desimone & Duncan, 1995; Marr, 2010; Itti & Koch, 2001;
Rensink, 2000). This contrasts greatly with existing vision architectures, which need to exhaustively
traverse tons of visual units in the image grid. Such dense convention incurs redundant computation
for backgrounds, particularly when scaling up the input resolution. Also, this paradigm cannot
directly provide interpretable insights about the specific regions of interest that vision model are
focusing on within an image.

< Corresponding Author.

https://github.com/showlab/sparseformer

Published as a conference paper at ICLR 2024

image space, dense units latent space, sparse tokens
adjust

extract

O0OOoO

N < HxW

dense paradigm our sparse paradigm

Figure 1: Dense versus our proposed sparse paradigm for visual recognition. The dense paradigm
requires traversing H x W units to perform convolution or attention, while our proposed sparse
paradigm performs transformers over only N latent tokens where N < H x W.

In this paper, we propose a new vision network architecture, coined SparseFormer, to perform
sparse visual recognition by explicitly imitating the human vision system. SparseFormer learns to
represent an image using transformers with a limited number of tokens in the latent space right from
the beginning. Each latent token is associated with a region of interest (Rol) descriptor, and the to-
ken Rol can be adjusted iteratively to focus on foreground regions. With this design, we can highly
reduce the number of tokens needed in the transformer (e.g., down to 9) and the overall computa-
tional cost of SparseFormer is almost irrelevant to the input resolution when a fixed number of latent
tokens adopted. Therefore, it is reasonable to refer to our method as a sparse approach for visual
recognition. Moreover, the Rol adjusting mechanism can be supervised solely with classification
signals in an end-to-end manner, without prior training with localizing signals.

SparseFormer, as an initial step towards sparse visual recognition, aims to provide an alternative
paradigm for vision modeling, rather than achieving state-of-the-art results with bells or whistles.
Nonetheless, it still delivers promising results on the challenging ImageNet classification benchmark
on par with dense counterparts, but at lower computational costs. Since all transformer operations
are performed on a reduced number of tokens in the latent space, SparseFormer has a lower memory
footprint and higher throughput compared to dense architectures, especially in the low-compute
region. Also, SparseFormer can deliver promising results compatibly with versatile token number
settings, e.g., 74.5% on IN-1K with only 9 tokens, and 81.9% with 81 tokens for a tiny variant.
Visualizations show SparseFormer can distinguish foregrounds from backgrounds when trained in an
end-to-end manner using only classification labels. We also explore several scaling-up strategies of
SparseFormer. The simple design of SparseFormer can be further extended to video understanding
with minor efforts, where video inputs are more compute-expensive for dense models but well-suited
for SparseFormer. Experimental results also demonstrate that our video extension of SparseFormer
yields promising performance on the Kinetics-400 with low compute.

2 RELATED WORK

Dense vision architectures. Since the pioneering AlexNet (Krizhevsky et al., 2012), convolutional
neural networks (CNNs) has dominated the field of the visual recognition with comprehensive ad-
vancements (He et al., 2016; Huang et al., 2017; Radosavovic et al., 2020; Tan & Le, 2019; Liu
et al., 2022; Szegedy et al., 2016; 2015; loffe & Szegedy, 2015; Wu & He, 2020). Recently, vision
transformers Dosovitskiy et al. (2021) have delivered great modeling capabilities and remarkable
performance with the transformer architecture, which originates from the machine translation com-
munity (Vaswani et al., 2017). Several variants of vision transformers (ViTs) have been proposed to
improve its efficiency and effectiveness with specific designs for vision domain (Liu et al., 2021a;
Yuan et al., 2021; Wang et al., 2021; Yue et al., 2021; Fan et al., 2021; Gu et al., 2021; Xia et al.,
2022; Tuetal., 2022; Ma et al., 2023; Chang et al., 2023b). However, both of these two architectures
require traversing every pixel or patch over an image to perform dense operations, either convolution
or attention, in order to obtain the final representation, incurring unnecessary compute burden for
backgrounds. This issue becomes more severe when handling data-intensive inputs like videos, as
the computation cost increases due to the larger number of units that need to compute (Tran et al.,
2015; Carreira & Zisserman, 2017; Tran et al., 2018; Qiu et al., 2017; Xie et al., 2018; Arnab et al.,
2021), even when sampling strategies adopted (Wang et al., 2019; Feichtenhofer et al., 2019). To
speed up vision transformers, researchers have proposed to gradually reduce vision tokens (Liang
et al., 2022; Fayyaz et al., 2022; Bolya et al., 2022; Rao et al., 2021; Yin et al., 2022; Chang et al.,

Published as a conference paper at ICLR 2024

early convolution
feature map

. sampling points for

classifier head L]

Standard
Transformer
E

ncoder Block

dense image space

sparse
feature

input image sampling

D Rols refined Rols
Focusing

Transformer

o —

embeddings

<
5
2
17}
z

o

refined embeddings

o 2
8¢ g
3 E
=K °
=]
1) o)
5]
= g

latent space
Rol Adjusting
Adaptive Feature
Decoding

Sampling Points
Generation

D lightweight,
repeat Ly X times

initial embeddings + initial Rols

(a) overall architecture (b) details of a focusing transformer block

Figure 2: The SparseFormer overall architecture and details of the focusing transformer. Here we
depict a set of 3 latent tokens for simplicity. L.x standard vision transformer encoder block makes
a cortex transformer. Compared with the vanilla transformer block, there are extra Rol adjusting,
sampling points generation, and feature sampling & decoding process, repeating itself Ly x times in
a focusing transformer block. All operations in the focusing and cortex transformer are performed
over latent token set, except for feature sampling in the image space.

2023a) or exploit sparse attention patterns (Zhang et al., 2021). Different from these methods,
SparseFormer directly learns to represent an image via a limited number of tokens right from the
beginning in the latent space.

Perceiver architectures and detection transformers. Moving vision tokens into the latent space is
not a new thing. Perceiver architectures (Jaegle et al., 2021; 2022) for vision learns a set of tokens in
the latent space to represent an image via the standard latent transformer decoders with cross atten-
tions. Our proposed SparseFormer is greatly inspired by this paradigm, where the “cross attention”
between the image space and the latent space is replaced by the proposed sparse feature sampling.
It is worth noting that the standard cross attention also requires traversing every unit over the image
feature, while our sparse feature sampling directly extracts features by bilinear interpolation, whose
computational complexity is independent of the input resolution. Moreover, Perceiver architectures
(Jaegle et al., 2021; 2022) utilize 512 latent tokens, whereas our SparseFormer achieves superior
results by using about 0.1x latent tokens. Detection transformer (DETR) and its variants (Carion
et al., 2020; Zhu et al., 2020; Sun et al., 2021) also use latent tokens (queries) to represent objects,
which are decoded usually from features extracted by deep convolutional networks and multiple
transformer encoder blocks. In contrast, SparseFormer, as a sparse architecture, do not require this
heavy image feature design, and instead delievers promising results with a simple early convolution.

Glimpse models, proposed in the early days of neural vision research (Mnih et al., 2014; Ranzato,
2014), aimed to imitate explicitly the human visual perception process by capturing selective re-
gions of an image for recognition. While these models are efficient as they just involve limited
parts of an image, they often lack differentiability in terms of selecting such regions, and require
workarounds like the expectation-maximization algorithm (Dempster et al., 1977) or reinforcement
learning to optimize. Our presented SparseFormer architecture can be seen as an multi-glimpse ex-
tension model, similiar to (Tan et al., 2021). The whole SparseFormer pipeline can be optimized in
an end-to-end manner thanks to the bilinear interpolation. More importantly, SparseFormer proves
to be effective on large benchmarks like ImageNet-1K (Deng et al., 2009).

3 SPARSEFORMER

In this section, we describe the SparseFormer architecture in detail. Since SparseFormer performs
transformer operations over tokens in the latent space, we start with the definition of latent tokens.

Latent tokens. Different from dense models, which involve per-pixel or per-patch modeling in the
original image space, SparseFormer learns to understand an image via sparse tokens in the latent

Published as a conference paper at ICLR 2024

space. Similar to queries or latents in transformer decoder architectures (Vaswani et al., 2017; Car-
ion et al., 2020; Jaegle et al., 2021), a latent token in SparseFormer has a corresponding embedding
t € R in the latent space. To explicitly model spatial focal regions, we associate every latent token
t in SparseFormer with an Rol descriptor b = (z,y, w, h), where z, y, w, h are center coordinates,
width, and height, normalized in the range [0, 1]. Therefore, a latent token is made up of an embed-
ding t representing its content, and an Rol descriptor b representing its geometric property. Then
the whole latent token set of SparseFormer is then described as

T:{(thbl)v(t%b?)ﬂ"' 7(thbN)}7 (1

where NNV is the number of latent tokens, both embedding t and b can be refined by latent transform-
ers. The initial t and b are learnable parameters of SparseFormer, and their initialization will be
described in the experiment section and the appendix.

3.1 BUILDING LATENT TOKENS

SparseFormer uses two types of transformers in the latent space: the focusing transformer and the
cortex transformer, as depicted in Figure 2. The focusing transformer extracts regional image fea-
tures into token embeddings and adjusts token Rols iteratively. The subsequent cortex transformer,
which is of the standard transformer encoder architecture, takes only latent tokens embeddings as
inputs. We first introduce operations that makes a focusing transformer.

Sparse feature sampling. In the feature sampling procedure, a latent token first generates P sam-
pling points in the image space based on its geometric property, i.e., its Rol. These sampling points
are represented as image coordinates (i.e., x and y). Then, the focusing transformer uses bilinear
interpolation on these sampling points to extract corresponding regional image features. We refer
this procedure as sparse feature sampling since the bilinear interpolation takes only O(1) time for
every sampling point. To obtain sampling points, a learnable linear layer is used to generate a set of
relative sampling offsets for a token, conditioned on its embedding t:

{(Az;, Ay;)} p = Linear(t), 2)

where the i-th sampling offset (Ax;, Ay;) represents the relative position of sampling point ¢ with
respect to a token Rol, and there are a total of P sampling points for each token. The layer normal-
ization (Ba et al., 2016) over t before the linear layer here, as well as linear layers below, is omitted
for clarity. Then, these offsets are translated to absolute sampling locations (Z, §) in an image with
the Rol b = (x, y, w, h):
Ti=x+0.5 - Ax; - w, 3)
Ui =y+0.5-Ay; - h,

for every 4. To ensure stable training, a standard normalization is applied to {(Axz;, Ay;)} p using
three standard deviations, which keeps a majority of sampling points within the Rol.

With sparse feature sampling, SparseFormer extracts image features by direct bilinear interpolation
based on these explicit sampling points, eliminating the need for dense grid traversal. Given an
input image I € RE*#*W yith C channels, the shape of the sampled feature matrix x for a token
is RP*¢. The computational complexity of this sparse feature sampling procedure is O(N PC)
with the number of latent tokens IV given, independent of the input image size H x W.

Adaptive feature decoding. With image features x sampled for a token, how fo effectively decode
them to build a token representation is another key question. A linear layer of R”*¢ — R? can be
the simplest method to embed features into a token embedding, but we find it rather ineffective. We
use the adaptive mixing method (Gao et al., 2022) to decode sampled features to leverage spatial
and channel semantics in an adaptive way. Specifically, we use a lightweight network F : R? —
REXC+PXP whose input is the token embedding t to produce conditional channel decoding weight
and spatial decoding weights M, and M, and decode sampled features x with these weights:

[M.|M,] = F(t), M, € R*¢ M, € RP*F (4)
xM = GELUxOM,) € RP*C, (5)
x® = GELUM,xWV) € RP*C, (6)

Published as a conference paper at ICLR 2024

where x(©) is the sampled feature x, x(?) is the output of adaptive feature decoding, and GELU
serves as activation function (Hendrycks & Gimpel, 2016). Our F choice is composed of two
linear layers without activation functions, with the hidden dimension d/4 for efficiency. The final
output is added back to the token embedding t by a linear layer. Adaptive feature decoding can be
seen as a token-wise spatial-channel factorization of dynamic convolution (Jia et al., 2016), and it
adds moderate convolutional inductive bias to SparseFormer. The adaptive feature decoding design
allows SparseFormer to reason about what a token expects to see based on what the token has seen in
stages before. Therefore, a token can also reason about where to look with Rol adjusting mechanism,
which is described below.

Rol adjusting mechanism. A first quick glance at an image with human eyes is usually insufficient
to fully understand what is in it. This is also the case for the focusing transformer. In the focusing
transformer, a latent token Rol can be refined iteratively together with updating its embedding, where
a token Rol b = (z, y, w, h) is adjusted to (2/,y’, w’, h’) in a detection-like way (Ren et al., 2015):

¥ =x+At, w, Yy =y+At,-h, (7
w' =w-exp(Aty), h' = h-exp(Aty), 8)

where (At,, At,, At,,, Aty) are normalized adjusting deltas, generated by a linear layer whose
input is the embedding in a token-wise way:

{At,, Aty, At,, Aty} = Linear(t). ©)

With the Rol adjusting mechanism and sufficient training, token Rols can gradually focus on fore-
grounds after several iterations. It is worth noting that unlike object detectors, we do not rely on any
localizing signals for supervision. The optimization for the Rol adjusting mechanism is end-to-end
and accomplished by back-propagating gradients from sampling points in the bilinear interpolation.
Although there may be noisy gradients due to local and limited sampling points in bilinear interpo-
lation, the optimization direction for Rol adjusting is still non-trivial as shown in experiments.

Focusing transformer can be generally considered a transformer “decoder” architecture, where
its cross attention to image features is modified to sparse feature sampling. Instead of directly
traversing grid features in standard transformer decoders, the focusing transformer extracts image
features sparsely, whose computation complexity is therefore independent of input resolution. We
make the focusing transformer as lightweight as possible and make it one-block but repeating in
several times with same parameters. Also, the token dimension in the focusing transformer is set the
half of the cortex transformer. After the focusing transformer, only latent token embeddings are fed
into the following transformer since token Rols are not further used in the cortex transformer.

Cortex transformer. The cortex transformer follows a standard transformer encoder architecture
except for the first block with the “cross attention” in the focusing transformer to decode features of
large token dimension. The cortex transformer consists up of multiple independent blocks and take
the most of parameters and computation in SparseFormer. This heavy cortex transformer processes
visual signals from the focusing transformer, similar to how the brain cerebral cortex processes
visual input from the eyes.

3.2 OVERALL SPARSEFORMER ARCHITECTURE

The overall architecture in SparseFormer is depicted in Figure 2. The image features are computed
only once by lightweight convolution and shared across sampling stages. The final classification is
done by averaging embeddings {t; } ;v over latent tokens and applying a linear classifier to it.

Early convolution. As discussed earlier, gradients with respect to sampling points by bilinear inter-
polation might be very noisy. The case can be particularly severe when handling raw RGB inputs, as
the nearest four RGB values on grid are usually too noisy for accurate estimation of local gradients.
To improve training stability, we incorporate early convolution, similar to vision transformers (Xiao
et al., 2021), but make it as lightweight as possible.

Sparsity of the architecture. It is important to note that the number of latent tokens in Sparse-
Former is fixed and does not necessarily depend on the input resolution. The sparse feature sampling
procedure extracts features from image feature maps also in a sparse and non-traversing way. The
computational complexity and memory footprints in the latent space is therefore irrelevant to the

Published as a conference paper at ICLR 2024

Table 1: Configurations of SparseFormer variants. FLOPs is with the input image size 2242

#tokens foc. dim cort. dim cort. stage

variant N dy d. L. FLOPs #params

tiny (T) | 49 256 512 3 20G _ 32M
small (S)| 64 320 640 8 3.8G 48M
base (B) | 81 384 768 10 78G 8IM

input size. Hence, it is reasonable to refer our method as a sparse visual architecture. Moreover, the
latent space capacity of SparseFormer also exhibits sparsity. The maximum capacity of the latent
space, N - d., is 81 - 768 described below in Table 1, which is still smaller than the input image
(3 - 2242). This also distinguishes SparseFormer from Perceivers (Jaegle et al., 2021; 2022), whose
typical latent capacity (512 - 1024) exceeds the input image size. Note that our presented approach
differs a lot from post-training token reduction techniques (Rao et al., 2021; Liang et al., 2022;
Fayyaz et al., 2022; Bolya et al., 2022; Yin et al., 2022). SparseFormer learns to represent an image
using sparse tokens right from the start. In contrast, token reduction techniques are typically applied
to pre-trained vision transformers. It is appealing to further reduce latent tokens in SparseFormer
with these methods, but this is beyond the scope of this paper.

Extension to video classification. Video classification requires more intensive computing due to
multiple frames. Fortunately, SparseFormer can be easily extended to video classification with minor
extra efforts. Given a video feature V. € REXTXHXW 'the only problem is to deal with the extra
temporal axis compared to the image feature I € RE>*#*W _To address this, we associate the token
Rol with an extension (t,1), the center temporal coordinate ¢ and ! represents the temporal length
to make Rol a tube. In the sparse feature sampling procedure, an extra linear layer is introduced to
produce temporal offsets, and we transform them to 3D sampling points {(Z;, 9, Z;) } p. Here, the
bilinear interpolation is replaced by the trilinear one for 4D input data. Similarly, the Rol adjusting
is extended to the temporal dimension. Other operators such as early convolution, adaptive feature
decoding, self-attention, and FFN remain untouched. For larger latent capacities, we inflate tokens
along the temporal axis by a factor of n; and initialize their (¢,1) to cover all frames, where n; is
typically smaller than the frame count T (e.g., 8 versus 32).

4 EXPERIMENTS

We benchmark our presented SparseFormers on the ImageNet-1K classification (Deng et al., 2009)
and Kinetics-400 (Carreira & Zisserman, 2017) video classification. We also report our preliminary
trials on down-streaming tasks, semantic segmentation and object detection, in the appendix.

Model configurations. We use ResNet-like early convolutional layer (a 7 x 7 stride-2 convolution,
aReLU, and a 3 x 3 stride-2 max pooling) to extract initial 96-d image features. We design Sparse-
Former variants from 2G to ~8G FLOPs in Table 1. We mainly scale up the number of latent tokens
N, the dimension of the focusing and cortex transformer d¢ and d., and blocks of the cortex trans-
former L.. The number of the recurrence of the one-block focusing transformer, L, for all variants
is set to 4. The number of latent tokens is scaled up as modestly as possible so that it is smaller

Table 2: Comparison of different architectures on ImageNet-1K classification. The input resolution
is 2242, The throughput is measured with FP32 on a single V100 GPU following (Liu et al., 2021a).

method top-1|FLOPs #params throughput (img/s)
ResNet-50 (Wightman et al., 2021) | 80.4 | 4.1G 26M 1179
ResNet-101 (Wightman et al., 2021)| 81.5 | 7.9G 45M 691
DeiT-S (Touvron et al., 2021) 79.8 | 4.6G 22M 983
DeiT-B (Touvron et al., 2021) 81.817.5G 86M 306
Swin-T (Liu et al., 2021a) 81.3| 45G 29M 726
Swin-S (Liu et al., 2021a) 83.0| 87G 50M 437
Perceiver (Jaegle et al., 2021) 78.0 | 707G 45M 17
Perceiver 10 (Jaegle et al., 2022) | 82.1 | 369G 49M 30
SparseFormer-T 81.0] 2.0G 32M 1270
SparseFormer-S 82.0| 3.8G 48M 898
SparseFormer-B 82.6| 7.8G 81M 520

Published as a conference paper at ICLR 2024

Table 3: Comparison with video classification methods on Kinetics-400. The GFLOPs is in the
format of a single view x the number of views. “N/A” indicates the numbers are not available.

method top-1 pre-train #frames GFLOPs #params
NL I3D (Wang et al., 2018) 77.3 ImageNet-1K 128 359x10x3 62M
SlowFast (Feichtenhofer et al., 2019)| 77.9 - 8+32 106x10x3 54M

TimeSFormer (Bertasius et al., 2021)| 75.8 ImageNet-1K 8 196x1x3 121M
Video Swin-T (Liu et al., 2021b) | 78.8 ImageNet-1K 32 88x4x3 28M
ViViT-B FE (Arnab et al., 2021) | 78.8 ImageNet-21K 32 284x4x3 115M

MVIT-B (Fan et al., 2021) 78.4 - 16 71x5x1 37
VideoSparseFormer-T 77.9 ImageNet-1IK 32 22x4x3 31M
VideoSparseFormer-S 79.1 ImageNet-1K 32 38x4x3 48M
VideoSparseFormer-B 79.8 ImageNet-21K 32 74x4%x3 81M

than dense vision transformers. The center of latent token Rols is initialized to a grid, and sampling
points for a token are also initialized to a grid. For the sake of consistency in building blocks, the
first cortex transformer block also performs Rol adjusting, feature sampling, and decoding. We do
not inject any positional information into latent tokens. Training recipes. For ImageNet-1K clas-
sification (Deng et al., 2009), we train the proposed SparseFormer according to the recipe in (Liu
et al., 2021a), which includes the training budget of 300 epochs, the AdamW optimizer (Loshchilov
& Hutter, 2017) with an initial learning rate 0.001, the weight decay 0.05 and sorts of augmentation
and regularization strategies. The input resolution is fixed to 2242. We add EMA (Polyak & Judit-
sky, 1992) to stabilize the training. The stochastic depth (i.e., drop path) (Huang et al., 2016) rate is
set to 0.2, 0.3, and 0.4 for SparseFormer-T, -S, and -B.

For ImageNet-21K pre-training (Deng et al., 2009), we use the subset, winter 2021 release,
as suggested by (Ridnik et al., 2021). We follow the pre-training recipe in (Liu et al., 2021a) with 60
epochs, an initial learning rate 2 x 1073, weight decay 0.05, and drop path 0.1. After pre-training,
we fine-tune models with a recipe of 30 epochs, an initial learning rate 2 x 10~* with cosine decay
and weight decay 1075,

For training on Kinetics-400 Carreira & Zisserman (2017), we use ImageNet pre-trained weights
to initialize SparseFormers. Since our architecture is endurable to large input sizes, the number of
input frames is set to 7' = 32. To be specific, 32 frames are sampled from the 128 consecutive
frames with a stride of 4. We mildly inflate initial latent tokens by n; = 8 times in the temporal
axis to cover all input frames. Our model is optimized by AdamW (Loshchilov & Hutter, 2017)
on 32 GPUs following the training recipe in (Fan et al., 2021). We train the model for 50 epochs
with 5 linear warm-up epochs. The mini-batch size is 8 videos per GPU. The learning rate is set to
5x 10~%, and we adopt a cosine learning rate schedule (Loshchilov & Hutter, 2016). For evaluation,
we apply a 12-view testing scheme (three 3 spatial crops and 4 temporal clips) as previous work (Liu
etal., 2021b).

4.1 MAIN RESULTS

ImageNet-1K classification. We first benchmark SparseFormer on the ImageNet-1K classification
and compare them to other well-established methods in Table 2. SparseFormer-T reaches 81.0 top-1
accuracy on par with the well-curated dense transformer Swin-T (Liu et al., 2021a), with less than
half FLOPs of it (2.0G versus 4.5G) and 74% higher throughput (1270 versus 726). The small and
base variants of SparseFormer, SparseFormer-S, and -B also maintain a good tradeoff between the

Table 4: Scaling up of SparseFormer-B. Except for the 1K entry, all follow first the same pre-
training on ImageNet-21K (2242 input, 81 tokens) and then individual fine-tuning on ImageNet-1K.

variant pre-training data resolution top-1 FLOPs throughput (img/s)

B IN-1K 2242 826 17.8G 520
B IN-21K 2247 83.6 7.8G 520
B IN-21K 3842 84.1 8.2G 444
B IN-21K 5122 84.0 8.6G 419
B,N =144 1 IN-21K 3842 84.6 14.2G 292
B, N =196 1 IN-21K 3842 84.8 19.4G 221

Published as a conference paper at ICLR 2024

N | 9 16 25 36 49 64 8l method | SF ViT/32 ViT/32* convx4 swin
top-1 [745 774 793 80.1 81.0 814 819 top-1 | 81.0 728 743 794 79.7
GFLOPs| 0.5 0.8 1.1 16 20 27 33 GFLOPs 2.0 1.4 1.7 22 20

(a) (b)

Ly top-1 GFLOPs P top-1 GFLOPs img feat. top-1 GFLOPs decode top-1 GFLOPs
nil 77.8 1.6 16 803 1.9 RGB fail 1.5 linear 785 19
1 797 1.7 36 81.0 2.0 ViT/8-embed 784 1.9 static, mix 80.1 1.9
4 81.0 20 64 813 23 early conv 81.0 2.0 adaptive, mix 81.0 2.0
8 810 25 ResNet C1+C2 822 3.1
© () © ®

Table 5: Ablation study on SparseFormer: (a) the number of latent tokens N; (b) the method to
extract 49 tokens other than the focusing transformer; (c) the repeats of the focusing transformer,
L; (d) the number of sampling points for a token, P; (e) image features to sample and decode; (f)
the decoding approch. The default choice for SparseFormer is colored gray .

performance and actual throughput over highly-optimized CNNs or transformers. We can find that
Perceiver architectures (Jaegle et al., 2021; 2022), which also adopt the latent transformer, incur
extremely large FLOPs and have impractical inference speed due to a large number of tokens (i.e.,
512) and dense traversing cross attention.

Scaling up SparseFormer. We scale up the base SparseFormer variant in Table 4. We first adopt
ImageNet-21K pretraining, and it brings 1.0 top-1 accuracy improvement. Then we investigate
SparseFormer with large input resolution fine-tuning. Large resolution inputs benefit SparseFormer
(0.57 for 3842) only extra 5% FLOPs. Moreover, we try a more aggressive way to scale up the
model by reinitializing tokens (i.e., embeddings and Rols) with a more number in fine-tuning, and
find it with better results. We leave further scaling up to future work.

Kinetics-400 classification. We investigate the extension of SparseFormer to the video classifica-
tion task. Results on the Kinetics-400 dataset are reported in Table 3. Our VideoSparseFormer-T
achieves the performance of well-established video CNNs (I3D or SlowFast) with a much lower
computational burden. Surprisingly, our VideoSparseFormer-S pre-trained on ImageNet-1K even
surpasses the ViT-based architectures pre-trained on ImageNet-21K, like TimeSFormer (Bertasius
etal., 2021) and ViViT (Arnab et al., 2021). Furthermore, our VideoSparseFormer-S pre-trained on
ImageNet-21K can improve the performance to 79.8 with only 74 GFLOPs.

4.2 ABLATION STUDY

We ablate key designs in SparseFormer-T on ImageNet-1K due to limited computational resources.

The number of latent tokens, IV, is a crucial hyper-parameter in SparseFormer that controls the
capacity of the latent space. The impact of different numbers of latent tokens on the performance is
shown in Table 5a. The performance of SparseFormer is heavily influenced by /V, and increasing N
to 81 enables SparseFormer-T to achieve similar performance as SparseFormer-S. Nevertheless, we
are still in favor of fewer tokens for efficiency and sparsity.

The focusing transformer. We ablate the focusing transformer and the early convolution with di-
rect token extraction methods, while keeping the cortex transformer unchanged, in Table 5b. The
‘ViT/32’ indicates using 32 x 32 patch as a token (Dosovitskiy et al., 2021) (49 in all) and the trans-
former configurations follow SparseFormer-T in Table 1. The ‘ViT/32*’ adds two more transformer
blocks. The ‘convx4’ approach uses four strided convolution, each doubling the channel, to pro-
duce 7 x 7 feature map as 49 tokens. The ‘swin’ method exploits 4 successive local shifted attention
and patch merge (Liu et al., 2021a) to obtain 49 tokens. Note that in contrast to SparseFormer, all
methods in Table 5b extract 49 tokens in a dense manner from the original image space. We also
investigate the impact of iterations of the focusing transformer in Table 5c.

Sparsity of sampling points. The other important factor for the sparsity of the proposed method
is the number of sampling points in the feature sampling. Table 5d shows the ablation on this.
Compared to increasing the number of latent tokens (e.g., 49 — 64, 30% up, 81.4 accuracy), more

Published as a conference paper at ICLR 2024

sampling

sampling
density

sampling
density

stage 4 stage 5 stage 1

« it e
stage 1 stage 2 stage

stage 3 stage 4

Figure 3: Visualizations of sampling points and their sampling density maps across sampling stages
in SparseFormer-S. Stage 1-4 refer to the feature sampling in the focusing Transformer, and Stage 5
refers to the cortex Transformer. Better view with zoom-in.

sampling points are not economical for better performance, and 81.3 accuracy needs 77% more
(36 — 64) sampling points. We choose 36 sampling points as our default for efficiency.

Image features and how to decode sampled features. Table 5S¢ investigates input image features
to be sampled into the latent space in SparseFormer. As discussed before, input image features can
be in the raw RGB format, but we find it rather hard to train'. We ablate the early convolution with
ViT-like embedding layer (Dosovitskiy et al., 2021) and ResNet C1+C2 blocks (He et al., 2016) (the
early convolution and the first three bottleneck blocks before downsampling). Table 5f ablates how
to decode sampled features for a token. The static mixing uses the static weights, which are not
conditional on token embedding, and performs worser than adaptive mixing weights.

Inflation of latent tokens on video classification. We also in- Tupje 6: Different inflation
vestigate the inflation rate of tokens on videos. Intuitively, video pates of VideoSparseFormer-T
data with multiple frames need more latent tokens than a static , Kinetics-400.

image to model. Results in Table 6 show this. Note that the in-

put video has 32 frames, but the token inflation rate 8 is already inflation | top-1 GFLOPs
sufficient for the favorable performance of VideoSparseFormer. 1 69.5 Tx4x3
As a contrast, dense CNNs or Transformers usually require at 4 747 13x4x3
least exactly #frames times the computational cost if no tempo- 8 719 22x4x3
ral reduction is adopted. This also validates the sparsity of the 16 | 782 32x4x3

proposed SparseFormer method on videos.

4.3 VISUALIZATIONS

As discussed in Section 3, we argue that SparseFormer with the Rol adjusting mechanism and sparse
feature sampling, can reason about where to look and focus on foregrounds. To show this, we
perform visualizations of token sampling points across different sampling stages in Figure 3. We
apply kernel density estimation (KDE (Rosenblatt, 1956)) spatially about sampling points with top-
hat kernels to obtain the sampling density map. We can find that SparseFormer initially looks at the
image in a relatively uniform way and gradually focuses on discriminative details of foregrounds.
With minimal classification supervision (i.e., no localizing signals), SparseFormer can roughly learn
where discriminative foregrounds are.

5 CONCLUSION

In this paper, we have presented a new vision architecture, SparseFormer, to perform visual recog-
nition with a limited number of tokens along with the transformer in the latent space. To imitate
human perception behavior, we design SparseFormer to focus these sparse latent tokens on discrim-
inative foregrounds and make a recognition sparsely. As a very initial step to the sparse visual archi
tecture, SparseFormer consistently yields promising results on challenging image classification and
video classification benchmarks with a good performance-throughput tradeoff. We hope our work
can provide an alternative way and inspire further research about sparse visual understanding.

"Preliminary SparseFormer design using raw RGB input achieve approximately 60% top-1 accuracy.

Published as a conference paper at ICLR 2024

Acknowledgement. This project is supported by the National Research Foundation, Singapore
under its NRFF Award NRF-NRFF13-2021-0008.

REFERENCES

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Luci¢, and Cordelia Schmid.
Vivit: A video vision transformer. In /ICCV, 2021.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, 2016.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, 2021.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. ArXiv, 2022.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference
on Computer Vision, 2020.

Jodo Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the kinetics
dataset. In CVPR, pp. 4724-4733. IEEE Computer Society, 2017.

Shuning Chang, Pichao Wang, Ming Lin, Fan Wang, David Junhao Zhang, Rong Jin, and
Mike Zheng Shou. Making vision transformers efficient from A token sparsification view. In
CVPR, pp. 6195-6205. IEEE, 2023a.

Shuning Chang, Pichao Wang, Hao Luo, Fan Wang, and Mike Zheng Shou. Revisiting vision
transformer from the view of path ensemble. In /CCV, pp. 19832-19842. IEEE, 2023b.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. In Maximum likelihood from incomplete
data via the EM - algorithm plus discussions on the paper, 1977.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009. doi: 10.1109/CVPRW.2009.5206848.

Robert Desimone and John Duncan. Neural mechanisms of selective visual attention. Annual Re-
view of Neuroscience, 18(1):193-222, 1995. doi: 10.1146/annurev.ne.18.030195.001205. URL
https://doi.org/10.1146/annurev.ne.18.030195.001205. PMID: 7605061.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR. OpenReview.net, 2021.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In /CCV, 2021.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jiirgen Gall. Adaptive token sampling
for efficient vision transformers. In ECCV (11), volume 13671 of Lecture Notes in Computer
Science, pp. 396-414. Springer, 2022.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In ICCV, 2019.

Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo. Adamixer: A fast-converging query-based
object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 5364-5373, 2022.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, volume 9 of JMLR Proceedings, pp. 249-256. JMLR.org, 2010.

10

https://doi.org/10.1146/annurev.ne.18.030195.001205

Published as a conference paper at ICLR 2024

Qiqi Gu, Qianyu Zhou, Minghao Xu, Zhengyang Feng, Guangliang Cheng, Xuequan Lu, Jianping
Shi, and Lizhuang Ma. Pit: Position-invariant transform for cross-fov domain adaptation. In
IEEE/CVF International Conference on Computer Vision, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016. doi: 10.1109/CVPR.2016.90.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In ECCV (4), volume 9908 of Lecture Notes in Computer Science, pp. 646—661.
Springer, 2016.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. In
CVPR, 2017.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Laurent Itti and Christof Koch. Computational modelling of visual attention. Nature Reviews Neuro-
science, 2(3):194-203, 2001. doi: 10.1038/35058500. URL https://doi.org/10.1038/
35058500.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Jodo Carreira.
Perceiver: General perception with iterative attention. In ICML, volume 139 of Proceedings of
Machine Learning Research, pp. 4651-4664. PMLR, 2021.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier J. Hénaff,
Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, and Jodo Carreira. Perceiver 10: A
general architecture for structured inputs & outputs. In /CLR. OpenReview.net, 2022.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In
NIPS, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges,
Léon Bottou, and Kilian Q. Weinberger (eds.), NIPS, pp. 1106-1114, 2012.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all patches
are what you need: Expediting vision transformers via token reorganizations. In International
Conference on Learning Representations, 2022.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014.
doi: 10.1007/978-3-319-10602-1\ 48.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. CVPR, 2021a.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer. arXiv preprint arXiv:2106.13230, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, pp. 11966-11976. IEEE, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Xu Ma, Yuqgian Zhou, Huan Wang, Can Qin, Bin Sun, Chang Liu, and Yun Fu. Image as set of
points. In /CLR. OpenReview.net, 2023.

11

https://doi.org/10.1038/35058500
https://doi.org/10.1038/35058500

Published as a conference paper at ICLR 2024

David Marr. Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. The MIT Press, 07 2010. ISBN 9780262514620.
doi: 10.7551/mitpress/9780262514620.001.0001. URL https://doi.org/10.7551/
mitpress/9780262514620.001.0001.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent models of visual
attention. In NIPS, pp. 2204-2212, 2014.

Timo Ojala, Matti Pietikdinen, and David Harwood. A comparative study of texture measures with
classification based on featured distributions. Pattern Recognit., 29(1):51-59, 1996.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838-855, 1992. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation with pseudo-3d
residual networks. In ICCV, pp. 5534-5542. IEEE Computer Society, 2017.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dollar. Designing
network design spaces. In CVPR, 2020.

Marc’ Aurelio Ranzato. On learning where to look. ArXiv, 2014.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. In Advances in Neural Informa-
tion Processing Systems, 2021.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time
object detection with region proposal networks. In NIPS, 2015.

Ronald A. Rensink. The dynamic representation of scenes. Visual Cognition, 7:17 — 42, 2000.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2021.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. Annals of
Mathematical Statistics, 27:832-837, 1956.

Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka, Lei
Li, Zehuan Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end object detection with learnable
proposals. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In CVPR, 2015. doi: 10.1109/CVPR.2015.7298594.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In CVPR, 2016. doi: 10.1109/CVPR.
2016.308.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 6105-6114.
PMLR, 2019.

Sia Huat Tan, Runpei Dong, and Kaisheng Ma. Multi-glimpse network: A robust and efficient
classification architecture based on recurrent downsampled attention. In BMVC, pp. 142. BMVA
Press, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
ICML, volume 139 of Proceedings of Machine Learning Research, pp. 10347-10357. PMLR,
2021.

12

https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://doi.org/10.1137/0330046

Published as a conference paper at ICLR 2024

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In IEEE/CVF International Conference on
Computer Vision, 2015.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
look at spatiotemporal convolutions for action recognition. In CVPR, pp. 6450-6459. Computer
Vision Foundation / IEEE Computer Society, 2018.

Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan C. Bovik, and
Yinxiao Li. Maxvit: Multi-axis vision transformer. In ECCV (24), volume 13684 of Lecture
Notes in Computer Science, pp. 459-479. Springer, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998-6008, 2017.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool.
Temporal segment networks for action recognition in videos. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2019.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. ICCV, 2021.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
CVPR, 2018.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476, 2021.

Yuxin Wu and Kaiming He. Group normalization. Int. J. Comput. Vis., 128(3):742-755, 2020.

Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. Vision transformer with de-
formable attention. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In ECCV (5), volume 11209 of Lecture Notes in Computer Science, pp.
432-448. Springer, 2018.

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollar, and Ross B. Girshick. Early
convolutions help transformers see better. In NeurlIPS, pp. 30392-30400, 2021.

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video classification. In ECCV (15), volume
11219 of Lecture Notes in Computer Science, pp. 318-335. Springer, 2018.

Hongxu Yin, Arash Vahdat, Jose M. Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-vit:
Adaptive tokens for efficient vision transformer. In CVPR, pp. 10799-10808. IEEE, 2022.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis E. H. Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet.
ICCV, 2021.

Xiaoyu Yue, Shuyang Sun, Zhanghui Kuang, Meng Wei, Philip H. S. Torr, Wayne Zhang, and Dahua
Lin. Vision transformer with progressive sampling. In /CCV, pp. 377-386. IEEE, 2021.

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng Gao.
Multi-scale vision longformer: A new vision transformer for high-resolution image encoding. In
IEEE/CVF International Conference on Computer Vision, 2021.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127(3):302-321, 2019.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: De-
formable transformers for end-to-end object detection. In International Conference on Learning
Representations, 2020.

13

Published as a conference paper at ICLR 2024

6 APPENDIX

A.1. SPARSEFORMER ITSELF AS OBJECT DETECTOR

Since the SparseFormer architecture produces embedding and Rol together for a token given an
image, it is natural to ask whether SparseFormer per se can perform object detection task? The
answer is yes. In other words, we can train a SparseFormer model to detect objects without making
any architectural changes by simply adding a final classifier and a Rol refining layer upon it.

Specifically, we follow the training strategy of DETR (Carion et al., 2020) to train a SparseFormer-S
for object detection. We adopt the ImageNet-1K pre-trained SparseFormer-S in the main paper. We
first inflate the number of latent tokens to 400 by re-initializing token embeddings to the normaliza-
tion distribution and the center of token Rols to the uniform distribution on [0, 1]. The Rol height
and width is 0.5 x 0.5 still. We use a fixed set of 100 latent tokens to detect objects. The other
tokens, which are not used for detection, aim to enrich the semantics in the latent space. We do not
change the matching criterion together with the loss function of DETR and we train for 300 epochs.
The final classifier is simply one-layer FC layer and the Rol refining layer is 2-layer FC layer, also
following DETR. The final refining of Rols is performed in the same way as Rol adjustment in the
main paper. The result is shown in Table 7.

detector GFLOPs| AP APs5o AP;5 AP, AP,, AP,
DETR 86 [42.0 624 442 20.5 45.8 61.1
DETR-DC5 187 |43.3 63.1 459 225 473 61.1
SparseFormer-S 27 264 438 26.6 83 26.0 45.0

Table 7: Detection performance of SparseFormer-S on MS COCO (Lin et al., 2014) val set.

Although the performance of SparseFormer is currently inferior to DETR, it is important to note
that this is very preliminary result and we do not add any additional attention encoders or decoders
to SparseFormer for object detection. Actually, SparseFormer can be considered a decoder-only
architecture for object detection if we treat the early convolution part as the embedding layer.

A.2. SPARSEFORMER PERFORMING PER-PIXEL TASK

SparseFormer learns to represent an image by limited tokens in the latent space and outputs token
embeddings with their corresponding Rols. It is appealing to investigate whether SparseFormer can
perform per-pixel tasks, like semantic segmentation. Yet, SparseFormer itself cannot perform dense
tasks since it outputs discrete token set. However, we can restore a dense structured feature map
from these discrete tokens by the vanilla cross-attention operator and build a final classifier upon the
dense feature map.

Specifically, to perform semantic segmentation, we use a location-aware cross-attention operator to
map latent token embeddings back to the structured feature map, whose height and width are one
fourth of the input image (namely, stride 4, H/4 and W/4). The location-aware cross-attention is
the vanilla cross-attention with geometric prior as biases in attention matrix:

Attn(Quas, Kit, Vir) = Softmax(stKg/\/g + B)Vy,

where Qg5 € RV4:X4 is the query matrix for the dense map (Ngs = H /4 W/4), Ky;, Vi € RV¥d
are the key and value matrix for the latent tokens, respectively.

Lds,i — Lit,j\2 (yds,i — Yit,j)2

B
Wit Py,

i, =
, where (¢, yit, wie, hyt) is the Rol descriptor for a latent Rol and (2 45, y45) are « and y coordinates
for a unit on the dense feature map. In our current design, the input dense map to cross attend latent
tokens is the early convolved feature map, which has the same height and width H/4 and W /4. We

put two 3 x 3 convolution layers and a following classifier on the restored feature map following
common pratice. The results are shown in Table 8.

14

Published as a conference paper at ICLR 2024

segmentor GFLOPs mloU mAcc

Swin-T (Liu et al., 2021a) + UperNet (Xiao et al., 2018)| 236 4.4 56.0
SE-T w/ 49 tokens 33 36.1 46.0

SF-T w/ 256 tokens 39 42,9 537

SF-T w/ 400 tokens 43 43.5 54.7

Table 8: Semantic segmentation performance of SparseFormer-T on Ade20K (Zhou et al., 2019)
validation set. The GFLOPs are computed with 512 x 512 input resolution.

We also inflate the number of latent tokens in the semantic segmentation as we do in object detector
for better performance. The performance of SparseFormer-T with 400 latent tokens is near the well-
established Swin (Liu et al., 2021a) and UperNet (Xiao et al., 2018) but with merely 1/8 Swin-T’s
GFLOPs. This validates that our proposed SparseFormer can perform per-pixel task and is suitable
to handle high resolution input data with limited latent tokens.

A.3. MORE INFERENCE DETAILS

We benchmark more throughput comparisons here on a more recent A5S000 GPU in Table 9 with
both FP32 and FP16. The proposed SparseFormer architectures deliver high throughput and takes
lower memory footprints at inference with both FP32 and FP16 data type. The advantage is more
evident with FP16 data type.

FP32 FP32 FP16 FP16
method top-1| FLOPs throughput mem throughput mem
ResNet-50 (Wightman et al., 2021) | 80.4 | 4.1G 1269 3010MB 2119 2906MB
ResNet-101 (Wightman et al., 2021) | 81.5 | 7.9G 797 3228MB 1318 3121MB
DeiT-S (Touvron et al., 2021) 79.8 | 4.6G 977 536MB 2732 430MB
DeiT-B (Touvron et al., 2021) 81.8 | 17.5G 305 1516MB 1112 1470MB

Swin-T (Liu et al., 2021a) 81.3 | 4.5G 688 1471IMB 1748 1076MB
Swin-S (Liu et al., 2021a) 83.0 | 8.7G 396 1715MB 1073 1285MB
SparseFormer-T 81.0| 2.0G 1207 1146MB 2925 699MB
SparseFormer-S 82.0| 3.8G 824 1328MB 2182 849MB
SparseFormer-B 82.6 | 7.8G 475 1711MB 1285 1395MB

Table 9: Benchmarking SparseFormers with other architectures on A5000 with batch size 32.

A.4. MODEL INITIALIZATIONS IN DETAILS

We initialize all weights of linear layers in SparseFormer unless otherwise specified below to follow
a truncated normalization distribution with a mean of 0, a standard deviation of 0.02, and a truncated
threshold of 2. Biases of these linear layers are initialized to zeros if existing.

Sampling points for every token are initialized in a grid-like shape (6 x 6 for 36 sampling points
by default) by zeroing weights of the linear layer to generate offsets and setting its bias using
meshgrid. Alike, we initialize the center of initial token Rols (as parameters of the model) to
the grid-like (e.g., 7 x 7 for 49 SF-Tiny variant) shape in the same way. The token’s height and
width are set to half of the image’s height and width, which is expressed as 0.5 x 0.5. We also
try other initializations for tokens’ height and width in Table 10. For training stability, we also
initialize adaptive decoding in SparseFormer following (Gao et al., 2022) with an initial Xavier de-
coding weight (Glorot & Bengio, 2010). This initialization makes the adaptive decoding behaves
like unconditional convolution (weights not dependent on token embeddings) at the beginning of the
training procedure.

For alternative ways for token height and width initializations, we can find that there is no significant
difference between the ‘half’ and ‘cell’ initializations. We prefer the ‘half’ initialization as tokens
can see more initially. However, setting all token Rols to the whole image, the ‘whole’ initialization,
is lagging before other initializations. We suspect that the model is unable to differentiate between
different tokens and is causing training instability due to identical Rols and sampling points for all
tokens.

15

Published as a conference paper at ICLR 2024

width and height initialization | top-1
half, 0.5 x 0.5 81.0

cell, 1/v/N x 1/v/N 81.0
whole, 1.0 x 1.0 80.2

Table 10: Alternative ways to initialize the token height and width for SparseFormer-T. N is the
number of latent tokens for the ‘cell’ initialization. The ‘cell’ initialization tiles Rols without over-
lapping over the image. The ‘whole’ initialization is with all token Rols centered at the image center.

token
Rol

sampling
points

sampling
density

stage 1 stage 2 stage 3 stage 4 stage 5

Figure 4: More visualizations of token Rols, their sampling points, and density across sampling
stages in SparseFormer-S (64 tokens). Rols and sampling points of different tokens are colored with
different colors. Better view with zoom-in.

A.4. VISUALIZATIONS

More visualizations on Rols and sampling points. In order to confirm the general ability of
SparseFormer to focus on foregrounds, we present additional visualizations in Figure 4 and 5 with
ImageNet-1K (Deng et al., 2009) validation set inputs. Note that these samples are not cherry-
picked. We observe that SparseFormer progressively directs its attention towards the foreground,
beginning from the roughly high contrasting areas and eventually towards more discriminative ar-
eas. The focal areas of SparseFormer adapt to variations in the image and mainly concentrate on
discriminative foregrounds when the input changes. This also validate the semantic adaptability of
SparseFormer to different images.

Visualizations on specific latent tokens. We also provide visualizations of specific latent tokens
across stages to take a closer look at how the token Rol behaves at the token level. We choose 5
tokens per image that respond with the highest values to the ground truth category. To achieve this,
we remove token embedding average pooling and place the classifier layer on individual tokens.
The visualizations are shown in Figure 6. We can observe that the token Rols progressively move
towards the foreground and adjust their aspect ratios at a mild pace by stage.

Visualizations on disturbed input images. We also show visualizations on disturbed input images
in Figure 7, where images are either random erased or heavily padding with zero values or reflection.
We can see that although SparseFormer initially views the image in a almost uniform way, it learns
to avoid sampling in uninformative areas in subsequent stages. This illustrates the robustness and
adaptability of SparseFormer when dealing with perturbed input images.

16

Published as a conference paper at ICLR 2024

e R 1 R]

e HiEed e HlHes

i Il
i i

il

token
Rol
1

il

sampling
points

sampling
density

token
Rol
LTI

[T

i5iBfEE|
iy mmi| E: =4

sampling
points

sampling
density

token
Rol

i S T \‘H!ﬁ 1= =
‘ 1 il

sampling
points

sampling
density

stage 1 stage 2 stage 3 stage 4 stage 5

Figure 5: More visualizations (cont’d).

17

Published as a conference paper at ICLR 2024

Figure 6: Visualizations on top-5 tokens responding to the ground-truth category across stages.

18

Published as a conference paper at ICLR 2024

Figure 7: Visualizations on sampling density maps when disturbing input images.

19

