
WeaveNet for Approximating Assignment Problems: Appendix

A Further implementation details426

A.1 Scaling function427

p
A
ij has a value range of [1, N], which depends on the size of the input problem instance. Moreover,428

general deep-learning frameworks (e.g., PyTorch and TensorFlow) initialize model weights under the429

assumption where the maximum value in the input data is around 1.0. Hence, to re-scale p
A
ij to s

A
ij ,430

we used the following function h, which is431

h(pAij) = ((1 � Cmin)(N � p
A
ij))/N + Cmin

h(pBji) = ((1 � Cmin)(N � p
B
ji))/N + Cmin,

(11)

where Cmin should be a constant value in range (0, 1) and is set to 0.1 in our experiments.432

A.2 Theoretical evaluation for the calculation cost433

A.2.1 Computational complexity434

With Dmax = max{D
0
, D}, the theoretical calculation cost of a single set encoder on a single435

core processing unit is O(N2
D

2
max), where a single linear operation in the convolution requires436

D
2 and we repeat it for 2N ⇥ M elements (N � M). The other operations in WeaveNet, such437

as cross-concatenation, have only less cost. Hence, the entire WeaveNet has its calculation cost of438

O(LN
2
D

2
max).439

We can reduce this into O(L log(NDmax)) with an ideal parallel processing unit. We have 2N ⇥ M440

elements for the convolution and can linearly operate them independently. Each linear operation441

can be done in parallel except for weighted sum aggregation, which takes O(log(Dmax)). Besides,442

we have a max-pooling operation, which consists of D parallel max operations. It can also be done443

in parallel and each max operation for N elements takes O(logN). Therefore, we can execute the444

calculation of a single set encoder in O(log(N) + log(Dmax)) = O(log(NDmax)).445

A.3 Information propagation with WeaveNet446

By stacking two or more FW layers, every latent feature of ij-th element in Z
⇤
` (` � 2) has a447

receptive field that covers all over the preference lists. Fig. 8 illustrates the receptive field, where448

green elements are upstream components of the ij-th element, and E0, E1 are encoders that involve449

all the input into the calculation of each feature in the output sequence. Let us backtrack the path450

of back-propagation from the ij-th element in Z
A
2 . It derives from the i-th row of Z

A
1 and the i-th451

column of Z
B
1 . Focusing on the i-th column (e.g., the green column) of Z

B
1 , each element (in the k-th452

row) derives from all the elements in the k-th row of S
B , plus all the elements in the k-th column of453

S
A. In this way, all the elements in S

A and S
B contribute to a column of Z

B
1 , then an element of Z

A
2 .454

Symmetrically, all the elements in S
A and S

B contribute to a column of Z
A
1 , then an element of Z

B
2 .455

Hence, we can see that stacking two FW layers can cover the entire bipartite graph in its reference.456

We also visualize the back-propagation path of DBM in Fig. 9. Note that DBM also satisfies the457

requirements (b), (c), and (d) in 4.1. There are two major difference between WeaveNet and DBM:458

their parameter efficiency and the choice of the local structure E`. DBM applies the weftwise459

and warpwise communications alternately in a single-stream architecture. Hence, each encoder is460

specialized in each direction. In contrast, every encoder in WeaveNet is trained for both directions,461

and thus it is twice parameter efficient. Also, the local structure of DBM is sub-optimal to encode462

the relative identity of each outgoing edge among N ⇥ M pairs. The impact of difference in the local463

structure appears as a performance gain in Fig. 5, from DBM-6 to SSWM-6.464

A.4 Loss weights465

Through the experiments, we set the loss weights �m = 1.0, �s = 0.7, and �f = �b = 0.01 to train466

any learning-based methods. We adjusted these parameters in the following process.467

13

!!"!#"

!#$

""

"$

se
t e

nc
od

er
 #
%

se
t e

nc
od

er
 #
#

Figure 8: Backward path of WeaveNet (two-stream architecture) from ij-th feature in Z
A
2 . The upper

stream terminates at i-th row of S
A and i-th column of S

B , which are the weights on outgoing and
incoming edges of the agent ai, respectively. The lower stream refers to all the elements in S

A and
S
B .

!!

en
co

de
r "

!

!"
en

co
de

r "
#

#$↔%(!!)
'%

'$

Figure 9: Backward path of DBM (single-stream architecture) from ij-th feature in Z2, where the
stream refers to all the elements in S

A and S
B . This structure is common with SSWN.

As a preliminary model, we prepared WN-15 with a set encoder with D = 64 and D
0 = 256. In this468

investigation, we used a balanced dataset UU and the most biased dataset UD.469

Because we experimentally found the tendency that the model hardly outputs a stably matched470

solution without minimizing Lm, we first tried to fix Lm. Fig. 10 shows the success rate of stable471

matching with different Lm in the range {0.001, 0.005, 0.010, 0.050, 0.100, 0.500, 1.000}, where472

WN-15(n) is the model trained and validated with the samples of N = n. From this result, we473

decided to set �m = 1.0 and use it as the maximum weight among the loss weights.474

Next, fixing �m = 1.0, we observed the trend in success rate of stable matching against �s. Fig. 11475

shows our investigation of Ls in the range {0.01, 0.10, 0.30, 0.50, 1.00}. Here, WN-dual is a Weav-476

eNet variant to deal with the inconsistent distributions of UD (see B.2 for details of WN-dual). As a477

result, we found that �s should simply be large enough (ca. �s � 0.30).478

To investigate sensitivity of the model against �f and �b, in this experiment, we set �s = 0.3 as479

the minimum satisfiable value in Fig. 117, and obtained Figures 12 and 13. From these figures,480

we found that too-strong weights for fairness may disrupt stability, which matches a theoretical481

expectation. Hence, we decided to use �f = �b = 0.01, which achieved the highest success rate of482

stable matching in the search range of {0.01, 0.02, 0.03}.483

A.5 Network architecture484

We can customize the shape of WeaveNet architecture finely by using set encoders with different485

shapes in each FW layer; however, we avoided such a complex architecture design to simplify the486

analysis and decided to use common-shape set encoders for all L FW layers. With this setting, we487

have only three hyper-parameters to decide the architecture: L, D, and D
0. The shortcut path is488

regularly connected to the input of `-th layer with an even number of `.489

7We used �s = 0.7 in any other experiments to stabilize the results, as stated in Section 5.

14

0.
00

1

0.
00

5

0.
01

0.
05 0.
1

0.
5

1.
0

�m

0.75

0.80

0.85

0.90

0.95

1.00
[-
]
S
u
cc

es
s

ra
te

of
S
ta

b
le

m
at

ch
in

g
"

WN-15(10)@UU(�s=0.3)

WN-15(10)@UD(�s=0.3)

WN-15f(10)@UU(�s, �f= 0.3,0.04)

WN-15(10)@UU(�s=0.3)

WN-15(10)@UD(�s=0.3)

WN-15f(10)@UU(�s, �f= 0.3,0.04)

0.000

0.002

0.004

0.006

0.008

0.010

[.
.]

L
m

#

Figure 10: Sensitivity against �m

0.
01 0.
1

0.
3

0.
5

1.
0

�s

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

S
u
cc

es
s

ra
te

of
S
ta

b
le

m
at

ch
in

g
"

WN-15(10)@UU(�m=1.0)

WN-15-dual(10)@UD(�m=1.0)

Figure 11: Sensitivity against �s

0.01 0.02 0.03
�f

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

[-
]
S
u
cc

es
s

ra
te

of
S
ta

b
le

m
at

ch
in

g
"

WN-15(10)@UU

WN-15-dual(10)@UD

WN-15-dual(20)@UD

WN-15(10)@UU

WN-15-dual(10)@UD

WN-15-dual(20)@UD

0

10

20

30

40

50

60

70

[.
.]

S
ex

E
q

C
os

t
#

Figure 12: Sensitivity against �f

0.01 0.02 0.03
�b

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

[-
]
S
u
cc

es
s

ra
te

of
S
ta

b
le

m
at

ch
in

g
"

WN-15(10)@UU

WN-15-dual(10)@UD

WN-15-dual(20)@UD

WN-15(10)@UU

WN-15-dual(10)@UD

WN-15-dual(20)@UD

25

50

75

100

125

150

175

200

225

[.
.]

B
al

an
ce

C
os

t
#

Figure 13: Sensitivity against �b

Table 5: Comparison in parameter efficiency among different shape architectures. Deep achieved the
best success rate in stable matching despite its smallest architecture.

Name L D D0 # of params. Stably Matched (%)

Deep 30 22 44 117k 95.7%
Wide1 15 32 64 119k 76.0%
Wide2 15 24 98 120k 73.1%

Table 5 shows the success rate of stable matching after 100,000 iterations of training. Here, we drew490

samples from the UU distribution with N = 30 for both training and validation. The result shows that491

the deepest model performs the best despite its smallest number of parameters. Hence, we decided to492

use the set encoder that has D  32 and D
0 = 2D.493

We further investigated the impact of network depth on the problem. To observe how the strongly494

NP-hard target increases the difficulty in optimization, we plotted both results by WN-L and WN-Lf495

with L 2 {6, 18, 30, 42, 54, 60}. Fig. 14 shows the trend of success rate against different L. Here,496

the models were trained and validated with the UU dataset at N = 20. We can see from the result497

that L = 6 is not enough to stably match samples of N = 20, but L = 18 is enough if only for that498

purpose. Besides, we observed that a deeper stack of layers tends to improve SEq slightly.499

A.6 Hyper-parameter settings for the other baselines500

Here, we denote the hyper-parameters for learning-based baseline methods, including those used in501

B.1 and B.2. The detail is summarized in Table 6. Note that MLP could not converge when more than502

three hidden layers are stacked. Hence, we set the number of layers to be three, as used in Li (2019).503

15

6 18 30 42 54 60
Layers

0.0

0.2

0.4

0.6

0.8

1.0

[-
]
S
u
cc

es
s

ra
te

of
S
ta

b
le

m
at

ch
in

g"

WN-L(20)

WN-Lf(20)

WN-L(20)

WN-Lf(20)

10

12

14

16

18

20

[.
.]

S
ex

E
q

C
os

t
#

Figure 14: Success rate of stable matching (solid, ") and SEq (dashed, #) according to L.

Table 6: Hyper-parameters for each baseline, where D
0 represents the length of key and query features

for self-attention, and the max-pooling input for the set encoder. Note that the D-dimentional feature
of WN is cross-concatenated and processed as a 2D-dimensional features in the encoders.

Model Encoder D D0 Res. # of params.

MLP-3 dense layer 100 - w/o 28k
GIN-2 graph conv. 44 - w/o 29k
DBM-6 max pooling 48 - w/o 29k
DBM_A-6 self-attention 48 32 w/ 28k
SSWN-6 set encoder 48 48 w/o 25k
SSWN-60 set encoder 64 64 w/ 740k
WN-6 set encoder 24 48 w/o 25k
WN_A-6 self-attention 32 28 w/ 29k
WN-18 set encoder 32 64 w/ 143k
WN-60 set encoder 32 64 w/ 493k
WN-80 set encoder 32 64 w/ 659k

For GIN Xu et al. (2019), we put two graph convolutional layers because the original paper reported504

it performs best and some other papers pointed our the oversmoothing problem of GCNs Li et al.505

(2018); Oono and Suzuki (2020). The layers are followed by a single linear layer, which output m̂.506

Note that we used the same loss weights decided in A.4 for all the methods since the loss weights507

derive from the task property rather than the architecture. For simplicity in comparison, we also508

used the three hyper-parameters, L, D, and D
0, to identify the architecture following to A.5. We509

experimentally decided whether to use the residual structure or not for the models which have more510

than four layers. Hence, the shown results are always better ones.511

B Additional experiments512

B.1 Additional learning-based baselines and ablations.513

We compared WeaveNet to more comprehensive baselines: a variation of MLP, DBM, and WeaveNet.514

Fig. 15 shows the results.515

MLP-O is a variant of MLP that faithfully follows the loss functions proposed in Li (2019). The516

difference is in the matrix constraint loss function Lm. Ours defined in Eq. (7) is cosine-distance517

16

3x
3

5x
5

7x
7

9x
9

Agent size

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

es
s

ra
te

of
S
ta

b
le

m
at

ch
in

g
"

WN-18

WN-6

WN-A-6

SSWN-6

DBM-6

DBM-A-6

GIN

MLP

MLP-O

Figure 15: Change in success rate of stable matching (") according to N , as a complement of Fig. 5.

based, while the one proposed in the original paper is Euclidean-distance based, which is518

Lm(m̂A
, m̂

B) =
X

{i,j}2A⇥B

|m̂A
ij � m̂

B
ji|. (12)

The above loss function restricts i-th column and i-th row of m̂ to be the same point in the N ⇥ M519

space. In other words, the column and row must match in a scale variant manner. We considered520

that this is unnecessarily strict for maintaining m̂ to be symmetric. Hence we adopted the cosine521

distance for Lm. In Fig. 15, we observed that MLP has a clear performance gain from MLP-O by our522

cosine-distance-based Lm.523

DBM proposed in Gibbons et al. (2019) has two variations; one uses max-pooling with one convo-524

lutional layer8 as the layer-wise encoder (DBM) and self-attention (DBM_A). We also integrated525

self-attention into the WeaveNet architecture (WN_A-6) to complete the comparison of the encoder526

choice. As a result, we have confirmed that self-attention does not work well for stable matching527

problem.528

B.2 Additional ablation in N = 20, 30529

We provide a detailed ablation study to finely analyze the symmetric and asymmetric variants, the530

effect of two-stream architecture, the size of training samples, and the binarization operation. Here,531

we trained all models with N = 30.532

First, we refer to the symmetric and asymmetric variants of WN-60f/b as WN-60f/b-sym and WN-533

60f/b-asym, respectively. Note that both models have the two-stream architecture, but sym shared534

batch normalization layers and asym does not. In addition, asym has an additional channel in inputs535

for side-identifiable code. In addition to them, we further prepared WN-60f/b-dual, a model that536

separately holds the entire set encoder for Z
A
` and Z

B
` at each layer to deal with asymmetric inputs.537

Since UD is a highly asymmetric dataset, the symmetric variant (WN-60f/b-sym) does not work538

appropriately while the asymmetric variants (asym and dual) could deal with it. In the dataset Lib,539

where we assumed an unknown bias strength, asym worked as well as sym and dual. This result540

showed that we can safely apply the asymmetric variation for any situation. Note that the performance541

gain of asym (or dual) from sym is achieved by the side-inequality. In other words, for an ethical542

application, we can say the gap is the cost of equality when applying sym for such a biased situation.543

8The max-pooled feature is copied and concatenated to the input feature as the set encoder, but it does not
have convolution before the max-pooling operation.

17

Table 7: Ablation study for the network architecture difference with pSEq (#), SEq (#), and the
success rate of stable matching ("). The scores shown in Table 1 are underlined.

Agents (N ⇥ M) 20⇥20 30⇥30

Datasets (Dist. Type) UU DD GG UD Lib UU DD GG UD Lib

WN-60f-sym
pSEq 12.16 6.53 15.56 82.48 14.59 18.30 10.52 27.39 210.06 22.14
SEq 11.44 6.32 15.34 81.21 14.39 16.07 9.64 26.46 194.24 21.16
Stably Matched (%) 99.10 99.40 99.40 96.00 99.50 98.10 99.00 98.00 81.50 98.80

WN-60f-asym
pSEq - - - 71.34 14.53 - - - 170.35 22.17
SEq - - - 71.18 14.44 - - - 162.61 21.29
Stably Matched (%) - - - 99.50 99.80 - - - 93.90 98.60

WN-60f-dual
pSEq - - - 72.42 14.71 - - - 173.46 23.92
SEq - - - 71.25 14.58 - - - 163.71 22.12
Stably Matched (%) - - - 98.50 99.60 - - - 94.80 97.50

SSWN-60f
pSEq 15.06 7.74 17.65 74.50 16.02 34.34 14.57 33.91 197.04 27.25
SEq 12.82 7.41 16.62 70.94 15.20 19.13 12.76 28.33 160.83 22.45
Stably Matched (%) 95.80 99.20 96.50 92.40 97.90 90.00 97.50 89.00 69.20 92.30

WN-60f+Hung
pSEq 11.70 6.36 15.37 71.23 14.45 16.35 9.75 26.90 168.87 21.62
SEq 11.51 6.35 15.37 71.18 14.45 16.14 9.69 26.58 162.73 21.32
Stably Matched (%) 99.80 99.90 100.00 99.60 100.00 99.70 99.90 99.90 95.20 99.20

Table 8: Ablation study for the network architecture difference with pBal (#), Bal(#), and the success
rate of stable matching ("). The scores shown in Table 2 are underlined. The best scores are in bold.

Agents (N ⇥ M) 20⇥20 30⇥30

Datasets (Dist. Type) UU DD GG UD Lib UU DD GG UD Lib

WN-60b-sym
pBal 72.33 138.75 106.65 142.37 65.82 140.40 301.59 223.02 322.98 127.79
Bal 71.29 138.57 106.50 141.96 65.59 137.70 301.08 221.12 315.51 127.05
Stably Matched (%) 98.00 99.10 98.60 97.30 98.90 97.90 98.60 93.70 80.30 98.10

WN-60b-asym
pBal - - - 140.79 65.84 - - - 313.59 127.93
Bal - - - 140.72 65.63 - - - 313.11 127.12
Stably Matched (%) - - - 99.80 99.10 - - - 98.80 98.00

WN-60b-dual
pBal - - - 141.23 65.79 - - - 315.71 128.23
Bal - - - 141.20 65.70 - - - 314.79 127.25
Stably Matched (%) - - - 99.60 99.30 - - - 98.90 97.90

SSWN-60b
pBal 79.06 139.59 107.90 141.48 67.22 169.22 304.52 225.06 317.31 132.19
Bal 76.54 139.29 107.58 141.37 66.99 150.88 302.90 223.62 314.91 129.52
Stably Matched (%) 92.60 98.50 98.40 99.60 98.60 79.80 96.70 93.90 94.0 92.80

WN-60b+Hung
pBal 71.51 138.62 106.58 140.76 65.68 138.62 301.16 222.01 313.46 127.32
Bal 71.45 138.60 106.55 140.73 65.68 137.92 301.14 221.42 313.13 127.22
Stably Matched (%) 99.90 99.90 99.60 99.90 100.00 99.00 99.90 96.90 99.30 99.20

Comparing asym with dual, asym scored slightly smaller pSEq and pBal costs despite the half544

number of model parameters. This result experimentally confirmed the advantage of a parameter-545

efficient model structure.546

Second, SSWN-60, a single-stream WeaveNet with set encoders, was prepared to measure the547

contribution of the two-stream architecture. SSWN-60f/b achieved consistently worse result than548

18

Table 9: Number of blocking pairs in the estimated matching with UU N = 100. Fail counts outputs
that are not a one-to-one matching. Outputs with no blocking pairs are stable matchings.

#Block. Pairs WN-80f +Hung. WN-80b +Hung.

0 84.4% 89.4% 73.2% 80.8%
1 2.2% 4.6% 6.7% 10.9%
2 0.0% 0.4% 0.3% 1.2%

� 3 0.0% 5.6% 0.0% 7.1%
Fail 13.4% - 19.8% -

Table 10: Elapsed time for training and testing the models.

Elapsed Time for training
200,000 iters.

for test
1,000 samples

WN-6 (N = 10) 10.39 hours 5.82 s
WN-18 (N = 10) 13.10 hours 14.83 s
WN-60 (N = 20) 30.10 hours 75.15 s
WN-60 (N = 30) 43.58 hours 74.10 s
WN-80 (N = 100) 111.10 hours 103.66 s

WN-60f/b (underlined), and collapsed in UD (N = 30) in Table 1 and UU (N = 30) in Table 2.549

These results experimentally proved the importance of the two-stream structure.550

Finally, to avoid an increase of theoretical calculation cost, WeaveNet applied argmax operation to551

binarize m̂ rather than the Hungarian algorithm, whose calculation cost is O(N3). To demonstrate552

how well the network maintains argmax(m̂) to be a one-to-one matching, we compared the result553

with those obtained with the Hungarian algorithm (WN-60f+Hung). Again, the asymmetric variant554

was applied for UD and Lib. From the result, we confirmed that WN-60f/b+Hung, the reference555

algorithm, achieved slightly better performance than those without the Hungarian algorithm, but the556

gain is quite limited. This result implies that the argmax binarization works closely to the Hungarian557

algorithm without the calculation cost.558

To obtain further insight, we prepared Table 9, which summarizes the difference w/ and w/o the559

Hungarian algorithm at N = 100. In this setting, we have more samples with which WN-80f/b560

fails to even obtain one-to-one matching by the argmax binarization. Binarization by the Hungarian561

algorithm forces such failure estimation m̂ to be a matching; however we obtained only 5.0%562

additional stable matchings from the 13.4% failure cases with WN-80f, and 7.5% from 19.8% failure563

cases with WN-80b. A similar number of cases resulted in matchings with more than three blocking564

pairs.565

From these results, we concluded that the Hungarian algorithm does not essentially improve the566

quality of fair stable matching, although it ensures m̂ to be a one-to-one matching.567

C Data for reproduction568

C.1 Calculation time and computing infrastructure569

We trained and tested the learning-based models used in the experiments on a single GPU (Tesla V100,570

memory size 16GB) mounted on NVIDIA DGX-1. We developed the environment on Ubuntu18.04.571

The above training required less than 16GB of memory space in our setting as long as the batch size572

is no larger than 8. The training and inference time are summarized in Table 10.573

C.2 Dataset574

We implemented the data generator for UU, DD, GG, UD, and Lib following the explanation in575

Tziavelis et al. (2019) since they are not provided by the authors. In the process, we also extracted the576

distribution of the LibimSeTi dataset Brozovsky and Petricek (2007), where the LibimSeTi dataset is577

19

accessible in http://konect.cc/networks/libimseti/9. The participants are recruited for this578

dataset by the authors of original paper. Any personal information is removed from the dataset. We579

filtered out data that do not have bidirectional preference rank, as stated in Tziavelis et al. (2019). We580

yielded the validation and test datasets with a fixed random seed to make them reproducible.581

All the code for data generation is included in the submission (with the random seeds and fairness582

costs of each sample obtained by the traditional algorithmic baselines). They will become publicly583

available at the timing of publication of this paper.584

9The download site by the original authors was closed after October 2021. Nonetheless, we can confirm
its license at Internet archives, such as https://web.archive.org/web/20200630115514/http://www.
occamslab.com/petricek/data/. There are multiple authorized re-distribution sites, such as the konect
project, and the dataset is still available for researchers.

20

http://konect.cc/networks/libimseti/
https://web.archive.org/web/20200630115514/http://www.occamslab.com/petricek/data/
https://web.archive.org/web/20200630115514/http://www.occamslab.com/petricek/data/

	Introduction
	Related work
	Stable matching problem as a benchmark task
	Deep-learning-based fair stable matching with WeaveNet
	WeaveNet
	Relaxed continuous optimization for fair stable matching

	Experiments
	Comparison with learning-based methods (N=3, 5, 7, 9)
	Comparison with algorithmic methods (N=20, 30)
	Demonstration with N=100

	Conclusion
	Further implementation details
	Scaling function
	Theoretical evaluation for the calculation cost
	Computational complexity

	Information propagation with WeaveNet
	Loss weights
	Network architecture
	Hyper-parameter settings for the other baselines

	Additional experiments
	Additional learning-based baselines and ablations.
	Additional ablation in N=20, 30

	Data for reproduction
	Calculation time and computing infrastructure
	Dataset

