
Appendix Outline

This appendix is organized as follows.

• In Appendix A, we provide details on hyper-parameters, datasets and architectures used in
our experiments.

• In Appendix B, we discuss whether the poor generalization of BNNs under covariate shift is
surprising.

• In Appendix C, we examine BNN performance under covariate shift for a variety of different
standard priors with different hyper-parameter settings.

• In Appendix D, we study the effect of spurious correlations on BMA performance using the
shift-MNIST dataset.

• In Appendix E, we show that the same issues that hurt BNN generalization under covariate
shift can cause poor performance in low-data regime.

• In Appendix F, we explore the convergence of the BNN performance as a function of the
number of HMC samples we produce.

• In Appendix G, we study how temperature scaling impacts BMA performance under
covariate shift.

• In Appendix H, we provide proofs of our propositions from section 5.
• In Appendix I, we visualize how different corruptions introduce noise along different

principal components of the data, and relate this to BMA performance on these corruptions.
• In Appendix J, we explain why approximate inference methods SWAG and MC Dropout do

not suffer the same performance degradation under covariate shift as HMC.
• In Appendix K, we analyze a more general family of priors that includes the EmpCov prior

from section 6.
• In Appendix L, we introduce the sum filter prior for improving BNN robustness to non-zero-

mean noise.
• In Appendix M, we provide an example of a model architecture where the BMA will be

impacted by nonlinear dependencies in the training data.
• In Appendix N, we examine how BNNs can be impacted by linear dependencies beyond the

first layer using the example of dead neurons.
• In Appendix O we prove that linear dependencies do not hurt BMAs of linear models under

covariate shift.
• In Appendix P, we examine covariate shift from an optimization perspective.
• Lastly, in Appendix Q, we provide details on licensing.

A Hyper-parameters and details of experiments

A.1 Prior definitions

Here we define the prior families used in the main text and the appendix, and the corresponding
hyper-parameters.

Gaussian priors. We consider iid Gaussian priors of the form N (0, α2I), where α2 is the prior
variance. Gaussian priors are the default choice in Bayesian neural networks [e.g. 21, 28, 69].

Laplace priors. We consider priors of the form Laplace(α) : 1
2α exp(−‖x‖1/α), where ‖ · ‖1 is

the `1-norm.

Student-t priors. In Appendix C, we consider iid Student-t priors of the form

Student-t(ν, α2) :
Γ(ν+1

2)

Γ(ν2)
√
νπ

(1 + w2

να2)−
ν+1
2 , where ν represents the degrees of freedom and α2 is the

prior variance.

Exp-norm priors. In Appendix C, we consider the prior family of the form
ExpNorm(p, α2) : exp(−‖w‖p/2α2). Notice that for p = 2, we get the Gaussian prior family. By
varying p we can construct more heavy-tailed (p < 2) or less heavy-tailed (p > 2) priors.

15

A.2 Hyper-parameters and details

HMC hyper-parameters. The hyper-parameters for HMC are the step size, trajectory length and
any hyper-parameters of the prior. Following Izmailov et al. [28], we set the trajectory length
τ =

πσprior
2 where σprior is the standard deviation of the prior. We choose the step size to ensure that

the accept rates are high; for most of our MLP runs we do 104 leapfrog steps per sample, while for
CNN we do 5 · 103 leapfrog steps per sample. For each experiment, we run a single HMC chain for
100 iterations discarding the first 10 iterations as burn-in; in Appendix F we show that 100 samples
are typically sufficient for convergence of the predictive performance.

Data Splits. For all CIFAR-10 and MNIST experiments, we use the standard data splits: 50000
training samples for CIFAR-10, 60000 training samples for MNIST, and 10000 test samples for both.
For all data corruption experiments, we evaluate on the corrupted 10000 test samples. For domain
shift experiments, we evaluate on 26032 SVHN test samples for MNIST to SVHN and 7200 STL-10
test samples for CIFAR-10 to STL-10. In all cases, we normalize the inputs using train data statistics,
and do not use any data augmentation.

Neural network architectures. Due to computational constraints, we use smaller neural network
architectures for our experiments. All architectures use ReLU activations. For MLP experiments, we
use a fully-connected network with 2 hidden layers of 256 neurons each. For CNN experiments, we
use a network with 2 convolutional layers followed by 3 fully-connected layers. Both convolutional
layers have 5× 5 filters, a stride of 1, and use 2× 2 average pooling with stride 2. The first layer has
6 filters and uses padding, while the second layer has 16 filters and does not use padding. The fully
connected layers have 400, 120, and 84 hidden units.

MAP and deep ensemble hyper-parameters. We use the SGD optimizer with momentum 0.9,
cosine learning rate schedule and weight decay 100 to approximate the MAP solution. In Appendix P
we study the effect of using other optimizers and weight decay values. On MNIST, we run SGD for
100 epochs, and on CIFAR we run for 300 epochs. For the deep ensemble baselines, we train 10
MAP models independently and ensemble their predictions.

Prior hyper-parameters. To select prior hyper-parameters we perform a grid search, and report
results for the optimal hyperparameters in order to compare the best versions of different models and
priors. We report the prior hyper-parameters used in our main evaluation in Table 1. In Appendix C
we provide detailed results for various priors with different hyper-parameter choices.

Table 1: Prior hyper-parameters

Hyper-parameter MNIST MLP MNIST CNN CIFAR-10 CNN

BNN, Gaussian prior; α2 1
100

1
100

1
100

BNN, Laplace prior; α
√

1
6

√
1
6

√
1

200

Tempering hyper-parameters. For the tempering experiments, we use a Gaussian prior with
variance α2 = 1

100 on MNIST and α2 = 1
3 on CIFAR-10. We set the posterior temperature to 10−2.

We provide additional results for other prior variance and temperature combinations in Appendix G.

Compute. We ran all the MNIST experiments on TPU-V3-8 devices, and all CIFAR experiments
on 8 NVIDIA Tesla-V100 devices. A single HMC chain with 100 iterations on these devices takes
roughly 1.5 hours for MNIST MLP, 2 hours for CIFAR CNN and 3 hours for MNIST CNN. As
a rough upper-bound, we ran on the order of 100 different HMC chains, each taking 2 hours on
average, resulting in 200 hours on our devices, or roughly 1600 GPU-hours (where we equate 1 hour
on TPU-V3-8 to 8 GPU-hours).

B Should we find the lack of BMA robustness surprising?

Bayesian neural networks are sometimes presented as a way of improving just the uncertainties, often
at the cost of degradation in accuracy. Consequently, one might assume that the poor performance
of BNNs under covariate shift is not surprising, and we should use BNN uncertainty estimates

16

solely to detect OOD, without attempting to make predictions, even for images that are still clearly
recognizable.

In recent years, however, Bayesian deep learning methods [e.g., 43, 17, 15], as well as high-fidelity
approximate inference with HMC [28], achieve improved uncertainty and accuracy compared to
standard MAP training with SGD. In this light, we believe there are many reasons to find the
significant performance degradation under shift surprising:

• The BNNs are often providing significantly better accuracy on in-distribution points. For
example, HMC BNNs achieve a 5% improvement over MAP on CIFAR-10, but 25% worse
accuracy on the pixelate corruption, when the images are still clearly recognizable (see
Figure 1). To go from clearly better to profoundly worse would not typically be expected of
any method on these shifts.

• In fact, recent work [e.g. 46] shows that there is typically a strong correlation between
in-distribution and OOD generalization accuracy on related tasks, which is the opposite of
what we observe in this work.

• Many approximate Bayesian inference procedures do improve accuracy over MAP on shift
problems [56, 69, 17], and newer inference procedures appear to be further improving on
these results. For example, MultiSWAG [69] is significantly more accurate than MAP under
shift. The fact that these methods are more Bayesian than MAP, and improve upon MAP in
these settings, makes it particularly surprising that a high-fidelity BMA would be so much
worse than MAP. This is a nuanced point — how is it that methods getting closer in some
ways to the Bayesian ideal are improving on shift, when a still higher-fidelity representation
of the Bayesian ideal is poor on shift? — we discuss this point in Appendix J.

• Recent results highlight that there need not be a tension between OOD detection and OOD
generalization accuracy: indeed deep ensembles provide much better performance than
MAP on both [56].

• Bayesian methods are closely associated with trying to provide a good representation of
uncertainty, and a good representation of uncertainty should not say “I have little idea” when
a point is only slightly out of distribution, but still clearly recognizable, e.g., through noise
corruption or mild domain shift.

• In Figure 6 we report the log-likelihood and ECE metrics which evaluate the quality of
uncertainty estimates for deep ensembles, MAP and BNNs. The log-likelihood and ECE of
standard BNNs are better than the corresponding values for the MAP solution on average, but
they are much worse than the corresponding numbers for deep ensembles for high degrees
of corruption. Furthermore, for some corruptions (impulse noise, pixelate) BNNs lose to
MAP on both log-likelihood and ECE at corruption intensity 5. Also for larger ResNet-20
architecture on CIFAR-10-C, Izmailov et al. [28] reported that the log-likelihoods of BNNs
are on average slightly worse than for MAP solution at corruption intensity 5.

C Additional results on BNN robustness

C.1 Error-bars and additional metrics

We report the accuracy, log-likelihood and expected calibration error (ECE) for deep ensembles, MAP
solutions and BMA variations in Figure 6. We report the results for different corruption intensities (1,
3, 5) and provide error-bars computed over 3 independent runs. Across the board, EmpCov priors
provide the best performance among BNN variations on all three metrics.

C.2 Detailed results for different priors

In this section, we evaluate BNNs with several prior families and provide results for different choices
of hyper-parameters. The priors are defined in subsection A.1.

We report the results using CNNs and MLPs on MNIST in Figure 7. None of the considered priors
completely close the gap to MAP under all corruptions. Gaussian priors show the worst results, losing
to MAP on all MNIST-C corruptions and Gaussian noise, at all prior standard deviations. Laplace
priors show similar results to Gaussian priors under Gaussian noise, but beat MAP on the stripe

17

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Domain Noise Blur Image Processing Other Corruptions Avg

−2

−1

0

L
og

-l
ik

el
ih

oo
d

C
IF

A
R

-1
0

S
T

L-
10

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se
S

pe
ck

le
N

oi
se

G
as

us
s

B
lu

r

D
ef

oc
us

B
lu

r

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

B
ri

gh
tn

es
s

C
on

tr
as

t

S
at

ur
at

e

E
la

st
ic

JP
E

G

P
ix

el
at

e

Fo
g

S
no

w

Fr
os

t

S
pa

tt
er

A
ve

ra
ge

0.0

0.2

E
C

E

(a) Corruption Intensity 1

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Domain Noise Blur Image Processing Other Corruptions Avg

−2

−1

0

L
og

-l
ik

el
ih

oo
d

C
IF

A
R

-1
0

S
T

L-
10

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se
S

pe
ck

le
N

oi
se

G
as

us
s

B
lu

r

D
ef

oc
us

B
lu

r

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

B
ri

gh
tn

es
s

C
on

tr
as

t

S
at

ur
at

e

E
la

st
ic

JP
E

G

P
ix

el
at

e

Fo
g

S
no

w

Fr
os

t

S
pa

tt
er

A
ve

ra
ge

0.0

0.2

E
C

E

(b) Corruption Intensity 3

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Domain Noise Blur Image Processing Other Corruptions Avg

−5.0

−2.5

0.0

L
og

-l
ik

el
ih

oo
d

C
IF

A
R

-1
0

S
T

L-
10

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se
S

pe
ck

le
N

oi
se

G
as

us
s

B
lu

r

D
ef

oc
us

B
lu

r

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

B
ri

gh
tn

es
s

C
on

tr
as

t

S
at

ur
at

e

E
la

st
ic

JP
E

G

P
ix

el
at

e

Fo
g

S
no

w

Fr
os

t

S
pa

tt
er

A
ve

ra
ge

0.0

0.2

0.4

E
C

E

Deep Ens MAP BNN Gaussian Prior BNN Laplace Prior BNN Temp=10−2 BNN EmpCov Prior

(c) Corruption Intensity 5

Figure 6: Detailed results on CIFAR-10. Accuracy, log-likelihood and log-likelihood for deep
ensembles, MAP solution, and BNN variants under covariate shift on CIFAR-10. We report the
performance at corruption intensity levels 1, 3 and 5 (corruption intensity does not affect the CIFAR-
10 and STL-10 columns in the plots). For all methods except deep ensembles we report the mean
and standard deviation (via error-bars) over 3 random seeds. EmpCov priors provide the only BNN
variation that consistently performs on par with deep ensembles in terms of log-likelihood and
ECE. Tempered posteriors improve the accuracy on some of the corruptions, but significantly hurt
in-domain performance.

18

0.2

0.4

0.6

0.8

1.0

M
L

P
A

cc
ur

ac
y Domain Noise Blur Affine Other Corruptions Avg

Deep Ens

MAP

BNN, N (0, 1.000)

BNN, N (0, 0.333)

BNN, N (0, 0.100)

BNN, N (0, 0.033)

BNN, N (0, 0.010)

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar

S
ca

le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

C
N

N
A

cc
ur

ac
y

Deep Ens

MAP

BNN, N (0, 0.100)

BNN, N (0, 0.033)

BNN, N (0, 0.020)

BNN, N (0, 0.010)

BNN, N (0, 0.003)

(a) Gaussian priors

0.2

0.4

0.6

0.8

1.0

M
L

P
A

cc
ur

ac
y

Domain Noise Blur Affine Other Corruptions Avg

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar

S
ca

le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

C
N

N
A

cc
ur

ac
y

Deep Ens

MAP

BNN, Laplace(0.71)

BNN, Laplace(0.41)

BNN, Laplace(0.22)

BNN, Laplace(0.13)

BNN, Laplace(0.07)

(b) Laplace priors

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar

S
ca

le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

M
L

P
A

cc
ur

ac
y

Domain Noise Blur Affine Other Corruptions Avg

Deep Ens

MAP

BNN, Student-t (ν = 5.0,α2 = 0.01)

BNN, Student-t (ν = 5.0,α2 = 0.10)

BNN, Student-t (ν = 2.0,α2 = 0.01)

BNN, Student-t (ν = 2.0,α2 = 0.10)

BNN, Student-t (ν = 10.0,α2 = 0.01)

BNN, Student-t (ν = 10.0,α2 = 0.10)

(c) Student-t priors

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar

S
ca

le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

M
L

P
A

cc
ur

ac
y

Domain Noise Blur Affine Other Corruptions Avg

Deep Ens

MAP

BNN, ExpNorm(p = 15.00,α2 = 0.02)

BNN, ExpNorm(p = 5.00,α2 = 0.01)

BNN, ExpNorm(p = 4.00,α2 = 5.00)

BNN, ExpNorm(p = 3.00,α2 = 1.67)

BNN, ExpNorm(p = 1.00,α2 = 0.05)

(d) ExpNorm priors

Figure 7: Priors on MNIST. We report the performance of different prior families under covariate
shift on MNIST. For Gaussian and Laplace prior families we report the results using both the MLP
and CNN architectures; for Student-t and ExpNorm we only report the results for MLP. None of
the priors can match the MAP performance across the board, with particularly poor results under
Gaussian noise, Brightness and Fog corruptions.

19

corruption in MNIST-C. Student-t priors show better results, matching or outperforming MAP on all
affine transformations, but still underpeform significantly under Gaussian noise, Brightness and Fog
corruptions. Finally, exp-norm priors can match MAP on Shot noise and also outperform MAP on
stripe, but lose on other corruptions. The in-domain performance with exp-norm priors is also lower
compared to the other priors considered.

To sum up, none of the priors considered is able to resolve the poor robustness of BNNs under
covariate shift. In particular, all priors provide poor performance under Gaussian noise, Brightness
and Fog corruptions.

D Bayesian neural networks and spurious correlations

For corrupted data, models experience worse performance due to additional noisy features being
introduced. However, it’s also possible that the reverse can occur, and a seemingly highly predictive
feature in the training data will not be present in the test data. This distinct category of covariate
shift is often called spurious correlation. To test performance with spurious correlations, we use the
Shift-MNIST dataset [29], where we introduce spurious features via modifying the training data so
that a set of ten pixels in the image perfectly correlates with class labels.

Table 2: Spurious correlations. Accuracy and log-likelihood of MAP, deep ensembles and BNNs
with Gaussian and EmpCov priors on the Shift-MNIST dataset.

Model MLP Accuracy MLP LL CNN Accuracy CNN LL

MAP 88.70% -0.527 48.63% -2.206

Deep Ensemble 88.73% -0.527 72.99% -1.041

BNN Gaussian Prior 90.83% -0.598 64.27% -1.326

BNN EmpCov Prior 86.95% -1.146 64.41% -1.450

Table 2 shows the results for deep ensembles, MAP and BNNs with Gaussian and EmpCov priors on
the Shift-MNIST dataset. We see worse accuracy for CNN architectures, demonstrating how more
complex architectures can more easily over-fit the spurious correlations. BNNs with Gaussian prior
perform better than MAP on both MLP and CNN, but significantly worse than deep ensembles for
CNNs. Notice that the EmpCov prior does not improve performance here for either architecture,
highlighting the difference between spurious correlations and other forms of covariate shift. In
particular, the largest principal components of the Shift-MNIST training dataset place large magnitude
weights on the spurious features, and so using the EmpCov prior results in samples with larger weights
for the activated (spurious) pixels. When those same pixels are not activated in the test set, such
samples will have a larger shift in their predictions.

An in-depth analysis of BNNs in the presence of spurious correlations remains an exciting direction
for further research.

E Bayesian neural networks in low-data regime

The intuition presented in Propositions 2, 3 suggests that Bayesian neural networks may also under-
perform in low-data regime. Indeed, if the model only observes a small number of datapoints, some
of the directions in the parameter space will not be sufficiently constrained by the data. Empirically,
in Table 3 found that the performance of BNNs is indeed inferior to MAP when the training dataset is
very small, but the results become more similar as the size of the dataset increases.

We believe that the reason why we do not observe the poor generalization of the Bayesian models in
the 1000 datapoints regime is that the low-variance directions are fairly consistent across the dataset.
However, in extreme low-data cases, we cannot reliably estimate the low-variance directions leading
to poor performance according to Propositions 2, 3. A detailed exploration of BNN performance in
low-data regime is an exciting direction of future work.

20

Table 3: Spurious correlations. Accuracy of MAP and HMC BNNs using the MLP architecture on
MNIST in low-data regime. When the dataset is very small, MAP significantly outperforms the BNN.

50 datapoints 100 datapoints 1000 datapoints

MAP 66.4% 74.3% 90.2%

HMC BNN 53.4% 65.4% 90.3%

F Convergence of HMC accuracy with samples

In our experiments, we use 90 HMC samples from the posterior to evaluate the performance of BNNs.
In this section, we verify that the Monte Carlo estimates of accuracy of the Bayesian model average
converge very quickly with the number of samples, and 90 samples are sufficient for performing
qualitative comparison of the methods. In Table 4 we show the accuracy for a fully-connected HMC
BNN with a Gaussian prior on MNIST under different corruptions as a function of the number of
samples:

Table 4: Spurious correlations. Accuracy of MAP and HMC BNNs using the MLP architecture on
MNIST in low-data regime. When the dataset is very small, MAP significantly outperforms the BNN.

corruption 10 samples 50 samples 100 samples 500 samples 1200 samples

MNIST 98.2% 98.19% 98.19% 98.32% 98.26%

Impulse Noise 85.34% 89.86% 90.68% 91.3% 91.33%

Motion Blur 81.56% 81.82% 82.14% 82.47% 82.61%

Scale 67.32% 68.69% 69.45% 69.91% 70.18%

Brightness 23.66% 20.26% 22.31% 24.08% 23.4%

Stripe 28.18% 30.09% 34.8% 39.26% 37.96%

Canny Edges 58.79% 62.85% 63.34% 64.36% 64.32%

In each case, the performance estimated from 100 samples is very similar to the performance for
1200 samples. The slowest convergence is observed on the stripe corruption, but even there the
performance at 100 samples is very predictive of the performance at 1200 samples.

G Tempered posteriors

In this section we explore the effect of posterior tempering on the performance of the MLP on MNIST.
In particular, following Wenzel et al. [67] we consider the cold posteriors:

pT (W |D) ∝ (p(D|W)p(W))1/T , (4)

where T ≤ 1. In Figure 8 we report the results for BNNs with Gaussian priors with variances
0.01 and 0.03 and posterior temperatures T ∈ {10−1, 10−2, 10−3}. As observed by Izmailov et al.
[28], lower temperatures (10−2, 10−3) improve performance under the Gaussian noise corruption;
however, low temperatures do not help with other corruptions significantly.

H Proofs of the theoretical results

For convenience, in this section we assume that a constant value of 1 is appended to the input features
instead of explicitly modeling a bias vector b. We assume that the output f(x,W) of the network
with parameters W on an input x is given by

f(x,W) = ψ(φ(. . . φ(φ(xW 1)W 2 + b2))W l + bl), (5)

21

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar

S
ca

le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

M
L

P
A

cc
ur

ac
y

Domain Noise Blur Affine Other Corruptions Avg

Deep Ens

MAP

BNN, N (0, 0.01), T = 0.1

BNN, N (0, 0.01), T = 0.01

BNN, N (0, 0.01), T = 0.001

BNN, N (0, 0.03), T = 0.1

BNN, N (0, 0.03), T = 0.01

BNN, N (0, 0.03), T = 0.001

Figure 8: Temperature ablation. We report the performance of BNNs with Gaussian priors and
tempered posteriors for different temperatures and prior scales. Low temperatures (T = 10−2,
10−3) can provide a significant improvement on the noise corruptions, but do not improve the results
significantly under other corruptions.

where φ are non-linearities of the intermediate layers (e.g. ReLU) and ψ is the final link function (e.g.
softmax).

We will also assume that the likelihood is a function `(·, ·) that only depends on the output of the
network and the target label:

p(y|x,W) = `(y, f(x,W)). (6)
For example, in classification `(y, f(x,W)) = f(x,W)[y], the component of the output of the
softmax layer corresponding to the class label y. Finally, we assume that the likelihood factorizes
over the inputs:

p(D|W) =
∏
x,y∈D

p(y|x,W) (7)

for any collection of datapoints D.

H.1 Proof of Lemma 1

We restate the Lemma:

Lemma 1 Suppose that the input feature xik is equal to zero for all the examples xk in the training
dataset D. Suppose the prior distribution over the parameters p(W) factorizes as p(W) = p(w1

ij) ·
p(W \ w1

ij) for some neuron j in the first layer, where W \ w1
ij represents all the parameters W of

the network except w1
ij . Then, the posterior distribution p(W |D) will also factorize and the marginal

posterior over the parameter w1
ij will coincide with the prior:

p(W |D) = p(W \ w1
ij |D) · p(w1

ij). (8)

Consequently, the MAP solution will set the weight w1
ij to the value with maximum prior density.

Proof. Let us denote the input vector x without the input feature i by x−i, and the matrix W 1

without the row i by W 1
−i. We can rewrite Equation 5 as follows:

f(x,W) = ψ(φ(. . . φ(φ(x−iW 1
−i + xiW 1

i︸ ︷︷ ︸
=0

)W 2 + b2))W l + bl). (9)

As for all the training inputs xk the feature xik is equal to 0, the vector xiW 1
i is equal to zero and can

be dropped:

f(xk,W) = ψ(φ(. . . φ(φ(x−ik W 1
−i)W

2 + b2))W l + bl)) =: f ′(xk,W−i), (10)

where W−i denotes the vector of parameters W without W 1
i , and we defined a new function f ′

that does not depend on Wi and is equivalent to f on the training data. Consequently, according to
Equation 6 and Equation 7, we can write

p(D|W) =

n∏
k=1

`(yk, f(xk,W)) =

n∏
k=1

`(yk, f
′(xk,W−i)). (11)

22

In other words, the likelihood does not depend on W 1
i and in particular w1

ij for any j.

Let us write down the posterior over the parameters using the factorization of the prior:

p(W |D) =

does not depend on w1
ij︷ ︸︸ ︷

p(D|W \ w1
ij)p(W \ w1

ij) p(w
1
ij)

Z
, (12)

where Z is a normalizing constant that does not depend on W . Hence, the posterior factorizes as a
product of two distributions: p(D|W \ w1

ij)p(W \ w1
ij)/Z over W \ w1

ij and p(w1
ij). The marginal

posterior over w1
ij thus coincides with the prior and is independent of the other parameters.

Maximizing the factorized posterior Equation 12 to find the MAP solution, we set the w1
ij to the

maximum of its marginal posterior, as it is independent of the other parameters. �

H.2 Formal statement and proof of Proposition 1

First, let us prove the following result for the MAP solution.

Proposition 1’ Consider the following assumptions:

(a) The input feature xik is equal to zero for all the examples xk in the training dataset D.

(b) The prior over the parameters factorizes as p(W) = p(W−i) · p(W 1
i), where W−i is the

vector of all parameters except for W 1
i , the row i of the weight matrix W 1 of the first layer.

(c) The prior distribution p(W 1
i) has maximum density at 0.

Consider an input x(c) = [x1, . . . , xi−1, c, xi+1, . . . , xm]. Then, the prediction with the MAP model
WMAP does not depend on c: f(x(c),WMAP) = f(x(0),WMAP).

Proof. Analogous to the proof of Lemma 1, we can show that under the assumptions (a), (b) the
posterior over the parameters factorizes as

p(W |D) = p(W−i|D)p(W 1
i). (13)

Then, the MAP solution will set the weights W 1
i to the point of maximum density, which is 0 under

assumption (c). Consequently, based on Equation 9, we can see that the output of the MAP model
will not depend on xi = c. �

Next, we provide results for the Bayesian model average. We define positive-homogeneous activations
as functions φ that satisfy φ(c · x) = c · φ(x) for any positive scalar c and any x. For example, ReLU
and Leaky ReLU activations are positive-homogeneous.

We will call a vector z of class logits (inputs to softmax) ε-separable if the largest component zi is
larger than all the other components by at least ε:

zi − zj > ε ∀j 6= i. (14)

We can prove the following general proposition.

Proposition 1” We will need the following assumptions:

(d) The support of the prior over the parameters W−i is bounded: ‖W−i‖ < B.

(e) The activations φ are positive-homogeneous and have a Lipschitz constant bounded by Lφ.

Consider an input x(c) = [x1, . . . , xi−1, c, xi+1, . . . , xm]. Then, we can prove the following conclu-
sions

(2) Suppose the link function ψ is identity. Suppose also that the expectation
E[φ(. . . φ(φ(W 1

i)W 2) . . .)W l] over W sampled from the posterior is non-zero. Then the
predictive mean under BMA (see Equation 2) on the input x(c) depends on c.

23

(3) Suppose the link function ψ is softmax. Then, for sufficiently large c > 0 the predicted
class ŷ(c) = arg maxy f(x(c),W)[y] does not depend on x(c) for any sample W from the
posterior such that z = φ(. . . φ(φ(W 1

i)W 2) . . .)W l is ε-separable.

Proof. We can rewrite Equation 5 as follows:

f(x(c),W) = ψ(φ(. . . φ(φ(x−iW 1
−i + cW 1

i)W 2 + b2))W l + bl) =

ψ(φ(. . . φ(c · φ([x−iW 1
−i]/c+W 1

i)W 2 + b2))W l + bl) =

ψ(c · (φ(. . . φ(φ([x−iW 1
−i]/c+W 1

i)W 2 + b2/c))W l + bl/c)).

(15)

Now, under our assumptions the prior and hence the posterior over the weights W−i is bounded. As
in finite-dimensional Euclidean spaces all norms are equivalent, in particular we imply that (1) the
spectral norms ‖W t‖2 < LW are bounded for all layers t = 2, . . . , l by a constant LW , and (2) the
Frobenious norms ‖ ·‖ of the bias parameters bt and the weightsW 1

−i are all bounded by a constantB.
We will also assume that the norm of the vector x−i is bounded by the same constant: ‖x−i‖ ≤ B.

Consider the difference∥∥∥∥(φ(. . . φ(φ(x−iW 1
−i

c
+W 1

i

)
W 2 +

b2

c

))
W l +

bl

c

)
−

φ

(
. . . φ

(
φ

(
x−iW 1

−i
c

+W 1
i

)
W 2 +

b2

c

))
W l

∥∥∥∥ ≤ B

c
.

(16)

Indeed, by the ‖bl‖ ≤ B. Next, for an arbitrary z we can bound∥∥∥∥φ(z +
bl−1

c

)
W l − φ (z)W l

∥∥∥∥ ≤ LW · Lφ · Bc , (17)

where we used the fact that φ is Lipschitz with Lφ and the Lipschitz constant for matrix multiplication
by W l coincides with the spectral norm of W l which is bounded by LW .

Using the bound in Equation 17, we have∥∥∥∥(φ(φ(. . . φ(φ(x−iW 1
−i

c
+W 1

i

)
W 2 +

b2

c

)
W l−1 +

bl−1

c

)
. . .

)
W l +

bl

c

)
−

φ

(
φ

(
. . . φ

(
φ

(
x−iW 1

−i
c

+W 1
i

)
W 2 +

b2

c

)
· · ·
)
W l−1

)
W l

∥∥∥∥ ≤ B

c
+ LW · Lφ ·

B

c
.

(18)

Applying the same argument to all layers of the network (including the first layer where x−iW 1
−i

c

plays the role analogous to bl−1

c in Equation 17), we get∥∥∥∥(φ(. . . φ(φ(x−iW 1
−i

c
+W 1

i

)
W 2 +

b2

c

)
. . .

)
W l +

bl

c

)
−φ
(
. . . φ

(
φ
(
W 1
i

)
W 2
)
. . .
)
W l

∥∥∥∥
≤ B

c
(1 + LW · Lφ + L2

W · L2
φ + . . .+ Ll−1

W · Ll−1
φ).

(19)

Choosing c to be sufficiently large, we can make the bound in Equation 19 arbitrarily tight.

Conclusion (2) Suppose ψ is the identity. Then, we can write

f(x(c),W) = c · φ
(
. . . φ

(
φ
(
W 1
i

)
W 2
)
. . .
)
W l + ∆, (20)

where ∆ is bounded: ‖∆‖ ≤ B(1+LW ·Lφ+L2
W ·L2

φ+ . . .+Ll−1
W ·Ll−1

φ). Consider the predictive
mean under BMA,

EW f(x(c),W) = c · EWφ
(
. . . φ

(
φ
(
W 1
i

)
W 2
)
. . .
)
W l︸ ︷︷ ︸

6=0

+ EW∆︸ ︷︷ ︸
Bounded

, (21)

24

where the first term is linear in c and the second term is bounded uniformly for all c. Finally, we
assumed that the expectation EWφ

(
. . . φ

(
φ
(
W 1
i

)
W 2
)
. . .
)
W l 6= 0, so for large values of c the

first term in Equation 21 will dominate, so the output depends on c.

Conclusion (3) Now, consider the softmax link function ψ. Note that for the softmax we have
arg maxy ψ(c · z)[y] = arg maxy z[y]. In other words, multiplying the logits (inputs to the softmax)
by a positive constant c does not change the predicted class. So, we have

ŷ(c,W) = arg max
y
f(x(c),W)[y] =

arg max
y

(
φ

(
. . . φ

(
φ

(
x−iW 1

−i
c

+W 1
i

)
W 2 +

b2

c

))
W l +

bl

c

)
[y].

(22)

Notice that zW = φ(. . . φ(φ(W 1
i)W 2) . . .)W l does not depend on the input x(c) in any way.

Furthermore, if zW is ε-separable, with class yW corresponding to the largest component of zW , then
by taking

c >
B(1 + LW · Lφ + L2

W · L2
φ + . . .+ Ll−1

W · Ll−1
φ)

ε
, (23)

we can guarantee that the predicted class for f(x(c),W) will be yW according to Equation 19. �

H.3 General linear dependencies, Proposition 2

We will prove the following proposition, reducing the case of general linear dependencies to the case
when an input feature is constant.

Suppose that the prior over the weightsW 1 in the first layer is an i.i.d. Gaussian distributionN (0, α2),
independent of the other parameters in the model. Suppose all the inputs x1 . . . xn in the training
dataset D lie in a subspace of the input space: xTi c = 0 for all i = 1, . . . , n and some constant vector
c such that

∑m
i=1 c

2
i = 1.

Let us introduce a new basis v1, . . . , vm in the input space, such that the vector c is the first basis
vector. We can do so e.g. by starting with the collection of vectors {c, e2, . . . , em}, where ei are the
standard basis vectors in the feature space, and using the Gram–Schmidt process to orthogonalize the
vectors. We will use V to denote the matrix with vectors v1, . . . , vm as colunms. Due to orthogonality,
we have V V T = I .

We can rewrite our model from Equation 5 as

f(x,W) = ψ(φ(. . . φ(φ(xV︸︷︷︸
x̄

V TW 1︸ ︷︷ ︸
W̄ 1

)W 2 + b2))W l + bl). (24)

We can thus re-parameterize the first layer of the model by using transformed inputs x̄ = xV , and
transformed weights W̄ 1 = V TW 1. Notice that this re-parameterized model is equivalent to the
original model, and doing inference in the re-parameterized model is equivalent to doing inference in
the original model.

The induced prior over the weights W̄ 1 is N (0, α2I), as we simply rotated the basis. Furthermore,
the input x̄1

k = xTk v1 = 0 for all training inputs k. Thus, with the re-parameterized model we are in
the setting of Lemma 1 and Propositions 1’, 1”.

In particular, the posterior over the parameters W̄ 1
1 = vT1 W

1 will coincide with the prior N (0, α2I)
(Lemma 1). The MAP solution will ignore the feature combination x̄1 = xT v1, while the BMA
predictions will depend on it (Propositions 1’, 1”).

H.4 Convolutional layers, Proposition 3

Suppose that the convolutional filters in the first layer are of size K ×K ×C, where C is the number
of input channels. Let us consider the set D̂ of size N of all the patches of size K ×K ×C extracted
from the training images in D after applying the same padding as in the first convolutional layer. Let
us also denote the set of patches extracted from a fixed input image by Dx.

25

200 400 600

0

20

Im
ag

e
P

ro
je

ct
io

n

Gaussian Noise (stdev=3)

200 400 600

0

20
Translate

200 400 600

0

20

Fog

200 400 600

0

20
Canny Edges

10 20
PCA Components

0

10

5x
5

P
at

ch
P

ro
je

ct
io

n

10 20
PCA Components

−5

0

5

10 20
PCA Components

0

10

10 20
PCA Components

−5

0

5

Original Corrupted

Figure 9: Corruptions and linear dependence. Top: The distribution (mean ± 2 std) of MNIST
and MNIST-C images and bottom: 5 × 5 patches extracted from these images projected onto
the corresponding principal components of the training data images and patches. Gaussian noise
corruption breaks linear dependencies in both cases, while Translate does not change the projection
distribution for the 5× 5 patches.

A convolutional layer applied to x can be thought of as a fully-connected layer applied to all patches
in Dx individually, and with results concatenated:

conv(w, x) =

i, j, i+k∑

a=i

j+k∑
b=j

C∑
c=1

xa,b,c ·W 1
a,b,c

 , (25)

where xa,b,c is the intensity of the image at location (a, b) in channel c, W 1
a,b,c is the corresponding

weight in the convolutional filter, and the tuples (i, j, v) for all i, j represent the intensities at location
(i, j) in the output image.

In complete analogy with Lemma 1 and Propositions 1’, 1”, we can show that if all the patches in the
dataset D̂ are linearly dependent, then we can re-parameterize the convolutional layer so that one of
the convolutional weights will always be multiplied by 0 and will not affect the likelihood of the data.
The MAP solution will set this weight to zero, while the BMA will sample this weight from the prior,
and it will affect predictions.

I How corruptions break linear dependence in the data

In Figure 9, we visualize the projections of the original and corrupted MNIST data on the PCA
components extracted from the MNIST train set and the set of all 5× 5 patches of the MNIST train
set. As we have seen in section 5, the former are important for the MLP robustness, while the latter
are important for CNNs.

Certain corruptions increase variance along the lower PC directions more than others. For example,
the Translate corruption does not alter the principal components of the 5× 5 patches in the images,
and so a convolutional BNN with a Gaussian prior is very robust to this corruption. In contrast,
Gaussian noise increases variance similarly along all directions, breaking any linear dependencies
present in the training data and resulting in much worse BNN performance.

J Analyzing other approximate inference methods

In this section, we provide additional discussion on why popular approximate inference methods
SWAG and MC Dropout do not exhibit the same poor performance under covariate shift.

J.1 Variational inference

Suppose the prior is p(w) = N (0, α2I) and the variational family contains distributions of the
form q(w) = N (µ,Λ), where the mean µ and the covariance matrix Λ are parameters. Vari-

26

ational inference solves the following optimization problem: maximize Ew∼N (µ,Λ)p(D|w) −
KL

(
N (µ,Λ)||N (0, α2I)

)
with respect to µ, Λ [6, 35].

First, let us consider the case when the parameter Λ is unconstrained and can be any positive-definite
matrix. Suppose we are using a fully-connected network, and there exists a linear dependence in the
features, as in Proposition 2. Then, there exists a direction d in the parameter space of the first layer
of the model, such that the projection of the weights on this direction will not affect the likelihood,
and the posterior over this projection will coincide with the prior and will be independent from other
directions (Proposition 2,), which is Gaussian. Consequently, the optimal variational distribution
will match the prior in this projection, and will also be independent from the other directions, or, in
other words, d will be an eigenvector of the optimal Λ with eigenvalue α2. So, variational inference
with a general Gaussian variational family will suffer from the same exact issue that we identified
for the true posterior. Furthermore, we can generalize this result to convolutional layers completely
analogously to Proposition 3,.

Now, let us consider the mean-field variational inference (MFVI) which is commonly used in
practice in Bayesian deep learning. In MFVI, the covariance matrix Λ is constrained to be diagonal.
Consequently, for general linear dependencies in the features the variational distribution will not have
sufficient capacity to make the posterior over the direction d independent from the other directions.
As a result, MFVI will not suffer as much as exact Bayesian inference from the issue presented in
Propositions 2, 3,.

One exception is the dead pixel scenario described in Section 5.1, where one of the features in the
input is a constant zero. In this scenario, MFVI will have capacity to make the variational posterior
over the corresponding weight match the prior, leading to the same lack of robustness described in
Proposition 1 (informal).

Empirical results. In addition to the theoretical analysis above, we ran mean field variational
inference on our fully-connected network on MNIST and evaluated robustness on the MNIST-C
corruptions. Below we report the results for MFVI, MAP and HMC BNN with a Gaussian prior:

Table 5: Accuracy of MAP, MFVI and HMC BNNs under different corruptions. MFVI is more robust
than HMC and even outperforms the MAP solution for some of the corruptions.

method CIFAR-10 Gaussian Noise Motion Blur Scale Brightness Stripe Canny Edges

MAP 98.5% 70.6% 86.7% 77.6% 50.6% 34.1% 68%

MFVI 97.9% 62.5% 82.2% 70.5% 68.9% 47.7% 70%

HMC 98.2% 43.2% 82.1% 69.5% 22.3% 34.8% 63.3%

As expected from our theoretical analysis, MFVI is much more robust to noise than HMC BNNs.
However, on some of the corruptions (Gaussian Noise, Motion Blur, Scale) MFVI underperforms the
MAP solution. At the same time, MFVI even outperforms MAP on Brightness, Stripe and Canny
Edges.

J.2 SWAG

SWA-Gaussian (SWAG) [43] approximates the posterior distribution as a multivariate Gaussian with
the SWA solution [27] as its mean. To construct the covariance matrix of this posterior, either the
second moment (SWAG-Diagonal) or the sample covariance matrix of the SGD iterates is used. For
any linear dependencies in the training data, the corresponding combinations of weights become
closer to zero in later SGD iterates due to weight decay. Since SWAG only uses the last K iterates in
constructing its posterior, the resulting posterior will likely have very low variance in the directions
of any linear dependencies. Furthermore, because SGD is often initialized at low magnitude weights,
even the earlier iterates will likely have weights close to zero in these directions.

27

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar

S
ca

le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

M
L

P
A

cc
ur

ac
y

Domain Noise Blur Affine Other Corruptions Avg

Deep Ens

MAP

BNN Gaussian Prior

BNN, PCA prior λ = 0.980

BNN, PCA prior λ = 0.985

BNN, PCA prior λ = 0.990

BNN, PCA prior λ = 0.995

Figure 10: General PCA priors. Performance of the PCA priors introduced in Appendix K for
various decay rates λ. PCA priors generally improve performance significantly under Gaussian noise
and Stripe. Lower decay rates λ provide better results under Gaussian noise.

J.3 MC Dropout

MC Dropout applies dropout at both train and test time, thus allowing computation of model
uncertainty from a single network by treating stochastic forward passes through the network as
posterior samples. The full model learned at train time is still an approximate MAP solution, and
thus will be minimally affected by linear dependencies in the data being broken at test time. As
for the test-time dropout, we can conclude that if the expected output of the network is not affected
by linear dependencies being broken, then any subset of that network (containing a subset of the
network’s hidden units) would be similarly unaffected. Additionally, if dropping an input breaks a
linear dependency from the training data, the network (as an approximate MAP solution) is robust to
such a shift.

K General PCA Priors

In section 6 we introduced the EmpCov prior, which improves robustness to covariate shift by aligning
with the training dataset’s principal components. Following the notation used in section 6, we can
define a more general family of PCA priors as

p(w1) = N (0, αV diag(s)V T + εI), si = f(i) (26)

where for an architecture with nw first layer weights, s is a length nw vector, diag(s) is the nw × nw
diagonal matrix with s as its diagonal, and V is an nw × nw matrix such that the ith column of V is
the ith eigenvector of Σ.

The EmpCov prior is the PCA prior where f(i) returns the ith eigenvalue (explained variance) of
Σ. However, there might be cases where we do not want to directly use the empirical covariance,
and instead use an alternate f . For example, in a dataset of digits written on a variety of different
wallpapers, the eigenvalues for principal components corresponding to the wallpaper pattern could be
much higher than those corresponding to the digit. If the task is to identify the digit, using EmpCov
might be too restrictive on digit-related features relative to wallpaper-related features.

We examine alternative PCA priors where f(i) = λi for different decay rates λ. We evaluate BNNs
with these priors on MNIST-C, and find that the choice of decay rate can significantly alter the
performance on various corruptions. Using priors with faster decay rates (smaller λ) can provide
noticeable improvement on Gaussian Noise and Zigzag corruptions, while the opposite occurs in
corruptions like Translate and Fog. Connecting this result back to Appendix I and Figure 9, we see
that the corruptions where faster decay rates improve performance are often the ones which add more
noise along the smallest principal components.

L Effect of non-zero mean corruptions

In Figure 11, we report the results of deep ensembles, MAP and BNNs with Gaussian and EmpCov
priors under various corruptions using the CNN architecture on MNIST. EmpCov improves perfor-

28

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar
S

ca
le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Domain Noise Blur Affine Other Corruptions Avg

Deep Ens MAP BNN Gaussian Prior BNN EmpCov Prior

Figure 11: MNIST CNN results. Test accuracy under covariate shift for deep ensembles, MAP
optimization with SGD, and BNN with Gaussian and EmpCov priors.

mance on all of the noise corruptions. For example, on the Gaussian noise corruption, EmpCov
achieves 58.3% accuracy while the Gaussian prior achieves 32.7% accuracy; similarly on the impulse
noise the results are 96.5% and 90.73% respectively.

However, EmpCov does not improve the results significantly on brightness or fog, and even hurts the
performance slightly on stripe. Below, we explain that these corruptions are non-zero mean, and the
performance is affected by the sum of the filter weights. We thus propose the SumFilter prior which
greatly improves the performance on these corruptions.

L.1 Non-zero mean corruptions

As we have seen in various experiments (e.g. Figure 2, Figure 7), convolutional Bayesian neural
networks are particularly susceptible to the brightness and fog corruptions on MNIST-C. Both of
these corruptions are not zero-mean: they shift the average value of the input features by 1.44 and
0.89 standard deviations respectively. In order to understand why non-zero mean corruptions can
be problematic, let us consider a simplified corruption that applies a constant shift c to all the pixels
in the input image. Ignoring the boundary effects, the convolutional layers are linear in their input.
Denoting the output of the convolution with a filter w on an input x as conv(w, x), and an image
with all pixels equal to 1 as 1 we can write

conv(w, x+ c · 1) = conv(w, x) + c · conv(w,1) = conv(w, x) + 1 · c ·
∑
a,b

wa,b, (27)

where the last term represents an image of the same size as the output of the conv(·, ·) but with all
pixels equal to the sum of the weights in the convolutional filter w multiplied by c. So, if the input
of the convolution is shifted by a constant value c, the output will be shifted by a constant value
c ·∑a,b wa,b.

As the convolutional layer is typically followed by an activation such as ReLU, the shift in the output
of the convolution can significantly hinder the performance of the network. For example, suppose
c ·∑a,b wa,b is a negative value such that all the output pixels in conv(w, x) + 1 · c ·∑a,b wa,b are
negative. In this case, the output of the ReLU activation applied after the convolutional filter will be 0
at all output locations, making it impossible to use the learned features to make predictions.

In the next section, we propose a prior that reduces the sum
∑
a,b wa,b of the filter weights, and show

that it significantly improves robustness to multiple corruptions, including fog and brightness.

L.2 SumFilter prior

As we’ve discussed, if the sum of filter weights for CNNs is zero, then corrupting the input by adding
a constant has no effect on our predictions. We use this insight to propose a novel prior that constrains

29

M
N

IS
T

S
V

H
N

G
au

ss
N

oi
se

S
ho

t
N

oi
se

Im
pu

ls
e

N
oi

se

G
la

ss
B

lu
r

M
ot

io
n

B
lu

r

S
he

ar

S
ca

le

R
ot

at
e

T
ra

ns
la

te

B
ri

gh
tn

es
s

Fo
g

S
tr

ip
e

D
ot

te
d

Li
ne

S
pa

tt
er

Z
ig

za
g

C
an

ny
E

dg
es

A
ve

ra
ge

0.2

0.4

0.6

0.8

1.0

C
N

N
A

cc
ur

ac
y

Domain Noise Blur Affine Other Corruptions Avg

Deep Ens

MAP

BNN Gaussian Prior

BNN, SumFilter α2 = 0.010, γ2 = 0.001

BNN, SumFilter α2 = 0.010, γ2 = 0.005

BNN, SumFilter α2 = 0.010, γ2 = 0.017

BNN, SumFilter α2 = 0.010, γ2 = 0.050

Figure 12: SumFilter priors. Performance of BNNs with the SumFilter priors introduced in
subsection L.2 for the CNN architecture on MNIST. SumFilter priors do not improve the performance
under Gaussian noise unlike EmpCov priors, but provide a significant improvement on the Brightness
and Fog corruptions.

the sum of the filter weights. More specifically, we place a Gaussian prior on the parameters and
Laplace prior on the sum of the weights:

p(w) ∼ N
(
w|0, α2I

)
× Laplace

(∑
filter

w|0, γ2
)
. (28)

For our experiments, we only place the additional Laplace prior on the sum of weights in first layer
filters. An alternative version could place the prior over filter sums in subsequent layers, which may
be useful for deeper networks.

L.3 Experiments

Figure 12 shows that this prior substantially improves the performance of a convolutional BNN on
MNIST-C. The BNN with a filter sum prior yields a better or comparable performance to MAP for
all MNIST corruptions, with the exception of Canny Edges and Impulse Noise. We also implemented
this prior for MLPs, but found that it only improved BNN performance on two corruptions, fog and
brightness. Overall, this prior addresses a more specific issue than EmpCov, and we would not expect
it to be applicable to as many forms of covariate shift.

M Example: Bayesian NALU under covariate shift

The Neural Arithmetic Logic Unit (NALU) [66] is an architecture which can learn arithmetic functions
that extrapolate to values outside those observed during training. A portion of the unit is of the form∏m
j=1 |xj |wj , and in this section we examine a simplified form of this unit in order to demonstrate an

instance where nonlinear dependencies hurt BMA under covariate shift.

Let’s consider the NALU-inspired architecture with input features x1, . . . , xm that takes the form
f(x,w) =

∏m
j=1(xj)wj . Suppose the prior over the weights w = [w1, . . . , wm] is an i.i.d. Gaussian

distributionN (0, α2). Suppose all inputs x1, . . . xn in training datasetD lie in a subspace of the input
space:

∏m
j=1(xji)

pj = 1 for all i = 1, . . . , n and some constant vector p such that
∑m
j=1 p

2
j = 1.

Following the same approach as subsection H.3, we can introduce a new basis v1, . . . , vm in the
input space such that v1 = p. We can similarly re-parameterize the model using the weights rotated
into this new basis, w̄ = wT v1, . . . , w

T vm, and it follows that wi = w̄1 · vi1 + · · ·+ w̄m · vim for all
i = 1, . . . , n. Using the corresponding transformed inputs x̄i =

∏m
j=1(xj)v

j
i for all i = 1, . . . , n, we

can rewrite our model as follows:

f(x,w) = f(x̄, w̄) = (

m∏
j=2

(x̄j)w̄j) · (x̄1)w̄1︸ ︷︷ ︸
=1

. (29)

30

Since f(x̄, w̄) does not depend on w̄1 for all x̄ ∈ D̄, we can follow the same reasoning from
subsection H.1 to conclude that the marginal posterior over w̄1 coincides with the induced prior.
Since w̄ is the result of simply rotating w into a new basis, it also follows that the induced prior over
w̄ is N (0, α2I), and that the posterior can be factorized as p(w̄|D̄) = p(w̄ \ w̄1|D̄) · p(w̄1).

Consider a test input x̄k(c) = [c, x̄2
k, . . . , x̄

m
k]. The predictive mean under BMA will be:

Ew̄f(x̄k(c), w̄) = Ew̄\w̄1

m∏
j=2

(x̄jk)w̄j · Ew̄1
cw̄1 . (30)

Thus the predictive mean depends upon c, and so the BMA will not be robust to the nonlinear
dependency being broken at test time. In comparison, the MAP solution would set w̄1 = 0, and its
predictions would not be affected by c.

While the dependency described in this section may not necessarily be common in real datasets, we
highlight this example to demonstrate how a nonlinear dependency can still hurt BMA robustness.
This further demonstrates how the BMA issue we’ve identified does not only involve linear depen-
dencies, but rather involves dependencies which have some relationship to the model architecture.

N Dead neurons

Neural network models can often contain dead neurons: hidden units which output zero for all inputs
in the training set. This behaviour occurs in classical training when a neuron is knocked off the
training data manifold, resulting in zero non-regularized gradients for the corresponding weights and
thus an inability to train the neuron using the gradient signal from the non-regularized loss. However,
we can envision scenarios where a significant portion of the BNN posterior distribution contains
models with dead neurons, such as when using very deep, overparameterized architectures.

Let us consider the posterior distribution over the parameters W conditioned on the parameters
W 1,W 2, b2, . . . ,W k, bk of the first k layers, where we use the notation of Appendix H. Suppose for
the parameters W 1,W 2, b2, . . . ,W k, bk the k-th layer contains a dead neuron, i.e. an output that is
0 for all the inputs xj in the training dataset D. Then, consider the sub-network containing layers
k+1, . . . , l. For this sub-network, the output of a dead neuron in the k-th layer is an input that is 0 for
all training inputs. We can then apply the same reasoning as we did in subsection H.1, subsection H.2
to show that there will exist a direction in the parameters W k of the k + 1-st layer, such that along
this direction the posterior conditioned on the parameters W 1,W 2, b2, . . . ,W k, bk coincides with
the prior (under the assumption that the prior over the parameters W k is iid and independent of the
other parameters). If a test input is corrupted in a way that activates the dead neuron, the predictive
distribution of the BMA conditioned on the parameters W 1,W 2, b2, . . . ,W k, bk will change.

O Bayesian linear regression under covariate shift

We examine the case of Bayesian linear regression under covariate shift. Let us define the following
Bayesian linear regression model:

y = w>φ(x, z) + ε(x) (31)

ε ∼ N (0, σ2) (32)

where w ∈ Rd are linear weights and z are the deterministic parameters of the basis function φ. We
consider the dataset D = {(xi, yi)}ni=1 and define y := (y1, . . . , yN)>, X := (x1, . . . , xn)>, and
Φ := (φ(x1, z), . . . , φ(xn, z))

>

The likelihood function is given by:

p(y|X,w, σ2) =

n∏
i=1

N (yi|w>φ(xi, z), σ
2). (33)

31

Let us choose a conjugate prior on the weights:

p(w) = N (w|µ0,Σ0), (34)

The posterior distribution is given by:

p(w|D) ∝ N (w|µ0,Σ0)×
n∏
i=1

N (yi|w>φ(xi, z), σ
2)

= N (w|µ,Σ),

µ = Σ

(
Σ−1

0 µ0 +
1

σ2
Φ>y

)
,

Σ−1 = Σ−1
0 +

1

σ2
Φ>Φ.

The MAP solution is therefore equal to the mean,

wMAP = Σ

(
Σ−1

0 µ0 +
1

σ2
Φ>y

)
=

(
Σ−1

0 +
1

σ2
Φ>Φ

)−1(
Σ−1

0 µ0 +
1

σ2
Φ>y

)
(35)

Thus, we see that the BMA and MAP predictions coincide in Bayesian linear regression, and both
will have equivalent performance under covariate shift in terms of accuracy.

What happens away from the data distribution? If the data distribution spans the entire input
space, than the posterior will contract in every direction in the weight space. However, if the data
lies in a linear (or affine, if we are using a Gaussian prior) subspace of the input space, there will be
directions in the parameter space for which the posterior would coincide with the prior. Now, if a
test input does not lie in the same subspace, the predictions on that input would be affected by the
shift vector according to the prior. Specifically, if the input x is shifted from the subspace containing
the data by a vector v orthogonal to the subspace, then the predictions between x and its projection
to the subspace would differ by wT v, where w ∼ N (µ0,Σ0), which is itself N (µT0 v, v

TΣ0v).
Assuming the prior is zero-mean, the mean of the prediction would not be affected by the shift, but the
uncertainty will be highly affected. The MAP solution on the other hand does not model uncertainty.

P An optimization perspective on the covariate shift problem.

In this section, we examine SGD’s robustness to covariate shift from an optimization perspective.

P.1 Effect of regularization and initialization on SGD’s robustness to covariate shift

In Section N, we discussed how SGD pushes the weights that correspond to dead neurons, a general-
ization of the dead pixels analysis, towards zero thanks to the regularization term. In this section, we
study the effect of regularization and initialization on SGD’s robustness under covariate shift.

Regularization
To study the effect of regularization on SGD’s robustness under covarite shift, we hold all hyper-
parameters fixed and we change the value of the regularization parameter. Figure 13 shows the
outcome. Most initialization schemes for neural networks initialize the weights with values close
to zero, hence we expect SGD not perform as poorly on out-of-distribution data as HMC on these
networks even without regularization. Therefore, we see that SGD without regularization (reg = 0.0)
is still competitive with reasonably regularized SGD.

Initialization
The default initialization scheme for fully-connected layers in Pytorch for example is the He ini-
tialization [24]. We use a uniform initialization U(−b, b) and study the effect of varying b on the
performance of SGD under covarite shift for a fully-connected neural network. Figure 14 shows our
empirical results, where smaller weights result in better generalization on most of the corruptions.

32

0.2
0.4
0.6
0.8
1.0

M
LP

 A
cc

ur
ac

y Domain Noise Blur Affine Other Corruptions Avg

MN
IS

T

SV
HN

Ga
us

s N
ois

e
Sh

ot
 N

ois
e

Im
pu

lse
 N

ois
e

Gl
as

s B
lu

r
Mo

tio
n

Bl
ur

Sh
ea

r

Sc
ale

Ro
ta

te
Tr

an
sla

te

Br
ig

ht
ne

ss Fo
g

St
rip

e
Do

tte
d

Lin
e

Sp
at

te
r

Zi
gz

ag
Ca

nn
y

Ed
ge

s

Av
er

ag
e

0.2
0.4
0.6
0.8
1.0

CN
N

Ac
cu

ra
cy

SGD, reg=0.0 SGD, reg=0.001 SGD, reg=0.01 SGD, reg=0.1

Figure 13: Effect of regularization on SGD’s performance on corrupted MNIST. Accuracy for
the following values of the regularization parameter: 0.0, 0.001, 0.01, and 0.1. Top: Fully-connected
network; bottom: Convolutional neural network. Regularization helps improve the performance on
some corruptions, such as Gaussian noise, but its absence does not affect SGD’s robustness under
covariate shift because the weights are initialized at small values.

MN
IS

T

SV
HN

Ga
us

s N
ois

e
Sh

ot
 N

ois
e

Im
pu

lse
 N

ois
e

Gl
as

s B
lu

r
Mo

tio
n

Bl
ur

Sh
ea

r

Sc
ale

Ro
ta

te
Tr

an
sla

te

Br
ig

ht
ne

ss Fo
g

St
rip

e
Do

tte
d

Lin
e

Sp
at

te
r

Zi
gz

ag
Ca

nn
y

Ed
ge

s

Av
er

ag
e

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Domain Noise Blur Affine Other Corruptions Avg

SGD, b=0.001 SGD, b=0.01 SGD, b=0.1 SGD, b=1.0

Figure 14: Effect of initialization on SGD’s performance on corrupted MNIST with MLP. The
weights are initialized using a uniform distribution U(−b, b), and we consider the following values for
b: 0.001, 0.01, 0.1, and 1.0. All experiments were run without regularization. For most corruptions,
initializing the weights at smaller values leads to better robustness to covariate shift.

P.2 Other stochastic optimizers

In addition to SGD, we examine the performance of Adam [34], Adadelta [70], L-BFGS [55, 41]
on corrupted MNIST. Figure 15 shows the results for all 4 algorithms on the MNIST dataset under
covariate shift, for both fully-connected and convolutional neural networks. We see that SGD, Adam
and Adadelta have comparable performance for convolutional neural networks, whereas SGD has
an edge over both algorithms on MLP. L-BFGS provides a comparatively poor performance and we
hypothesise that it is due to the lack of regularization. Naive regularization of the objective function
does not improve the performance of L-BFGS.

P.3 Loss surface analysis

There have been several works that tried to characterize the geometric properties of the loss landscape
and describe its connection to the generalization performance of neural networks. In particular, it is
widely believed that flat minima are able to provide better generalization [26, 32]. Intuitively, the
test distribution introduces a horizontal shift in the loss landscape which makes minima that lie in
flat regions of the loss surface perform well for both train and test datasets. From the other side,
it is well-known that SGD produces flat minima. Hence, we would like to understand the type of
distortions that corruptions in the corrupted CIFAR-10 dataset introduce in the loss surface, and
evaluate the potential advantage of flat minima in this context.

In the same fashion as Li et al. [40], we visualize the effect of the Gaussian noise corruption on the
loss surface for different intensity levels as shown in Figure 16. These plots are produced for two
random directions of the parameter space for a ResNet-56 network. We observe that high levels of
intensity make the loss surface more flat, but result in a worse test loss overall. We can see visually
that the mode in the central flat region, that we denote w0, is less affected by the corruption than a

33

0.2
0.4
0.6
0.8
1.0

M
LP

 A
cc

ur
ac

y Domain Noise Blur Affine Other Corruptions Avg

MN
IS

T

SV
HN

Ga
us

s N
ois

e
Sh

ot
 N

ois
e

Im
pu

lse
 N

ois
e

Gl
as

s B
lu

r
Mo

tio
n

Bl
ur

Sh
ea

r

Sc
ale

Ro
ta

te
Tr

an
sla

te

Br
ig

ht
ne

ss Fo
g

St
rip

e
Do

tte
d

Lin
e

Sp
at

te
r

Zi
gz

ag
Ca

nn
y

Ed
ge

s

Av
er

ag
e

0.2
0.4
0.6
0.8
1.0

CN
N

Ac
cu

ra
cy

SGD Adadelta Adam L-BFGS

Figure 15: Robustness on MNIST for different stochastic optimizers. Accuracy for SGD,
Adadelta, Adam and L-BFGS on MNIST under covariate shift. Top: Fully-connected network;
bottom: Convolutional neural network. Adam and Adadelta provide competitive performance with
SGD for most corruptions. However, SGD is better on the MLP architecture for some corruptions
whereas Adam and Adadelta are better on the same corruptions with the CNN architecture.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.100

1.600

2.100

2.600

3.100

3.
60

0

3.600

4.1004.100

4.
60

04.600

4.600

5.
10

0

5.1
00

5.100

5.100

5.600

5.6
00

5.
60

0

5.600

6.100

6.1
00

6.100

6.100

6.100

6.600

6.
60

0

6.600

6.600

6.6006.600

7.100 7.100

7.100

7.100

7.100

7.100

7.600 7.600

7.600

7.600

7.600
7.600

8.100 8.100

8.100

8.100

8.100
8.100

8.600
8.600

8.600

9.100
9.100

9.600

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

2.600

3.100

3.100

3.6
00

3.
60

0

4.100

4.100

4.
60

0

4.600

4.600

4.6
00

5.100

5.
10

0

5.1
00

5.
60

0 5.
60

0

5.600

5.600

5.600

6.100

6.1
00

6.1
00

6.100

6.100

6.600

6.6
00

6.6
00

6.600

6.600

6.6006.600

7.100

7.100

7.100

7.100
7.

10
0

7.100

7.600

7.600

7.600

7.600

8.100

8.100

8.100

8.100

8.600
8.600

8.600

8.600

9.100
9.100

9.100

9.600
9.600

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

3.100

3.600

3.
60

0

4.100
4.100

4.
60

0

4.600

4.600

4.600

5.100

5.
10

0

5.100

5.600

5.
60

0

5.600

5.600

5.600

6.1
00

6.
10

0

6.1
00

6.100

6.100

6.600

6.6
00

6.600

6.600

6.600

6.6006.600

7.100

7.1
00

7.100

7.100 7.100

7.
10

0

7.100

7.600

7.6
00

7.600

7.600

7.600

7.600

8.100

8.100

8.100

8.1
00

8.600

8.600

9.100
9.100

9.100

9.600
9.600

9.600

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

2

4

6

8

10

12

14

(a) Corruption intensity: 1

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5

4

6

8

10

12

14

16

18

(b) Corruption intensity: 3

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0

5.0

7.5

10.0

12.5

15.0

17.5

(c) Corruption intensity: 5

Figure 16: 2D (top) and 3D bottom visualizations of the loss surface of a ResNet-56 network on
corrupted CIFAR-10 with different intensity levels of the Gaussian noise corruption.

solution picked at random. Figure 17 shows the loss difference between different solutions including
w0, that we call optimal, and the new mode for each corruption intensity. We can see that the mode is
indeed less affected by the corruptions than other randomly selected solutions of the same loss region.

Q Licensing

The MNIST dataset is made available under the terms of the Creative Commons Attribution-Share
Alike 3.0 license. The CIFAR-10 dataset is made available under the MIT license. Our code is a fork
of the Google Research repository at https://github.com/google-research/google-research, which has
source files released under the Apache 2.0 license.

34

https://github.com/google-research/google-research

2 3 4 5
Corruption Intensity

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

 d
iff

er
en

ce

optimal
point 1
point 2
point 3

Figure 17: Loss difference between different random solutions, including the mode found through
standard SGD training (optimal in the legend), and the new mode for each corruption intensity.

35

