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ABSTRACT

Vision-language-action (VLA) models have emerged as the next-generation
framework in robotics, integrating visual perception, language reasoning, and
robotic control into unified systems. In this paper, we present dVLA, a diffu-
sion vision-language-action model with multimodal chain-of-thought. The dVLA
optimizes visual reasoning, language comprehension, and robotic actions simulta-
neously through a unified diffusion-based objective. By harmonizing these modal-
ities into a single cohesive framework, dVLA facilitates more effective cross-
modal reasoning, enabling the model to generalize to novel instructions and ob-
jects. To ensure practical viability, we also integrate model acceleration methods
that substantially decrease robot response times. Extensive evaluations in both
simulation and the real world confirm that dVLA significantly outperforms cur-
rent discrete and continuous VLA models, highlighting the potential of diffusion
language model (DLM) based frameworks for robotics.

1 INTRODUCTION

Vision-language-action (VLA) models have emerged as the next-generation framework in robotics,
integrating visual perception, language reasoning, and robotic control into unified systems (Black
et al., 2024; Brohan et al., 2023; Kim et al., 2024; Hu et al., 2023; Liu et al., 2025a; Intelligence
et al., 2025; Kim et al., 2025; Team et al., 2025; Bjorck et al., 2025; Zhao et al., 2025a;b; Zhen et al.,
2024; Wen et al., 2025a;b; Zhou et al., 2025b; Wen et al., 2024). The development of VLA models
has undergone two stages of evolution. In the first stage, a pre-trained vision–language backbone is
used purely as a feature extractor, and the extracted features are mapped directly to robot actions. As
vanilla VLA architectures proved inadequate for open-world instruction following and long-horizon
tasks, a second-stage training paradigm co-trains on image–text data alongside action trajectories
to preserve knowledge from the pre-trained VLM and, when necessary, to predict both sub-step
reasoning and robot actions (Zhou et al., 2025b;a; Intelligence et al.; Driess et al., 2025). The
sub-step reasoning, often referred to as Chain-of-Thought, grounds high-level instructions into low-
level sub-steps, thereby offering improved guidance for action prediction. Recent works have also
incorporated image generation capabilities into VLAs, enabling the prediction of subsequent images
before generating actions, which is a visual form of Chain-of-Thought Zhao et al. (2025a); Cen et al.
(2025). Leveraging images as intermediate reasoning steps offers a more detailed description of the
next movement. Such approaches have demonstrated remarkable capabilities, enabling models to
generalize to novel environments, adapt to new objects, and even complete tasks requiring complex
reasoning, such as mathematical puzzle games (Zhou et al., 2025a; Zhao et al., 2025a).

Despite their promise, these models face several limitations. First, co-training visual-text data along-
side robotic action data, each with distinct objectives, often results in gradient conflicts. Specifically,
the gradients that enhance knowledge preservation and scene understanding may interfere with the
model’s ability to effectively learn robot actions, even when a separate module is dedicated to this
task. Second, integrating image generation into auto-regressive Vision-Language Models (VLMs)
is challenging due to the fundamental gap between training objectives and model architectures,
which makes harmonizing multi-modal generation and understanding difficult. Consequently, VLAs
struggle to fully exploit knowledge across all modalities, limiting their ability to capture the under-
lying physical laws that connect actions and generated images, even when equipped with an explicit
Chain-of-Thought.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these challenges, we propose dVLA, a framework that jointly optimizes visual reasoning,
image generation, and robotic manipulation under a unified diffusion-based objective. dVLA builds
on MMaDA (Yang et al., 2025), an advanced model in discrete diffusion language models that
unifies multimodal understanding and generation through a consistent discretization strategy, em-
ploying modality-specific tokenizers. To extend this foundation to actions, we adopt FAST (Pertsch
et al., 2025) to encode action sequences into compact discrete tokens, enabling dVLA to leverage
pretrained visual–textual knowledge for generating executable actions. However, simply discretiz-
ing actions and applying a unified training objective is insufficient. Such an approach exploits only
MMaDA’s multimodal understanding capabilities while neglecting its core strength—multimodal
generation. To overcome this limitation, we introduce a multimodal Chain-of-Thought (CoT) train-
ing paradigm, in which dVLA is required to simultaneously generate subgoal images (visual CoT),
textual reasoning, and action sequences. Concretely, during training we randomly mask tokens not
only from actions but also from subgoal images and textual reasoning, and the model is required to
reconstruct them across all available modalities. This design encourages dVLA to learn a shared pa-
rameter space, ensuring strong consistency between predicted subgoal images and actual execution
outcomes. Empirically, we observe that dVLA can even forecast failed execution images that pre-
cisely match real-world failures, suggesting that it learns not just to generate fixed sub-goal images
but also to capture the underlying physical laws governing action and perception.

In this paper, we conduct a comprehensive evaluation of dVLA through rigorous experimental anal-
ysis. On the LIBERO benchmark, dVLA achieves an average success rate of 96.4%, consistently
outperforms both discrete and continuous action policies, and achieves state-of-the-art performance.
We further validate our approach on a real Franka robot across a wide range of tasks, including the
challenging bin-picking task, which requires multi-step planning to complete. The results demon-
strate dVLA’s superior ability to handle the complexities of real-world scenarios, highlighting its
potential to significantly advance the capabilities of vision-language-action robotic systems. Since
multimodal CoT prediction increases inference cost, we introduce two acceleration strategies: prefix
attention mask and KV caching. These optimizations yield up to ∼ 2× speedup in both real-world
tasks and the LIBERO benchmark, with only marginal performance degradation.

2 RELATED WORK

Diffusion Language Models. Modern state-of-the-art Vision-Language Models (VLMs) are pre-
dominantly built upon autoregressive large language models (LLMs), which rely on an autoregres-
sive training objective (Achiam et al., 2023; Liu et al., 2024c;b; Wang et al., 2024; Team, 2024).
Recent advances in discrete diffusion language models (DLMs) have demonstrated their poten-
tial as superior alternatives for language modeling (Austin et al., 2021; Sahoo et al., 2024; Lou
et al., 2023; Nie et al., 2025). These models achieve performance comparable to autoregressive
models while offering distinct advantages, such as flexible speed-quality trade-offs and enhanced
controllability. Furthermore, recent studies have begun exploring the integration of discrete diffu-
sion language models (DLMs) with visual question answering (VQA) capabilities. For instance,
LaViDa (Li et al., 2025) adopts a standard LLaVA-like architecture with a two-stage training frame-
work to achieve this. MMaDA (Yang et al., 2025) introduces a unified diffusion-based foundation
model that combines textual reasoning, multimodal understanding, and generation within a single
probabilistic framework. Some other works have explored the DLMs to robotics that Discrete Diffu-
sion VLA (Liang et al., 2025) adopts the discrete diffusion training strategy to an off-the-shelf VLA,
while LLaDA-VLA (Wen et al., 2025c) directly trains a DLM to predict action tokens. In this work,
we investigate the potential of DLMs for robot manipulation and multi-modal Chain-of-Thought,
aiming to leverage their unique properties for more robust and interpretable policy learning.

Vision-Language-Action Model. Vision-Language-Action (VLA) models build on pre-trained
Vision-Language Models (VLMs) together with specialized action experts/heads to generate robot
actions, and have become a prominent approach for exploiting vast heterogeneous data for scalable
policy learning (Bommasani et al., 2021; Black et al., 2024; Team et al., 2024; Chi et al., 2023).
Despite state-of-the-art results across diverse tasks and embodiments, most VLAs learn a direct
mapping from observations to actions without explicit intermediate reasoning, which limits general-
ization to open-world scenarios and long-horizon tasks (Black et al., 2024; Wen et al., 2025b; Bjorck
et al., 2025). Recent work leverages the auto-regressive reasoning capabilities of language models
to decompose long-horizon tasks into stepwise subgoals and then condition action generation on
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Figure 1: The architecture of dVLA. We adopt a discrete diffusion language model as a backbone
and separate tokenizers for each modality.

these plans (Wen et al., 2024; 2025a; Intelligence et al.; Driess et al., 2025; Liu et al., 2025a). How-
ever, the reasoning and control components are typically optimized separately, leading to plan–act
misalignment between task-level reasoning and execution-level control. We propose dVLA, which
unifies reasoning and action under a single diffusion-based training objective, enabling joint opti-
mization and tighter coupling between planning and control, thereby yielding more coherent and
generalizable policies.

Multi-modal Chain-of-Thought Reasoning. Step-by-step reasoning has emerged as a critical ca-
pability enabling large language models (LLMs) to tackle complex tasks effectively. Prompting
LLMs to “think step-by-step” about the problem before formulating an answer can significantly im-
prove their performance (Lu et al., 2023; Yang et al., 2025). This chain-of-thought (CoT) paradigm
has become a standard technique in language modeling and vision-language model training (Chung
et al., 2024; Zhou et al., 2024). Recent work has extended textual reasoning to robotic control
domains (Intelligence et al.; Wen et al., 2025a). However, existing approaches typically employ
two distinct training objectives: (1) a discretized token prediction objective for reasoning and (2)
a continuous action prediction objective for robotic control. This decoupled optimization creates
a fundamental optimization gap that hinders effective cross-modal learning and limits the potential
synergy between high-level reasoning and low-level control (Driess et al., 2025). On the other hand,
the action-prediction objective requires the model to predict the intermediate noise, while the next-
token prediction objective requires it to estimate the next-token distribution. The two objectives are
naturally disparate. In this paper, we resolve this issue by casting vision, language, and action pre-
diction as a single diffusion-based denoising objective, thereby harmonizing cross-modal generation
and further improving action prediction through a shared latent-space CoT.

3 METHOD

In this section, we present dVLA, designed for multimodal chain-of-thought (CoT) generation and
action prediction. We first introduce the unified training objective 3.1, followed by a detailed de-
scription of the architecture 3.2. Next, we define multimodal CoT and outline the approach to
achieving it 3.3. Finally, we introduce two acceleration strategies for real-time inference 3.4.

3.1 UNIFIED PROBABILISTIC FORMULATION FOR TRAINING

dVLA aims to tackle the challenge of learning a unified model capable of simultaneously generating
multimodal chain-of-thought reasoning (including subgoal image generation and reasoning) and
action prediction. In contrast to current methods that rely on separate foundation models for each
component, we adopt a unified approach by aligning the training objectives through a consistent
discrete strategy and discrete diffusion modeling.
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Unified discrete strategy. dVLA processes data from three distinct modalities: vision, text, and ac-
tion. Building upon MMaDA (Yang et al., 2025), dVLA employs the same tokenization approach,
encoding raw images and text into discrete tokens using MAGVIT-v2 (Yu et al., 2023) for vision
and the LLaDA text tokenizer (Nie et al., 2025) for textual data. For action tokenization, we uti-
lize the Fast tokenizer (Pertsch et al., 2025), which discretizes continuous actions using Discrete
Cosine Transform (DCT) (Ahmed et al., 2006) and compresses tokens with Byte Pair Encoding
(BPE) (Gage, 1994).

Discrete diffusion modeling. After consistent discrete tokenization, the input sequences can be
represented as x = {o, l, s, ogoal, r, achunk}, where o denotes the current observations, l represents
the language instructions, s refers to the current robot state, ogoal indicates the visual reasoning
(subgoal image) corresponding to a few frames ahead of the current time, r refers to the current
textual reasoning, and achunk represents the action chunk to be executed. During training, tokens
from different modalities are randomly masked with a certain probability, then dVLA must predict
all masked tokens based on other unmasked tokens. Formally, the training objective for dVLA is
defined as:

Lunify(θ) = −Et,x0,xt

[
1

t

L∑
i=1

I[xi
t = [MASK]] log pθ(x

i
0|xt)

]
, (1)

where x0 is ground truth, the timestep t is sampled uniformly from [0, 1], L denotes the sequence
length of x and xt is obtained by applying the forward diffusion process to x0. I[·] denotes the
indicator function to ensure that the loss is computed only over the masked tokens.

3.2 THE dVLA ARCHITECTURE

The overall architecture of dVLA is shown in Figure 1. dVLA is initialized from MMaDA (Yang
et al., 2025), a unified diffusion model for image generation and multimodal understanding (Xie
et al., 2024). At its core is a discrete diffusion modeling objective that predicts both visual and
textual tokens using the same diffusion decoding process. Specifically, dVLA first employs differ-
ent tokenizers for each modality. For image tokenization, MAGViT-v2 (Yu et al., 2023) converts
raw image pixels into discrete semantic tokens, with a compression ratio of 16 and a codebook size
of 8192. Given input images of size 256 × 256 and 512 × 512, MAGViT-v2 generates 256 and
1024 tokens, respectively. For text tokenization, LLaDA’s tokenizer (Nie et al., 2025) maps raw
language to discrete tokens in a vocabulary of size 126,464. For action tokenization, the Fast to-
kenizer (Pertsch et al., 2025) encodes actions into discrete tokens with a vocabulary size of 2048.
To accommodate all tokens from different modalities, the original vocabulary size is expanded from
126,464 to 136,704. All texts, actions, and images are discretized into tokens and trained under the
same discrete diffusion modeling.

3.3 MULTI-MODAL CHAIN-OF-THOUGHT (COT) REASONING

dVLA’s unified tokenization allows it to jointly model vision, language, and actions through a multi-
modal CoT mechanism. This step-by-step reasoning is critical for translating high-level instructions
into executable actions.

Multi-modal CoT Data. The input sequence combines M images, language instructions, and robot
state, followed by multi-modal CoT tokens (sub-goal image and reasoning text), and finally action
tokens:

[BOS]

Observation and instrcution︷ ︸︸ ︷
[BOI]{image}[EOI]︸ ︷︷ ︸

×M

{text}{state}

Multi−modal CoT Reasoning︷ ︸︸ ︷
[BOI]{Subgoal}[EOI]{Reasoning}

[BOA]{action}...{action}[EOA]︸ ︷︷ ︸
Laction

[EOS]

where {text} is the overall language instruction (e.g., “Move any object from the panel to the
box.”).The robot state is discretized and input to the model as text tokens, same as Driess et al.
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Figure 2: Examples of multimodal Chain-of-Thought on real robot tasks.

(2025). Given these inputs, dVLA should first reason about a subgoal image of the future state.
Next, the model predicts a high-level subtask to instruct the model for what to do (e.g., “pick up
the toy blue car”). Finally, it generates discretized action tokens. This multi-modal CoT enables
the model to (1) perform visual reasoning via subgoal prediction and (2) decompose the task into
interpretable subtasks before generating low-level actions. Figure 2 presents illustrative examples of
our multimodal Chain-of-Thought (CoT) process. During inference, dVLA generates two parallel
outputs: (i) a visual CoT that depicts the intended physical movement in detail, and (ii) a textual CoT
that provides fine-grained, step-by-step instructions. Subsequently, dVLA grounds these multimodal
reasoning steps to produce a concrete and executable action.

3.4 ACCELERATION STRATEGIES

To enhance the inference efficiency of dVLA, we adopt two acceleration strategies: a prefix atten-
tion mask and a KV caching method. The prefix attention mask is incorporated during training to
better preserve model performance, while the KV caching approach is a plug-and-play technique
applicable at inference. Combined, these strategies deliver substantial speedups, achieving 2× on
both the LIBERO benchmark (Liu et al., 2024a) and our real-world bin-picking task.

Prefix Attention Mask. As described in Section 3.1, we build dVLA upon MMaDA (Yang et al.,
2025), which typically exhibits slower inference than autoregressive models because it cannot lever-
age KV caching (Nie et al., 2025). Following the approach in LaViDa (Li et al., 2025), we adopt
a prefix attention mask for partial KV caching. Specifically, our architecture utilizes a blockwise
causal attention mask with two blocks: [o, l, s] and [ogoal, r, achunk]. We apply full bidirectional at-
tention within each block, with tokens in one block restricted from attending to tokens in subsequent
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Figure 3: The experiment setup and real-world task suite.

blocks. The first block contains multi-view images and instructions, which are all input tokens. The
second block includes discretized subgoal image tokens, reasoning tokens, and action tokens, allow-
ing action tokens to attend to other modalities.

KV Caching. To further accelerate diffusion-based denoising, we incorporate the training-free KV
Caching technique from dLLM-Cache (Liu et al., 2025b). This method leverages the observation
that, across denoising steps, changes in key-value features and attention outputs are minimal. Instead
of recomputing them at every step, dLLM-Cache caches intermediate results and refreshes them at
a lower frequency. This reduces computational overhead while maintaining high accuracy, enabling
dVLA to operate efficiently in real-time robotic settings.

3.5 EXPERIMENTAL SETUP

Robot Setup. We perform evaluation on both simulation and real-world tasks (shown in Fig 3). For
simulation, we use the LIBERO benchmark (Liu et al., 2024a) to evaluate all policies for learning
lifelong in robot manipulation. Additionally, we evaluate all policies on 4 tasks with a 7-DoF Franka
robot arm as show in 3. We used two external ZED cameras and a Realsense 435i wrist camera to
obtain real-world visual information.

Baselines. We compare our dVLA to state-of-the-art models, including continuous action policies
and discretized action policies. Continuous action policies generate action chunks by progressively
denoising a Gaussian noise action chunk into an executable action chunk (Ho et al., 2020; Lipman
et al., 2022). As baselines for this type of policy, we select Diffusion Policy (Chi et al., 2023),
GR00T-N1 (Bjorck et al., 2025) Octo (Octo Model Team et al., 2024), DiT Policy (Hou et al., 2024),
and π0 (Black et al., 2024). In contrast, discrete action policies mainly tokenize continuous actions
into a discrete form to align with current auto-regressive language models or diffusion language
models. These methods predict discretized action tokens using the next-token prediction or parallel
decoding, which are then denormalized to continuous actions. We select OpenVLA (Kim et al.),
CoTVLA Zhao et al. (2025a), OpenVLA-OFT Kim et al. (2025), WorldVLA (Cen et al., 2025),
Discrete Diffusion VLA (Liang et al., 2025) as baselines. Additionally, we use vanilla dVLA as a
baseline, which predicts only discretized action tokens for establishing the performance of multi-
modal Chain-of-Thought (CoT).

Training Datasets. We evaluate on the LIBERO simulation benchmark (Liu et al., 2024a), which
consists of four task suites: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long.
Each suite offers 10 diverse tasks, with 50 human-teleoperated demonstrations per task, challenging
the robot’s abilities in spatial reasoning, object manipulation, and goal fulfillment. We regenerate all
demonstrations at an increased resolution of 256× 256 pixels and then filter out the demonstrations
that fail to complete the task following OpenVLA. For real-world tasks, we collect 1100 trajectories
in total, including 4 different tasks as shown in 3. The details of each task are listed as follows:

• Bin Picking. We collect 600 trajectories. This is a long-horizon robotics task where the
goal is to transfer all objects from the right tray to the gray box. In each trajectory, 3-
5 randomly selected objects are individually placed into the box. This scenario presents
a cluster grasping challenge, as the presence of multiple objects can interfere with the
policy’s ability to predict accurate grasps for individual items.
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Pick up the book and place it in the back compartment of the caddy.Turn on the stove.

Pick up the alphabet soup and place it in the basket.Pick up the black bowl on the wooden cabinet and place it on the plate.

Generated Visual CoT

Real Executed Result

Generated Visual CoT

Real Executed Result

Figure 4: Qualitative results on LIBERO simulation. Top: The successful execution results. Bot-
tom: Failure execution results and corresponding visual CoT.

• Open Box. There are 100 trajectories in total for this task. The robot must accurately grasp
the handle and lift the lid clear of the box. Then place the lid in an empty place.

• Hang Cups. We leverage 200 trajectories. The robot must pick up a cup and hang it on
a rack. This is a relatively challenging task because the cup’s small handle requires very
precise alignment for successful hanging.

• Pick up the object and place to plate(Pick&place Object). 200 trajectories. The robot
must pick up a specific object and place it on the plate based on language instructions. This
task presents a significant challenge, as the policy must learn to map language instructions
to the correct object and to associate each object with its corresponding motion sequence.

Training and Evaluation Details. We finetune dVLA on both the LIBERO dataset and real-world
data using the same training pipeline as MMaDA. All input images are resized to a resolution of
256 × 256 to reduce the input token sequence length. Our multimodal Chain-of-Thought (CoT)
data consists of two components: visual subgoal reasoning and textual reasoning. For visual sub-
goal reasoning, dVLA predicts sub-goal images at future timestep t, uniformly sampled from the
range [0.9C, 1.1C], where C denotes the action chunk length. We set C = 5 for LIBERO tasks and
C = 50 for real-world tasks. To accelerate inference, we resize these sub-goal images to 256× 256
and restrict dVLA to predicting only top-view camera images. We employ classifier-free guidance
(scale = 3.5) to balance diversity and quality in the generated subgoal images. For textual reasoning,
we use SEED-1.5VL (Guo et al., 2025) to generate video segmentation annotations at 3-second
intervals, which are designed for long-horizon tasks such as bin picking. For simpler tasks, we omit
language reasoning to further speed up inference.

4 EXPERIMENTS

This section evaluates dVLA’s effectiveness for robot control across various manipulation tasks, ad-
dressing three key questions: (1) How does our framework compare with state-of-the-art baselines
across different tasks? (2) Does multi-modal chain-of-thought reasoning improve dVLA’s perfor-
mance? (3) How do the acceleration strategies affect performance and inference speed?

4.1 MAIN EVALUATIONS RESULTS

Experimental results on LIBERO. As shown in table 1, we report success rate (SR) across four
LIBERO task suites. The qualitative results are displayed in Figure 4. dVLA achieves the best aver-
age success rate of 96.4% and outperforms all continuous and discrete action policies. Specifically,
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Table 1: Experimental results on LIBERO benchmark. We evaluated our model on 10 LIBERO
tasks, with 50 trials per task, for a total of 500 trials. The success rate is the total number of
successful trajectories out of 500.

Methods / Tasks MMCoT Libero-Spatial Libero-Object Libero-Goal Libero-Long Average
Textual CoT Visual CoT SR(%) SR(%) SR(%) SR(%) SR(%)

Continuous Action Policy

Diffusion Policy (Chi et al., 2023) % % 78.3 92.5 68.3 50.5 72.4
Octo (Octo Model Team et al., 2024) % % 78.9 85.7 84.6 51.1 75.1
DiT Policy Hou et al. (2024) % % 84.2 96.3 85.4 63.8 82.4
π0 (Black et al., 2024) % % 96.8 98.8 95.8 85.2 94.2
GR00T-N1 (Bjorck et al., 2025) % % 94.4 97.6 93.0 90.6 93.9
OpenVLA-OFT (Continuous)(Kim et al., 2025) % % 96.9 98.1 95.5 91.1 95.4

Discrete Action Policy

OpenVLA (Kim et al.) % % 84.7 88.4 79.2 53.7 76.5
OpenVLA-OFT (Discrete)(Kim et al., 2025) % % 96.2 98.2 95.6 92.0 95.5
CoTVLA (Zhao et al., 2025a) % ! 81.13 87.5 91.6 87.6 69.0
WorldVLA (512× 512) (Cen et al., 2025) % ! 87.6 96.2 83.4 60.0 81.8
Discrete Diffusion VLA (Liang et al., 2025) % % 97.2 98.6 97.4 92.0 96.3
Vallina dVLA % % 90.2 93.1 92.8 83.0 89.8
dVLA ! ! 97.4 97.9 98.2 92.2 96.4

Table 2: Experimental results for real-world tasks. We evaluate each method on four real-world
robotic tasks, ranging from a simple pick-and-place to a long-horizon bin picking scenario. Each
method is tested for 10 trials per task (40 trials total), and we report the total number of successful
trajectories.

Methods / Tasks MMCoT Bin Picking Open Box Hang Cups Pick&place Object Average
Textual CoT Visual CoT SR(%) SR(%) SR(%) SR(%) SR(%)

Continuous Action Policy

Diffusion Policy (Chi et al., 2023) % % 2/10 4/10 4/10 4/10 14/40
GR00T (Bjorck et al., 2025) % % 4/10 5/10 4/10 5/10 19/40

Discrete Action Policy

OpenVLA (Kim et al.) % % 2/10 3/10 5/10 4/10 14/40
Vallina dVLA % % 5/10 5/10 6/10 5/10 21/40
dVLA ! ! 7/10 5/10 7/10 7/10 26/40

dVLA achieves 97.4%, 97.9%, 98.2%, 92.2% in the spatial task suite, object task suite, goal task
suite, and long task suite, respectively. For continuous action baselines, dVLA outperforms Open-
VLA (Cont-Diffusion) by 1.0%, GR00T-N1 by 2.5% π0 by 2.2%, respectively. For discrete action
baselines, dVLA outperforms WorldVLA by 14.6%, CoTVLA by 27.4%, and Discrete Diffusion
VLA by 0.1%, respectively. These results suggest that dVLA attains benefits from a unified training
objective and model architecture.

Experimental results on real-world tasks. As detailed in Table 2, all methods were finetuned in
a multi-task setting and evaluated over 10 trials per task. We categorized baselines into continuous
and discrete action policies based on different action representations. While continuous baselines
like GR00T achieved a decent 60% success rate in both the hang cups and pick-and-place tasks, our
dVLA performed slightly better, reaching a 70% success rate. Diffusion Policy (DP) and OpenVLA
recorded an average success rate of 35% and particularly struggled with the bin-picking task, where
cluttered scenarios made precise grasping predictions more challenging. Ultimately, dVLA deliv-
ered the highest average success rate of 65%, consistently outperforming all continuous and discrete
baselines.

4.2 MULTI-MODAL CHAIN-OF-THOUGHT REASONING IMPROVE DVLA’S PERFORMANCE

Multi-modal CoT. To assess the impact of multi-modal CoT reasoning, we evaluated the perfor-
mance of vanilla dVLA (dVLA without explicit multi-modal CoT). As reported in Tables 2, vanilla
dVLA still achieved a commendable 52.5% success rate, outperforming Diffusion Policy (DP) and
OpenVLA, which underscores the inherent efficacy of our core dVLA approach. Furthermore, in-
tegrating multi-modal CoT reasoning improved dVLA’s average success rate by 12.5%, reaching
65%. This gain further validates the effectiveness of our multi-modal CoT framework in enhanc-
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Table 3: Effect of KV Caching and Prefix Attention Mask. We report the inference speed (actions
per second) and task success rate (SR) between the full attention and our accelerated strategies on
boththe LIBERO simulation and real-world bin picking tasks.

Methods LIBERO Real World
Spatial Object Actions / s (↑) Bin Picking Hang Cups Actions / s (↑)

Full Attention 97.4 97.9 1.3 Hz 7/10 8/10 1.5 Hz
Prefix Attention + KV Caching 96.9 97.3 2.9 Hz 7/10 7/10 3 Hz

ing robotic manipulation. Specifically, in the bin-picking task, empirical observations revealed that
vanilla dVLA’s grasping pose predictions suffered from multi-object interference, often attempting
to grasp the space between objects—a deficiency even more pronounced in OpenVLA. Conversely,
dVLA leveraged its unified understanding and generation capabilities from MMaDA to create sub-
goal images that imagined an object will be grasped and provided language reasoning to indicate the
target object. This explicit multi-modal Chain-of-Thought (CoT) enabled the policy to predict more
precise grasping poses, significantly reducing inter-object interference. For the LIBERO simulation,
we observed a salient improvement when utilizing multi-modal CoT. As reported in Table 1, dVLA
reaches an averaged SR 96.4% against 89.8% for vallina dVLA with a 6.6 point gain. Overall, our
dVLA achieved the best results, validating the effectiveness of multi-modal CoT reasoning for VLA
tasks.

dVLA can prevent unsafe actions via multimodal CoT. During evaluation of our model on the
LIBERO task suites, dVLA sometimes delivers unsafe actions and fails to complete the tasks. We
empirically observed that the visual CoT generated by dVLA surprisingly aligns with the real exe-
cution results. Specifically, as shown in the bottom of Figure 4, the visual CoT on the left exhibits
that the object is stuck between the gripper and the edge of the box, while the right one showcases
that the robot moves in the wrong direction and struggles to move back. Both visual CoTs accu-
rately predict the unsafe behaviors of real executed actions, indicating that dVLA can predict not
only correct subgoal images but also the wrong execution results of unsafe actions. This is mainly
due to the unified discrete diffusion training strategy that dVLA predicts masked tokens based on all
available tokens across different modalities. Thus, dVLA naturally learns a unified and consistent
representation that can better ground multimodal Chain-of-Thought into concrete actions.

Effect of acceleration strategies. DLMs (Diffusion Language Models) typically cannot utilize
key-value (KV) cache during inference due to their bidirectional attention mechanism in training.
Thus, we employ two acceleration strategies to improve the inference speed of dVLA. As shown in
Table 3, we compare the inference speed and task success rate on both LIBERO and real-world sce-
narios. The results demonstrate that using prefix attention combined with KV caching significantly
boosts inference speed from 1.5 Hz to 3 Hz, with only a marginal performance cost, highlighting
the effectiveness of our acceleration strategies in enhancing dVLA’s real-time performance.

5 CONCLUSION

In this work, we introduced dVLA (diffusion Vision-Language-Action Model), the first vision-
language-action framework built on diffusion language models (DLMs). dVLA addresses the key
challenge of learning a unified architecture that can jointly perform multimodal Chain-of-Thought
reasoning—including subgoal image synthesis and textual reasoning—while simultaneously pre-
dicting actions. Moreover, dVLA demonstrates a strong grasp of the implicit physical laws under-
lying actions, as it can forecast future images that accurately reflect the real execution outcomes of
unsafe actions. This highlights that a unified model framework with a shared training objective en-
ables consistent reasoning and generation across modalities. To mitigate the inference overhead of
multimodal CoT prediction, we further introduced two acceleration strategies: a block-wise causal
attention mechanism for training and KV caching for inference. Together, these advances establish
a solid foundation for applying unified DLMs in robotics and pave the way for future research in
this direction.
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