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A Linear Algebra Facts

Fact A.1. The product A = M1M2, where M1 is a symmetric and positive matrix and
M2 a positive diagonal matrix, is positive definite in eigenvalues but is non-symmetric in
general (unless the diagonal matrix is constant) and non-positive in quadratic forms.

Proof of Fact A.1. To see the non-symmetry of A, suppose there exists i, j such that
(M2)jj 6= (M2)ii, then

(M1M2)ij =
∑
k

(M1)ik(M2)kj = (M1)ij(M2)jj = (M1)ji(M2)jj ,

(M1M2)ji = (M1)ji(M2)ii 6= (M1)ji(M2)jj .

Hence A is not symmetric and positive definite. To see that A may be non-positive in the
quadratic form, we give a counter-example.

M1 =

(
1 1
1 2

)
,M2 =

(
1 0
0 0.1

)
, A = M1M2 =

(
1 0.1
1 0.2

)
, (1,−2)A

(
1
−2

)
= −0.4.

To see that A is positive in eigenvalues, we claim that an invertible square root M
1/2
1

exists as M1 is symmetric and positive definite. Now A is similar to (M
1/2
1 )−1AM

1/2
1 =

M
1/2
1 M2M

1/2
1 , hence the non-symmetric A has the same eigenvalues as the symmetric and

positive definite M
1/2
1 M2M

1/2
1 .

Fact A.2. Matrix with all eigenvalues positive may be non-positive in quadratic form.

Proof of Fact A.2.

A =

(
−1 3
−3 8

)
, (1, 0)A

(
1
0

)
= −1,

though eigenvalues of A are 1
2 (7± 3

√
5) > 0.

Fact A.3. Matrix with positive quadratic forms may have non-positive eigenvalues.

Proof of Fact A.3.

A =

(
1 1
−1 1

)
, (x, y)A

(
x
y

)
= x2 + y2 > 0,

but eigenvalues of A are 1 ± i, not positive nor real. Actually, all eigenvalues of A always
have positive real part.

Fact A.4. Sum of products of positive definite (symmetric) matrix and positive diagonal
matrix may have zero or negative eigenvalues.

Proof of Fact A.4.

H1 =

(
8/9 2
2 7

)
, C1 =

(
0.9 0
0 0.4

)
, H2 =

(
3 2
2 2

)
, C2 =

(
0.1 0
0 0.6

)
.

Although Hj are positive definite, H1C1+H2C2 has a zero eigenvalue. Further, if H1[1, 1] =
0.7, then H1C1 + H2C2 has a negative eigenvalue.
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B Details of Main Results

B.1 Proofs of main results

Derivation of the loss dynamic of layer-wise clipping method. Recall the layer-wise clipping
defined in Section 4.2. The gradient flow corresponds to the DP-GD with layerwise clipping
is:

wr(k + 1) = wr(k)− η

n

(∑
i
∇wr`iCi,r + σRr · N (0, 1)

)
and ẇr(t) = − 1

n

∑
i

∇wr`iCi,r.

Then, we have

L̇ =
∑
r

∂L

∂wr
ẇr = −

∑
r

∂L

∂f
HrCr

∂L

∂f

>
. (B.1)

As we can see from (4.3) and (B.1), the per-sample clipping precisely changes the NTK
matrix from H ≡

∑
r Hr, in standard non-DP deep learning, to HC in DP training with

flat clipping, and to
∑
r HrCr in DP training with layerwise clipping. Subsequently, we will

show that this may break the NTK’s positivity and worsen the convergence of DP training
than the non-DP one.

Proof of Fact 4.1. Expanding the discrete dynamic in (4.1) as w(k + 1) = w(k) −
η
n

∑
i∇w`iCi − ησR

n N (0, 1), and chaining it for r ≥ 1 times, we obtain

w(k + r)−w(k) = −
r−1∑
j=0

η

n

∑
i

∇w`i(w(k + j))Ci −
r−1∑
j=0

ησR

n
N (0, 1).

In the limit of η → 0, we re-index the weights w by time, with t = kη and s = rη. Then the
left hand side becomes w(t+s)−w(t); the first summation on the right hand side converges

to − 1
n

∫ t+s
t

∑
i∇w`i(τ)Ci(τ)dτ , as long as the integral exists, and the second summation

J(η) =
∑r−1
j=0

ησR
n N (0, 1) has

E[J(η)] = 0 and Var(J(η)) =
σ2R2η2

n2
r = ηs

σ2R2

n2
→ 0, as η → 0.

Therefore, as η → 0, the discrete stochastic dynamic (4.1) converges to a deterministic
gradient flow given by the integral

w(t)−w(0) = − 1

n

∫ t

0

∑
i
∇w`i(τ)Ci(τ)dτ,

which corresponds to the ordinary differential equations (4.2).

Proof of Theorem 1. We prove the statements using the derived gradient flow dynamics
(4.2).

For Statement 1, from our narrative in Section 4.2 and Table 2, we know that the local flat
clipping algorithm has H(t)C(t) as its NTK. Since H(t) is positive definite and C(t) is a
positive diagonal matrix, by Fact A.1, the product H(t)C(t) is positive in eigenvalues, yet
may be asymmetric and not positive in quadratic form in general.

Similarly, for Statement 2, we know the NTK of local layerwise clipping has the form∑
r Hr(t)Cr(t), which by Fact A.4 is asymmetric in general, and may be not positive in

quadratic form nor positive in eigenvalues.

For Statement 3, by the training dynamics (4.3) for the local flat clipping algorithm and

(B.1) for the local layerwise clipping, we see that L̇ equal the negation of a quadratic form
of the corresponding NTK. By statement 1 & 2 of this theorem, such quadratic form may
not be positive at all t, and hence the loss L(t) is not guaranteed to decrease monotonically.
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Lastly, for Statement 4, suppose L(t) converges, i.e. L̇ = 0 = ∂L
∂f ḟ . Suppose we have L > 0,

then ∂L
∂f 6= 0 since L is convex in the prediction f . In this case, we know ḟ = 0. Observe

that

0 = ḟ =
∂f

∂w

∂w

∂t
= − ∂f

∂w

∂f

∂w

> ∂L

∂f

>
.

For the local flat clipping, the NTK matrix, ∂f
∂w

∂f
∂w

>
= HC is positive in eigenvalues (by

Statement 1), so it could only be the case that ∂L
∂f = 0, contradicting to our premise that

L > 0. Therefore we know L = 0 as long as it converges for the local flat clipping. On the
other hand, for the local layerwise clipping, the NTK may be not positive in eigenvalues.
Hence it is possible that L 6= 0 when L̇ = 0.

Proof of Theorem 2. The proof is similar to the previous proof, we consider the gradient
flow dynamic for global clipping as follows:

For the first statement, we note that the NTKs for global clipping are obviously symmetric:

since C and Cr are scalars, we have (H(t)C(t))> = H(t)C(t), and (
∑
r Hr(t)Cr(t))

>
=∑

r Hr(t)Cr(t), are all symmetric matrices. Also, for all x 6= 0, x>xHx = C · x>Hx > 0, so
the symmetric matrix HC is positive definite. Similar argument can easily show that the
summation of symmetric positive matrices is also a positive definite matrix.

Now, to prove the second statement, we note that for both global flat clipping and global
layerwise clipping, (4.3) and (B.1) give L̇(t) < 0 since the NTKs are positive in quadratic
form. That means L decreases monotonically. Additionally, L is bounded below by zero.
Therefore L must converge and thus L̇ = 0. Note that when we have ∂L

∂f = 0, it implies all

`i = 0, and thus L = 0.

To prove Theorem 3, we citep the known result of Gaussian Mechanism as follows.

Lemma B.1 (Theorem A.1 (Dwork et al., 2014); Theorem 2.7 (Dong et al., 2019)). Define
the `2 sensitivity of any function g to be ∆g = supS,S′ ‖g(S)−g(S′)‖2 where the supreme is
over all neighboring (S, S′). Then the Gaussian mechanism ĝ(S) = g(S) + σ∆g · N (0, I)
is (ε, δ)-DP for some ε depending on (σ, n, p, δ).

Proof of Theorem 3. Under local or global clipping in Algorithm 1, each clipped gradient

v̄
(i)
t has a norm bounded by R. Therefore, both clippings have the same sensitivity of

V̄t =
∑
i∈It v̄

(i)
t and hence the same privacy risk, regardless which privacy accountant is

adopted.

C Layerwise Per-Sample Clipping

We elaborate the details of layerwise clipping in this section. We describe the layerwise
clipping algorithm for DP-SGD, in complement to Algorithm 1 (not an generalization, i.e.
flat clipping is not a subset of layerwise clipping). For other optimizers the extension to
layerwise clipping is similar. Assume the neural network has d layers, denote the weights
of the r-th layer as wr, then the layerwise clipping can clip the per-sample gradient of each
layer either locally or globally.
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Algorithm 2 DP-SGD (with local or global layerwise per-sample clipping)

Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of
iterations T , noise scale σ, gradient norm bound Rr, maximum norm bound Zr for each
layer 1 ≤ r ≤ d.

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
for r = 1, ..., d do

for i ∈ It do

v
(i)
r,t ← ∇wr`(f(xi,wt), yi)

Option 1: Clocal,(i,r) = min
{

1, Rr/‖v(i)
r,t‖2

}
. Local clipping factor

Option 2: Cglobal,(i,r) ≡

{
Rr/Zr if ‖v(i)

r,t‖2 ≤ Zr
0 if ‖v(i)

r,t‖2 > Zr
. Global clipping factor

v̄
(i)
r,t ← Ci,r · v(i)

r,t . Clip the gradient

V̄r,t ←
∑
i∈It v̄

(i)
r,t . Sum over batch

Ṽr,t ← V̄r,t + σRr · N (0, I) . Apply Gaussian mechanism

wr,t+1 ← wr,t − ηt
|It| Ṽr,t . Descend

Output wr,T

For implementation, one can set max grad norm as a list of scalars in the Opacus Priva-
cyEngine11.

D Code Implementation

Building on top of the Pytorch Opacus12 library, we only need to add one line of code into

https://github.com/pytorch/opacus/blob/master/opacus/per_sample_gradient_
clip.py

To understand our implementation, we can equivalently view Option 2 in Algorithm 1 as

Cglobal,i =

{
R/Z if Clocal,i ≥ R/Z
0 if Clocal,i < R/Z

In this formulation, we can easily implement our global clipping by leveraging the Opacus
library (which already computes Clocal,i). This can be realized in multiple ways.

For example, we can add the following one line after line 179 (within the for loop),

import config;clip_factor=torch.where(clip_factor > self.norm_clipper.thresholds[0]/config.Z,
torch.ones_like(clip_factor)*self.norm_clipper.thresholds[0]/config.Z,
torch.zeros_like(clip_factor))

Here we use the package config to pass global variable, the maximum norm bound Z. An
equivalent but easier-to-follow version is

import config;
R=self.norm_clipper.thresholds[0]
Z=config.Z
clip_factor=torch.where(clip_factor > R/Z,
torch.ones_like(clip_factor)*R/Z,
torch.zeros_like(clip_factor))

11See https://github.com/pytorch/opacus/blob/e9983eced87619f683d84861c6503aca4e9287d1/
opacus/privacy_engine.py

12see https://github.com/pytorch/opacus as for 2021/09/09.
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Comparing to the original PyTorch implementation, our code only computes an additional
thresholding over B (batch size) values, the extra computational complexity is negligible.

E Experimental Details
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Figure 10: Confidence histograms on CIFAR 10 (left), SNLI (middle), and MNIST (right).

E.1 MNIST

For MNIST, we use the standard CNN in Tensorflow Privacy and Opacus, as listed below.
For both global and local clippings, the training hyperparameters (e.g. batch size) in Sec-
tion 6.1 are exactly the same as reported in https://github.com/tensorflow/privacy/
tree/master/tutorials, which gives 96.6% accuracy for the local clipping in Tensorflow
and similar accuracy in Pytorch, where our experiments are conducted. The non-DP net-
work is about 99% accurate. Notice the tutorial uses a different privacy accountant than
the GDP that we used.

class SampleConvNet(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=3)
self.conv2 = nn.Conv2d(16, 32, 4, 2)
self.fc1 = nn.Linear(32 * 4 * 4, 32)
self.fc2 = nn.Linear(32, 10)

def forward(self, x):
# x of shape [B, 1, 28, 28]
x = F.relu(self.conv1(x)) # -> [B, 16, 14, 14]
x = F.max_pool2d(x, 2, 1) # -> [B, 16, 13, 13]
x = F.relu(self.conv2(x)) # -> [B, 32, 5, 5]
x = F.max_pool2d(x, 2, 1) # -> [B, 32, 4, 4]
x = x.view(-1, 32 * 4 * 4) # -> [B, 512]
x = F.relu(self.fc1(x)) # -> [B, 32]
x = self.fc2(x) # -> [B, 10]
return x

E.2 CIFAR10 with 5-layer CNN

In Section 6.2, we adopt the model from Pytorch tutorial in https://pytorch.org/
tutorials/beginner/blitz/cifar10_tutorial.html, which is the following 5-layer CNN.

class Net(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
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self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

In addition to Figure 10 and Figure 6, we plot in Figure 11 the distribution of prediction
probability on the true class, say [πi]yi for the i-th sample (notice that Figure 10 plots
maxk[πi]k). Clearly the local clipping gives overly confident prediction: almost half of the
time the true class is assigned close to zero prediction probability. The global clipping has
a much more balanced prediction probability.
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Figure 11: Prediction probability on the true class on CIFAR10 with 5-layer CNN.

E.3 NLP: SNLI with BERT model

In Section 6.3, we use the model from Opacus tutorial in https://github.com/pytorch/
opacus/blob/master/tutorials/building_text_classifier.ipynb. The BERT archi-
tecture can be found in https://github.com/pytorch/opacus/blob/master/tutorials/
img/BERT.png.

To train the BERT model, we do the standard pre-processing on the corpus (tokenize the
input, cut or pad each sequence to MAX LENGTH = 128, and convert tokens into unique
IDs). We train the BERT model for 3 epochs. Similar to Appendix E.2, in addition
to Figure 7 and Figure 8, we plot the distribution of prediction probability on the true
class in Figure 12. Again, the local clipping is overly confident, with probability masses
concentrating on the two extremes, yet the global clipping is more balanced in assigning the
prediction probability.
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Figure 12: Prediction probability on the true class on SNLI with BERT.
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E.4 Regression Experiments

We experiment on the Wine Quality13 (1279 training samples, 320 test samples, 11 features)
and California Housing14 (18576 training samples, 2064 test samples, 8 features) datasets
in Section 6. For the California Housing, we use DP-Adam with batch size 256. Since other
datasets are not large, we use the full-batch DP-GD.

Across all the two experiments, we set δ = 1
1.1×training sample size and use the four-layer neural

network with the following structure, where input width is the input dimension for each
dataset:

class Net(nn.Module):
def __init__(self, input_width):

super(StandardNet, self).__init__()
self.fc1 = nn.Linear(input_width, 64, bias = True)
self.fc2 = nn.Linear(64, 64, bias = True)
self.fc3 = nn.Linear(64, 32, bias = True)
self.fc4 = nn.Linear(32, 1, bias = True)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return self.fc4(x)

The California Housing dataset is used to predict the mean price value of owner-occupied
home in California. We train both global flat and local flat clipping with DP-Adam, both
with noise σ = 1, clipping norm 1, and learning rate 0.0002. We also trained a non-DP GD
with the same learning rate. The GDP accountant gives ε = 4.41 after 50 epochs / 3650
iterations.

The UCI Wine Quality (red wine) dataset is used to predict the wine quality (an integer
score between 0 and 10). We train both global flat and local flat clipping with DP-GD, both
with noise σ = 35, clipping norm 2, and learning rate 0.03. We also trained a non-DP GD
with learning rate 0.001. The GDP accountant gives ε = 4.40 after 2000 iterations.

The California Housing and Wine Quality experiments are conducted in 30 independent
runs. In Figure 9, the lines are the average losses and the shaded regions are the standard
deviations.

F Optimizers with Clipping beyond Gradient Descent

We can extend Theorem 1 and Theorem 2 to a wide class of full-batch optimizers besides
DP-GD (with σ = 0 and σ 6= 0). We show that the NTK matrices in these optimizers
determine whether the loss is zero if the model converges.

Theorem 4. For an arbitrary neural network and a loss convex in f , suppose we clip the
per-sample gradients in the gradient flow of Heavy Ball (HB), Nesterov Accelerated Gradient

(NAG), Adam, AdaGrad, RMSprop or their DP variants and that ‖v(i)
t ‖2 ≤ Z, assuming

H(t) � 0, then

1. if the loss L(t) converges, it must converge to 0 for local flat, global flat and global
layerwise clipping;

2. even if the loss L(t) converges, it may converge to non-zero for local layerwise clipping.

The proof can be easily extracted from that of Theorem 1 and Theorem 2 and hence is
omitted. We highlight that DP optimizers in general correspond to deterministic gradient

13http://archive.672ics.uci.edu/ml/datasets/Wine+Quality
14http://lib.stat.cmu.edu/datasets/houses.zip
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flow (for DP-GD, see Fact 4.1) – as long as the noise injected in each step is linear in step
size. Therefore, the gradient flow is the same whether σ > 0 (the noisy case) or σ = 0 (the
noiseless case).

We also note that the only difference between layerwise clipping and flat clipping is the
form of NTK kernel, as we showed in Theorem 1 and Theorem 2. In this section, we
will only present the result for flat clipping since its generalization to layerwise clipping is
straightforward. In fact, part of the results for the global clipping has been implied by (Bu
et al., 2021b), which establishes the error dynamics for HB and NAG, but only on MSE
loss and on specific network architecture. To analyze a broader class of optimizers and on
the general loss and architecture, we turn to (da Silva & Gazeau, 2020) which gives the
dynamical systems of all optimizers aforementioned.

F.1 Gradient Methods with Momentum

We study two commonly used momentums, the Heavy Ball (Polyak, 1964) and the Nesterov’s
one (Nesterov, 1983). These gradient methods correspond to the gradient flow system
(da Silva & Gazeau, 2020, Equation (2.1))

ẇ(t) = −m(t), (F.1)

ṁ(t) =
∑
i

∇w`iCi − r(t)m(t). (F.2)

We note that HB corresponds to time-independent r(t) = r for some r and NAG corresponds

to r(t) = 3/t. At the stationary point, we have L̇ = ẇ = ṁ = 0. Consequently (F.1) gives
m = 0 and (F.2) gives ∑

i

∇w`iCi = rm = 0. (F.3)

Multiplying both sides with ∂f
∂w , we get

HC
∂L

∂f
= 0,

where ∂L
∂f is defined in (4.3). If the NTK is positive in eigenvalues, as is the case for local

flat and global clipping, we get ∂L
∂f = 0 and `i = 0 for all i since the loss is convex (thus

the only stationary point is the global minimum 0). Hence L = 0. Otherwise, e.g. for local

layerwise clipping, it is possible that ∂L
∂f

> 6= 0 and L 6= 0.

F.2 Adaptive Gradient Methods with Momentum

We consider Adam which corresponds to the dynamical system in (da Silva & Gazeau, 2020,
Equation (2.1))

ẇ(t) = −m(t)/
√

v(t) + ξ, (F.4)

ṁ(t) =
∑
i

∇w`iCi −
1

α1
m(t), (F.5)

v̇(t) =
1

α2

[∑
i

∇w`iCi

]2

− 1

α2
v(t). (F.6)

Here ξ ≥ 0 and the square is taken elementwise. At the stationary point, we have L̇ = ẇ =
ṁ = v̇ = 0. Consequently (F.4) gives m = 0 and (F.5) gives

∑
i∇w`iCi = m/α1 = 0.

Multiplying both sides with ∂f
∂w , we get again HC∂L

∂f = 0, and hence the results follow.
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F.3 Adaptive Gradient Methods without Momentum

We consider ADAGRAD and RMSprop which correspond to the dynamical system in
(da Silva & Gazeau, 2020, Remark 1)

ẇ(t) = −
∑
i

∇w`iCi/
√

v(t) + ξ, (F.7)

v̇(t) = p(t)

[∑
i

∇w`iCi

]2

− q(t)v(t), (F.8)

for some p(t), q(t). At the stationary point, we have L̇ = ẇ = ṁ = v̇ = 0. Consequently

(F.7) gives
∑
i∇w`iCi = 0. Multiplying both sides with ∂f

∂w , we get again HC∂L
∂f

>
= 0,

and hence the results follow.

F.4 Applying Global Clipping to DP Optimization Algorithms

Here we give some concrete algorithms where we can apply the global clipping method.

Many DP optimizers, non-adaptive (like HeavyBall and Nesterov Accelerated Gradient) and
adaptive (like Adam, ADAGRAD), can use the global clipping easily. These optimizers are
supported in Opacus and Tensorflow Privacy libraries. The original form of DP-Adam
can be found in (Bu et al., 2019).

Algorithm 3 DP-Adam (with local or global per-sample clipping)

Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of
iterations T , noise scale σ, gradient norm bound R, maximum norm bound Z, momentum
parameters (β1, β2), initial momentum m0, initial past squared gradient u0, and a small
constant ξ > 0.

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

Option 1: Clocal,i = min
{

1, R/‖v(i)
t ‖2

}
. Local clipping factor

Option 2: Cglobal,i ≡

{
R/Z if ‖v(i)

t ‖2 ≤ Z
0 if ‖v(i)

t ‖2 > Z
. Global clipping factor

v̄
(i)
t ← Ci · v(i)

t . Clip the gradient

Ṽt ← 1
|It|

(∑
i∈It v̄

(i)
t + σR · N (0, I)

)
. Apply Gaussian mechanism

mt ← β1mt−1 + (1− β1)Ṽt
ut ← β2ut−1 + (1− β2)(Ṽt � Ṽt) . � is the Hadamard product
wt+1 ← wt − ηtmt/(

√
ut + ξ) . Descend

Output wT

Recently, (Bu et al., 2021a) proposes to accelerate many DP optimizers with the JL projec-
tions in a memory efficient manner. Examples include DP-SGD-JL and DP-Adam-JL. The
acceleration is achieved by only approximately instead of exactly computing the per-sample
gradient norms. This does not affect the clipping operation afterwards and hence we can
replace the local clipping currently used by our global clipping.
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Algorithm 4 DP-SGD-JL (with local or global per-sample clipping)

Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of
iterations T , noise scale σ, gradient norm bound R, maximum norm bound Z, number of
JL projections r.

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
Sample u1, ..., ur ∼ N (0, I)
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

for j = 1 to r do

Pij ← v
(i)
t · uj (using jvp)

Mi =
√

1
r

∑r
j=1 P

2
ij . Mi is an estimate for ‖v(i)

t ‖2.

Option 1: Clocal,i = min
{

1, R/Mi

}
. Local clipping factor

Option 2: Cglobal,i ≡
{
R/Z if Mi ≤ Z
0 if Mi > Z

v̄
(i)
t ← Ci · v(i)

t . Clip the gradient

V̄ ←
∑
i∈It v̄

(i)
t . Sum over batch

Ṽt ← V̄t + σR · N (0, I) . Apply Gaussian mechanism

wt+1 ← wt − ηt
|It| Ṽt . Descend

Output wT

In another line of research on the Bayesian neural networks, where the reliability of networks
are emphasized, stochastic gradient Markov chain Monte Carlo (SG-MCMC) methods are
applied to quantify the uncertainty of the weights. When DP is within the scope, one
popular method is the DP stochastic gradient Langevin dynamics (DP-SGLD), where we
can apply the global clipping.

Algorithm 5 DP-SGLD (with local or global per-sample clipping)

Input: Dataset S = {(x1, y1), . . . , (xn, yn)}, loss function `(f(xi,wt), yi).
Parameters: initial weights w0, learning rate ηt, subsampling probability p, number of
iterations T , gradient norm bound R, maximum norm bound Z, and a prior p(w).

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

Option 1: Clocal,i = min
{

1, R/‖v(i)
t ‖2

}
. Local clipping factor

Option 2: Cglobal,i ≡

{
R/Z if ‖v(i)

t ‖2 ≤ Z
0 if ‖v(i)

t ‖2 > Z
. Global clipping factor

v̄
(i)
t ← Ci · v(i)

t . Clip the gradient

V̄ ←
∑
i∈It v̄

(i)
t . Sum over batch

wt+1 ← wt − ηt
(
V̄t

|It| −
∇w log p(w)

n

)
+N (0, ηtI) . Descend with Gaussian noise

Output wT

Here we treat wt+1 as a posterior sample, instead of as a point estimate. Notice that other
SG-MCMC methods such as SGNHT (Ding et al., 2014) can also be DP with the global
per-sample clipping.
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We emphasize that our global clipping applies whenever an optimization algorithm uses
per-sample clipping. Therefore this appendix only gives a few example of the full capacity
of global clipping.

F.5 Applying Global Clipping to DP Federated Learning

Here we present two federated learning methods in (McMahan et al., 2017): DP-FedSGD
and DP-FedAvg with the global or local clipping. Notice that we only demonstrate the flat
clippings and SGD. Layerwise clippings can be easily implemented by changing the ClipFn,
and the optimizer can be replaced by other ones.

Main training loop:

parameters
user selection probability q ∈ (0, 1]
number of examples per-user wk
gradient norm bound R
maximum norm bound Z
noise scale σ
UserUpdate (for FedAvg or FedSGD)
ClipFn (LocalClip or GlobalClip)

Initialize model θ0, W =
∑
k wk

for each round t = 0, 1, 2, . . . do
Ct ← (sample users with probability q)
for each user k ∈ Ct in parallel do

∆t+1
k ← UserUpdate(k, θt,ClipFn)

∆t+1 =
∑

k∈Ct wk∆k

qW

θt+1 ← θt + ∆t+1 + σ
qW

RN (0, I)

FlatClip(∆):

return ∆ ·min{1, R/‖∆‖2}
GlobalClip(∆):

if ∆ > Z:
return 0

else:
return ∆ ·R/Z

UserUpdateFedAvg(k, θ0, ClipFn):
parameters B, E, η
θ ← θ0

for each local epoch i from 1 to E do
B ← (k’s data split into size B batches)
for batch b ∈ B do

θ ← θ − η∇`(θ; b)
θ ← θ0 + ClipFn(θ − θ0)

return update ∆k = θ − θ0

UserUpdateFedSGD(k, θ0, ClipFn):
parameters B, η
select a batch b of size B from k’s examples
return update ∆k = ClipFn(−η∇`(θ; b))

Algorithm 6: DP-FedAvg and DP-FedSGD with global or local clipping.

F.6 Comparison between Different Clippings

Here we give a brief comparison between different clippings: the local per-sample clipping,
the global per-sample clipping and the non-DP batch clipping (see Algorithm 7). In the

Algorithm 7 Non-DP SGD (with batch clipping)

for t = 0, . . . , T − 1 do
Take a subsample It ⊆ {1, . . . , n} from training set D with subsampling probability p
for i ∈ It do

v
(i)
t ← ∇w`(f(xi,wt), yi)

Vt ← 1
|It|
∑
i∈It v

(i)
t . Sum over batch

V̄t ← Vt ·min
{

1, R′/‖Vt‖2
}

. Clip the gradient

wt+1 ← wt − ηtV̄t . Descend

Output wT

example of SGD, the key difference between the non-DP clipping and the DP clippings is the
order of operations: the non-DP clipping first average the per-sample gradients, then clips
in a batch manner. However, for DP clippings in Algorithm 1, we first clip the per-sample
gradients (the local clipping works in a per-sample manner but the global clipping works in
a batch manner) then take the average of the clipped gradients. Informally, we distinguish
the gradients after different clippins as follows:

• non-DP batch clipping: V̄t = ave(v
(i)
t ) · c′ = ave(v

(i)
t · c′);
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• DP local per-sample clipping: V̄t = ave(v
(i)
t · Ci);

• DP global per-sample clipping: V̄t = ave(v
(i)
t · C);

where 0 < c′, C, Ci ≤ 1 are clipping factors and ‘ave’ is the average. Notice that C = R/Z
and hence even though the global clipping is performing a batch clipping, it still requires
the |It| per-sample clipping factors (which needs to compute the per-sample gradients and
their norms) and hence is different from non-DP batch clipping. See Table 4.

non-DP clipping DP local clipping DP global clipping
Need per-sample gradient No Yes Yes

Batch clipping Yes No Yes

Table 4: Comparison of different clippings with respect to whether per-sample gradient
information is needed and whether the operation can be applied on the batch as a whole.

G The effect of noise on DP training

We demonstrate the following toy experiment that shares spirit of Fact 4.1. We would like
to compare the performance of DP-SGD algorithms with various level of noise. Notably as
in Figure 13, within a moderate range of noise addition, the performance changes little; but
the removal of the clipping changes the performance dramatically.
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Figure 13: Performance of DP-SGDlocal on CIFAR10 with various σ. All other parameters
are as in Section 6.2. We note that with σ = 0 and no clipping, test accuracy is about 62%.
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